

Available online at www.qu.edu.iq/journalcm JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS ISSN:2521-3504(online) ISSN:2074-0204(print)

Miller and Mocanu introduced the concept of differential superordination as the dual counterpart to differential subordination, as discussed in [3]. In [4], the notion of fuzzy

subordination was introduced, while in [5], the authors extended this idea by defining fuzzy

differential subordination. Furthermore, in [6], They derived conditions under which a

function acts as a dominant in fuzzy differential subordination and determined the optimal

dominant. This work focuses on investigating certain special cases of fuzzy differential

superordination for univalent functions defined by an integral operator.

On Special Fuzzy Differential Superordination For Univalent Functions Defined by Integral Operator

Raghda Naser Abdul-Hussain^a and Waggas Galib Atshan^b

^a Department of Mathematics, College Science, University of Al-Qadisiyah, Diwaniyah-Iraq. raghdanaser512@gmail.com

^b Department of Mathematics, College Science, University of Al-Qadisiyah , Diwaniyah-Iraq; waggas.galib@qu.edu.iq

ARTICLEINFO

ABSTRACT

Article history: Received: 7 /2/2025 Rrevised form: 4 /3/2025 Accepted : 6 /3/2025 Available online: 30 /3/2025

Keywords: Integral operator, Hurwitz-lerch Zeta function, fuzzy differential subordination, fuzzy differential superordination

https://doi.org/10.29304/jqcsm.2025.17.11996

1. Introduction and Preliminaries

Let $\mathcal{T} = \{\omega \in \mathbb{C} : |\omega| < 1\}$ represent the open unit disk in the complex plane, with its closure denoted by $\overline{\mathcal{T}} = \{\omega \in \mathbb{C} : |\omega| \le 1\}$. Let $\aleph(U)$ Represent the set of analytic functions within \mathcal{T} . For $\varrho \in \mathbb{C}$ and $n \in \mathbb{N}$, we denote by

$$\aleph[\varrho, n] = \{ f \in \aleph(\mathfrak{U}) \colon f(\omega) = \varrho + \varrho_{n+1}\omega^{n+1} + \cdots, \omega \in \mathbb{C} \},\$$

Similarly, let

$$\mathcal{A}_n = \{ f \in \aleph(\mathfrak{U}) : f(\omega) = \omega + \varrho_{n+1} z^{n+1} + \cdots, \omega \in \mathbb{C} \},\$$

where for n = 1, we denote \mathcal{A}_1 simply as \mathcal{A} . The set of functions that are both analytic and univalent in \mathcal{V} , denoted by *S*, consists of functions satisfying f(0) = 0 and f'(0) = 1, and is given by the power series expansion:

^{*}Corresponding author: Sara Falih Makttoof

Email addresses: saraf.alkhazai@uokufa.edu.iq

Communicated by 'sub etitor'

$$f(\omega) = \omega + \varrho_2 \omega^2 + \cdots, \omega \in \mathfrak{V}. \tag{1.1}$$

Further, we define important subclasses of \mathcal{A} as follows:

The set of functions that are normalized starlike functions, denoted by

$$\mathcal{S}^* = \left\{ f \in \mathcal{A} \colon Re\left(\frac{\omega f'(\omega)}{f(\omega)}\right) > 0, \omega \in \mathcal{O} \right\},\$$

The set of functions that are normalized convex functions, denoted by

$$\mathcal{C} = \left\{ f \in \mathcal{A} : Re\left(\frac{\omega f''(\omega)}{f'(\omega)} + 1\right) > 0, \omega \in \mathbf{U} \right\},\$$

The set of functions that are normalized close-to-convex functions, denoted by

$$K = \left\{ f \in \mathcal{A} : Re\left\{ \frac{f'(\omega)}{g'(\omega)} \right\} > 0, g(\omega) \in \mathcal{C}, \omega \in \mathfrak{V} \right\},\$$

Differential Superordination Method

The general framework of the differential superordination method can be expressed as follows. Let Ω and Δ be subsets of \mathbb{C} , and let p be an analytic function within \mathcal{V} . Consider a function $\varphi(r, s, t; \omega) : \mathbb{C}^3 \times \mathcal{V} \to \mathbb{C}$, which is defined in terms of p and its derivatives. The primary objective is to investigate the implications of the following relationships:

$$\Omega \subset \{\varphi(p(\omega), \omega p'(\omega), \omega^2 p''(\omega); \omega) \colon \omega \in \mho\} \Longrightarrow \Delta \subset p(\mho).$$
(1.2)

If Δ is a simply connected domain that includes a point ϱ , and $\Delta \neq \mathbb{C}$, then there exists a conformal mapping $q: \mathfrak{V} \rightarrow \Delta$ such that $q(0) = \varrho$. Under this condition, the given implication can be reformulated as follows:

$$\Omega \subset \{\varphi(p(\omega), \omega p'(\omega), \omega^2 p''(\omega); \omega) \colon \omega \in \mathfrak{V}\} \Longrightarrow q(\omega) \prec p(\omega).$$
(1.3)

If Ω is also simply connected and $\Omega \neq \mathbb{C}$, then there exists a conformal mapping $\rho: \mathfrak{V} \to \Omega$ such that $\rho(0) = \phi(\varrho, 0, 0; 0)$. Moreover, if the function $\phi(\mathcal{P}(\omega), \omega \mathcal{P}'(\omega), \omega^2 \mathcal{P}''(\omega); \omega)$ is univalent in U, the relation can be expressed as:

$$\rho(\omega) < \varphi(p(\omega), \omega p'(\omega), \omega^2 p''(\omega); \omega) \Longrightarrow \rho(\omega) < p(\omega).$$
(1.4)

For a more detailed discussion on the differential superordination method, refer to the monographs [1,8,9,10].

Definition (1.1) [3] We denote by \hat{Q} the set of functions q that are analytic and injective on $\overline{U} \setminus E(q)$, were

$$E(q) = \left\{ \zeta \in \partial \mathbb{U}: \lim_{\omega \to \zeta} q(\omega) = \infty \right\},\$$

and are such that $q'(\zeta) \neq 0$ for $\zeta \in \partial \mathcal{O} \setminus E(q)$. The set E(q) is called the exemption set.

Definition (1.2) [11] Let *Y* be a non-empty set. A function $F: Y \rightarrow [0,1]$ is called a fuzzy subset of *Y*. A more precise definition can be given as follows:

A fuzzy subset is defined as a pair (A, F_A), $F_A : Y \rightarrow [0,1]$ is a function and

$$A = \{y \in Y : 0 < F_A \le 1\} = supp(A, F_A),$$

Here, *A* represents the support of the fuzzy set, consisting of all elements in *Y* with nonzero membership values. The function F_A is referred to as the membership function of the fuzzy set (A, F_A), which assigns each element of *Y* a degree of membership in the fuzzy subset.

Definition (1.3) [11]: Let $(M', F_{M'})$ and $(N', F_{N'})$ be two fuzzy subsets of a set *Y*. We say that the fuzzy subsets *M'* and *N'* are equal if and only if they have the same membership function, i.e.,

$$F_{M'}(y) = F_{N'}(y), \forall y \in Y$$

This is denoted by:

$$(M', \mathcal{F}_{M'}) = (N', \mathcal{F}_{N'}).$$

A fuzzy subset $(M', F_{M'})$ is contained in another fuzzy subset $(N', F_{N'})$ if and only if its membership function does not exceed that of $(N', F_{N'})$ for all elements in *Y*, i.e.,

$$F_{M'}(y) \le F_{N'}(y), \forall y \in Y$$

This inclusion relation is denoted by:

$$(M', \mathcal{F}_{M'}) \subseteq (N', \mathcal{F}_{N'}).$$

Definition (1.4) [4] Let $D \subseteq \mathbb{C}$, and let $\omega_0 \in D$ be a fixed point. Suppose that $f, g \in \aleph(\mathcal{O})$ are analytic functions. A function f is considered to be fuzzy subordinate to g, denoted as $f \prec_F g$ or $f(\omega) \prec_F g(\omega)$, if the following conditions are satisfied:

$$1 - f(\omega_0) = \mathcal{G}(\omega_0),$$

 $2 - F_{f(D)}(f(\omega)) \le F_{\mathcal{G}(D)}(\mathcal{G}(\omega)), \omega \in \mathcal{V}.$

Remark [4] Let $f, h \in \mathfrak{K}(\mathfrak{V})$ are functions and h is a univalent function then $f \prec h$ if

 $f(0) = \hbar(0)$ and $f(\mathfrak{V}) \subset \hbar(\mathfrak{V})$. Thus, if \hbar is a univalent function, then $f \prec_F \hbar$ if and only if $f \prec \hbar$.

Let $f, h \in \aleph(U)$, and assume that h is a univalent function. Then, f is said to be fuzzy subordinate to h, denoted as $f \prec h$, Provided that the following criteria are met

i.
$$f(0) = \hbar(0)$$
,

ii. $f(\mathfrak{V}) \subseteq \hbar(\mathfrak{V})$.

From this, if \hbar is a univalent function, it follows that $f \prec_F \hbar \Leftrightarrow f \prec \hbar$.

Definition (1.5) [5] A function $L(\omega, t)$ where $\omega \in \mathcal{V}$ and $t \ge 0$, is called a fuzzy subordination chain as long as it meets the following conditions:

i. For each fixed $t \ge 0$, the function $L(\cdot, t)$ is analytic and univalent in \mathcal{V} .

ii. The function $L(\omega, t)$ is continuously differentiable with respect to t on $[0, \infty)$ for all $\omega \in \mathcal{V}$.

iii. The fuzzy membership function satisfies the monotonicity condition:

$$F_{L[\mathbb{U}\times[0,\infty)]}(L(\omega,t_1)) \leq F_{L[\mathbb{U}\times[0,\infty)]}(L(\omega,t_2)), t_1 \leq t_2.$$

Theorem (1.6) [1] Let ℓ_1 be convex in \mathfrak{V} , with $\ell_1(0) = a \gamma \neq 0$, with $Re(\gamma) \ge 0$, and $p \in \mathfrak{K}[a, 1] \cap Q$ if $\mathfrak{P}(\omega) + \frac{1}{\nu} \omega \mathfrak{P}'(\omega)$ is univalent in \mathfrak{V} .

$$\ell_1(\omega) \prec_F \mathcal{P}(\omega) + \frac{1}{\gamma} \omega \mathcal{P}'(\omega), \tag{1.5}$$

and

 $q_1(\omega) = \frac{\gamma}{z^{\gamma}} \int_0^{\omega} \ell_1(t) t^{\gamma-1} dt.$ (1.6)

Then

 $\ell_1(\omega) \prec_F p(\omega),$

then function q_1 is convex and is the fuzzy best subordinate.

Theorem (1.7) [1] Let q_{ℓ} be convex in \mathfrak{V} and let ℓ be defined by

 $\ell(\omega) = q(\omega) + \frac{1}{\gamma}\omega q'(\omega)$, with $Re\gamma > 0$. If $p \in \aleph[a, 1] \cap Q$, $p(\omega) + \frac{1}{\gamma}\omega p'(\omega)$ is univalent in \mho and

 $q(\omega) = \frac{\gamma}{\omega^{\gamma}} \int_{0}^{\omega} \ell(t) t^{\gamma-1} dt.$

$$F_{\ell(\mathbb{U})}(\ell(\mathbb{U})) \leq F_{(\mathbb{C}^3 \times \mathbb{U})}\left(\mathcal{P}(\omega) + \frac{1}{\gamma}\omega \mathcal{P}'(\omega)\right),$$

then

$$q(\omega) \prec_F p(\omega)$$

where

The function q_i is the fuzzy best subordinant.

Theorem (1.8) [1] Let ℓ be starlike in \mathcal{V} , with $\ell(0) = 0$. If $p \in \aleph[0,1] \cap Q$ and zp'(z) is univalent in \mathcal{V} , then

(1.8)

$$F_{\ell(\mathbb{U})}(\ell(\omega)) \le F_{(\mathbb{C}^3 \times \mathbb{U})}(\omega p'(\omega)), \tag{1.7}$$

implies

$$F_{q(\mathfrak{U})}q(\mathfrak{v}) \leq F_{p(\mathfrak{U})}p(\omega), \qquad \omega \in \mathfrak{V}$$

 $q(\omega) = \int_{0}^{\omega} \ell(t) t^{-1} dt.$

where

The function *q*, is convex and is the fuzzy best subordinant.

Let $f_j \in \mathcal{A}, j = 1, 2$ as given in form (1.1), where

$$f_j(\omega) = \omega + \sum_{n=2}^{\infty} a_{n,j} \,\omega^n, \qquad (j = 1, 2),$$

the Hadamard product (or convolution) of $f_1(\omega)$ and $f_2(\omega)$ is defined by

$$(f_1 * f_2)(\omega) = \omega + \sum_{n=2}^{\infty} a_{n,1} a_{n,2} \omega^n = (f_2 * f_1)(\omega).$$

Definition 1.9 Let $f \in \mathcal{A}, m \in \mathbb{N}$ and $\alpha > 0, \beta \ge 0$. We define the differential operator $I^m_{\beta,\alpha}: \mathcal{A} \longrightarrow \mathcal{A}$, where

$$I_{\beta,\alpha}^{0}f(\omega) = f(\omega),$$

$$I_{\beta,\alpha}^{1}f(\omega) = \frac{\alpha + \beta + 2}{\omega^{\alpha + \beta + 1}} \int_{0}^{\omega} t^{\alpha + \beta} f(t)dt,$$

$$I_{\beta,\alpha}^{2}f(\omega) = \frac{\alpha + \beta + 2}{\omega^{\alpha + \beta + 1}} \int_{0}^{\omega} t^{\alpha + \beta} \left(I_{\beta,\alpha}^{1}f(\omega)\right) dt, ...$$

$$I_{\beta,\alpha}^{m}f(\omega) = \frac{\alpha + \beta + 2}{\omega^{\alpha + \beta + 1}} \int_{0}^{\omega} t^{\alpha + \beta} \left(I_{\beta,\alpha}^{m-1}f(\omega)\right) dt$$

$$= \omega + \sum_{n=2}^{\infty} \left(\frac{\alpha + \beta + 2}{\alpha + \beta + n + 1}\right)^{m} a_{n} \omega^{n}.$$
(1.9)

The general Hurwitz-lerch Zeta function

$$\phi(\omega, s, \rho) = \sum_{n=0}^{\infty} \frac{\omega^n}{(\rho+n)^s}, \ \rho \in \mathbb{C} \setminus \mathbb{Z}_0^- = \{0, -1, -2, \dots\}, s \in \mathbb{C}, when \ |\omega| < 1.$$

Definition 1.10 Let $f \in \mathcal{A}, m \in \mathbb{N}$, $\alpha > 0, \beta \ge 0, \rho \in \mathbb{C} \setminus \mathbb{Z}_0^-$ and $s \in \mathbb{C}$, we define the operator ${}_{\rho}^{s} \Upsilon_{\beta,\alpha}^m : \mathcal{A} \longrightarrow \mathcal{A}$, were

$${}_{\rho}^{s}Y_{\beta,\alpha}^{m}f(\omega) = (\rho+1)^{s}[\emptyset(\omega,s,\rho) - \frac{1}{a^{s}}] * I_{\beta,\alpha}^{m}f(\omega)$$

$$=\omega + \sum_{n=2}^{\infty} \left(\frac{\rho+1}{\rho+n}\right)^s \left(\frac{\alpha+\beta+2}{\alpha+\beta+n+1}\right)^m a_n \,\omega^n.$$
(1.10)

From (1.10), it can be easily seen that

$$\omega \left({}_{\rho}^{s} \Upsilon^{m}_{\beta,\alpha} f(\omega) \right)' = (\alpha + \beta + 2) {}_{\rho}^{s} \Upsilon^{m-1}_{\beta,\alpha} f(\omega) - (\alpha + \beta + 1) {}_{\rho}^{s} \Upsilon^{m}_{\beta,\alpha} f(\omega),$$
(1.11)

and, we have

- i) ${}^{0}_{\rho}\Upsilon^{m}_{\beta,\alpha}f(\omega) = \mathrm{I}^{m}_{\beta,\alpha}f(\omega);$
- $ii) {}_{\rho}^{0} \Upsilon^{0}_{\beta,\alpha} f(\omega) = f(\omega).$

Using the operator ${}_{\rho}^{s} \Upsilon^{m}_{\beta,\alpha} f(\omega)$ defined in Definition (1.10), we study fuzzy superordination

2. Main Results

Theorem 2.1: Let $\ell(\omega)$ be convex function with $\ell(0) = 1$. Let $f \in \mathcal{A}, m \in \mathbb{N}, \alpha > 0, \beta \ge 0, \rho \in \mathbb{C} \setminus \mathbb{Z}_0^-, s \in \mathbb{C}$ and suppose that $\binom{s}{\rho} Y_{\beta,\alpha}^m f(\omega)$ is univalent and $\frac{\mathfrak{F}_{\alpha,\lambda}^{s,m} f(\omega)}{\omega} \in \mathfrak{K}[1,1] \cap Q$. If

$$F_{\ell(\mathbb{U})}(\ell(\omega)) \le F_{\left(\begin{smallmatrix} \delta \\ \rho \end{smallmatrix} \right)_{\beta,\alpha}^{m} f\right)_{(\mathbb{U})}^{\prime}} \left(\begin{smallmatrix} \delta \\ \rho \end{smallmatrix} \right)_{\beta,\alpha}^{m} f(\omega) \right)^{\prime},$$
(2.1)

then

$$F_{\mathcal{A}(\mathbb{U})}(q(\omega)) \leq F_{\left(\overset{S}{\rho}Y^{m}_{\beta,\alpha}f\right)_{(\mathbb{U})}}\left(\frac{\overset{S}{\rho}Y^{m}_{\beta,\alpha}f(\omega)}{\omega}\right), \omega \in \mathbb{U},$$

where $q(\omega) = \frac{1}{\omega} \int_0^z h(t) dt$. The function q is convex and it is the fuzzy best subordinant.

Proof. Consider

$$\mathcal{P}(\omega) = \frac{{}_{\rho}^{s} \Upsilon_{\beta,\alpha}^{m} f(\omega)}{\omega} = \frac{\omega + \sum_{n=2}^{\infty} \left(\frac{\rho+1}{\rho+n}\right)^{s} \left(\frac{\beta+\alpha+2}{\beta+\alpha+n+1}\right)^{m} a_{n} \omega^{n}}{\omega}$$
$$= 1 + \sum_{n=2}^{\infty} \left(\frac{\rho+1}{\rho+n}\right)^{s} \left(\frac{\beta+\alpha+2}{\beta+\alpha+n+1}\right)^{m} a_{n} \omega^{n-1}.$$

Evidently $p \in \aleph[1,1]$. We have,

$$p(\omega) + \omega p'(\omega) = \left({}_{\rho}^{s} \Upsilon^{m}_{\beta,\alpha} f(\omega) \right)', \qquad \omega \in \mho.$$

Then the fuzzy differential superordination (2.1) becomes

$$F_{\ell(\mathbb{U})}(\ell(\omega)) \leq F_{(\mathbb{C}^2 \times \mathbb{U})}(p(\omega) + \omega p'(\omega)), \qquad \omega \in \mathbb{U}.$$

By using Theorem (1.6) for $\gamma = 1$, we have

$$F_{q(\mathbb{U})}(q(\omega)) \leq F_{p(\mathbb{U})}(p(\omega)), i.e.F_{q(\mathbb{U})}(q(\omega)) \leq F_{\left(\stackrel{s}{\rho}\Upsilon^{m}_{\beta,\alpha}f\right)_{(\mathbb{U})}}\left(\frac{\stackrel{s}{\rho}\Upsilon^{m}_{\beta,\alpha}f(\omega)}{\omega}\right),$$

Where $q(\omega) = \frac{1}{\omega} \int_0^{\omega} \ell(t) dt$. The function *q* is convex and it is the fuzzy best subordinant.

Corollary 2.2: Let $\ell(\omega) = \frac{1+(2\gamma-1)\omega}{1+\omega}$ a convex function in $\mathfrak{V}, 0 \leq \gamma < 1$. If $m \in \mathbb{N}$, $\alpha > 0, \beta \geq 0, \rho \in \mathbb{C} \setminus \mathbb{Z}_0^-$, $s \in \mathbb{C}$ $f \in \mathcal{A}$ and suppose that $\binom{s}{\rho} Y^m_{\beta,\alpha} f(\omega))'$ is univalent and $\frac{\rho}{\rho} Y^m_{\beta,\alpha} f(\omega)}{\omega} \in \mathfrak{K}[1,1] \cap Q$. If

$$\frac{1 + (2\gamma - 1)\omega}{1 + \omega} \prec_F \left({}_{\rho}^{s} \Upsilon^m_{\beta, \alpha} f(\omega) \right)', \qquad (2.2)$$

then

$$F_{q(\mathfrak{V})}(q(\omega)) \leq F_{\left(\begin{smallmatrix}sY_{\beta,\alpha}^{m}f\right)_{(\mathfrak{V})}}\left(\frac{\begin{smallmatrix}sY_{\beta,\alpha}^{m}f(\omega)}{\omega}\right), \qquad \omega \in \mathfrak{V}.$$

where q, is given by

$$q(\omega) = 2\gamma - 1 + \frac{2(1-\gamma)}{2}\ln(1+\omega). \ \omega \in \mho$$

The function *q* is convex and it is the fuzzy best subordinant.

Proof. We have

$$\ell(\omega) = \frac{1+(2\gamma-1)\omega}{1+\omega}, \ell(0) = 1, \ell'(\omega) = \frac{-2(1-\gamma)}{(1+\omega)^2} \text{ and } \ell''(\omega) = \frac{4(1-\gamma)}{(1+\omega)^3}, \text{ therefore}$$

$$Re\left(\frac{z\ell''(\omega)}{\ell'(\omega)} + 1\right) = Re\left(\frac{1-\omega}{1+\omega}\right) = Re\left(\frac{1-r(\cos\theta+i\sin\theta)}{1+r(\cos\theta+i\sin\theta)}\right)$$

$$= \frac{1-r^2}{1+2r\cos\theta+r^2} > 0, \text{ where } r = |\omega| < 1, \theta \in \mathbb{R}.$$

Following the same steps as in the proof of Theorem (2.1) and considering $p(\omega) = \frac{{}_{\rho}^{s} \Upsilon_{\beta,\alpha}^{m} f(\omega)}{p(\omega)}.$

$$p(\omega) = \omega$$

The fuzzy differential superordination (2.2) becomes

$$\frac{1+(2\gamma-1)\omega}{1+\omega} \prec_F \mathcal{P}(\omega) + \omega \mathcal{P}'(\omega), \qquad \omega \in \mho.$$

By using Theorem (1.6) for $\gamma = 1$, we have

$$F_{q(\mathbb{U})}(q(\omega)) \leq F_{p(\mathbb{U})}(p(\omega)), i.e.F_{q(\mathbb{U})}(q(\omega)) \leq F_{\left(\stackrel{SYm}{\rho}Y_{\beta,\alpha}^{m}f\right)_{(\mathbb{U})}}\left(\frac{\stackrel{SYm}{\rho}Y_{\beta,\alpha}^{m}f(\omega)}{\omega}\right),$$

and

$$q(\omega) = \frac{1}{\omega} \int_{0}^{z} \ell(t) dt = \frac{1}{\omega} \int_{0}^{z} \frac{1 + (2\gamma - 1)t}{1 + t} dt = 2\gamma - 1 + \frac{2(1 - \gamma)}{2} \ln(1 + \omega).$$

Theorem (2.3): Let q convex function in U sach that q(0) = 1 and let ℓ be defined by $\ell(\omega) = q(\omega) + \frac{1}{\alpha + \beta + 2} \omega q'(\omega)$. If $m \in \mathbb{N}$, $\alpha > 0, \beta \ge 0, \rho \in \mathbb{C} \setminus \mathbb{Z}_0^-$, $s \in \mathbb{C}$, $f \in \mathcal{A}$ and suppose that $\binom{s}{\rho} Y^{m-1}_{\beta,\alpha} f(\omega)$ is univalent and $\binom{s}{\rho} Y^m_{\beta,\alpha} f(\omega)$ $\in \mathbb{K}[1,1] \cap Q$ and satisfies the fuzzy differential superordination

$$\ell(\omega) = q(\omega) + \frac{1}{\alpha + \beta + 2} \omega q'(\omega) \prec_F \left({}_{\rho}^{s} \Upsilon_{\beta,\alpha}^{m-1} f(\omega)\right)', \omega \in \mathfrak{V},$$
(2.3)

then

$$F_{q(\mathbb{U})}(q(z)) \leq F_{\left(\begin{smallmatrix} \delta \\ \rho \end{smallmatrix}^m_{\beta,\alpha}f\right)'_{(\mathbb{U})}}\left(\begin{smallmatrix} \delta \Upsilon^m_{\beta,\alpha}f(\omega) \end{smallmatrix}^{\prime}\right)',$$

where $q(\omega) = \frac{1}{z} \int_0^z \ell(t) dt$. The function q is the optimal fuzzy subordinant.

Proof. By utilizing the properties of the operator $_{\rho}^{s} Y_{\beta,\alpha}^{m}$ and differentiating with respect to ω , we obtain

$$\left({}_{\rho}^{s}\Upsilon_{\beta,\alpha}^{m}f(\omega)\right)' = \frac{\omega}{\alpha+\beta+2}\left({}_{\rho}^{s}\Upsilon_{\beta,\alpha}^{m}f(\omega)\right)'' + \left({}_{\rho}^{s}\Upsilon_{\beta,\alpha}^{m}f(\omega)\right)', \qquad \omega \in \mho,$$

if we set, $\mathcal{P}(\omega) = {s \choose \rho} Y^m_{\beta,\alpha} f(\omega)'$, then the fuzzy differential superordination (2.3) becomes

$$F_{\ell(\mathbb{U})}(\ell(\omega)) \leq F_{(\mathbb{C}^2 \times \mathbb{U})}\left(p(\omega) + \frac{1}{\alpha + \beta + 2}\omega p'(\omega)\right), \qquad \omega \in \mathbb{U}.$$

By using Theorem (1.7) for $\gamma = \alpha + \beta + 2$, we have

$$F_{q(\mathbb{U})}(q(z)) \leq F_{p(\mathbb{U})}(p(z)), i.e. q(z) = \frac{1}{\omega} \int_{0}^{\omega} \ell(t) dt \prec_{F} \left({}_{\rho}^{S} \Upsilon_{\beta,\alpha}^{m} f(\omega) \right)',$$

and q is the fuzzy best subordinant.

Theorem (2.4): Let ℓ be starlike in \mathbb{O} with $\ell(0) = 0$. Let $m \in \mathbb{N}$, $\alpha > 0, \beta \ge 0, \rho \in \mathbb{C} \setminus \mathbb{Z}_0^-$, $s \in \mathbb{C}, f \in \mathcal{A}$ and suppose that $\frac{\omega^2}{\alpha + \beta + 2} \left({}_{\rho}^{s} Y^m_{\beta,\alpha} f(\omega) \right)'' + \omega \left({}_{\rho}^{s} Y^m_{\beta,\alpha} f(\omega) \right)'$ is univalent and ${}_{\rho}^{s} Y^{m-1}_{\beta,\alpha} f(z) \in \aleph[0,1] \cap Q$, then

$$\ell(\omega) \prec_F \frac{\omega^2}{\alpha + \beta + 2} \left({}_{\rho}^{s} \Upsilon^m_{\beta,\alpha} f(\omega) \right)'' + z \left({}_{\rho}^{s} \Upsilon^m_{\beta,\alpha} f(\omega) \right)', \qquad (2.4)$$

implies

$$F_{q(\mathbb{U})}(q(\omega)) \leq F_{\left({}_{\rho}^{S}Y_{\beta,\alpha}^{m-1}f\right)_{(\mathbb{U})}}\left({}_{\rho}^{S}Y_{\beta,\alpha}^{m-1}f(\omega)\right), \qquad \omega \in \mathbb{U},$$

where $q(\omega) = \int_0^{\omega} \ell(t) t^{-1} dt$, the function q is convex and it is the fuzzy best subordinant.

Proof. Using the properties of operator ${}_{\rho}^{s} \Upsilon^{m}_{\beta,\alpha}$ Additionally, by differentiating with respect to ω , we obtain

$$\omega p'(\omega) = \frac{\omega^2}{\alpha + \beta + 2} \left({}_{\rho}^{s} Y_{\beta,\alpha}^m f(\omega) \right)'' + \omega \left({}_{\rho}^{s} Y_{\beta,\alpha}^m f(\omega) \right)',$$

then the fuzzy differential superordination (2.4) becomes

$$\ell(\omega) \prec_F \omega p'(\omega), \qquad \omega \in \mathfrak{V}.$$

By using Theorem (1.8), we have

$$F_{q(\mathbb{U})}(q(\omega)) \leq F_{p(\mathbb{U})}(p(\omega)), i. e. F_{q(\mathbb{U})}(q(\omega)) \leq F_{\left(\begin{smallmatrix}s \\ \rho \end{smallmatrix}^{M-1}_{\beta,\alpha}f\right)_{(\mathbb{U})}}\left(\begin{smallmatrix}s \\ \gamma \end{smallmatrix}^{M-1}_{\alpha}f(\omega)\right),$$

where $q(\omega) = \int_0^{\omega} \ell(t) t^{-1} dt$, The function q is convex and represents the optimal fuzzy subordinant.

Example 2.5: Let $\ell(\omega) = \frac{\omega}{(1-\omega)^2}$, with h(0) = 0 and $\ell'(\omega) = \frac{1+\omega}{(1-\omega)^3}$.

Since

$$Re\left(\frac{\omega\ell'(\omega)}{\ell(\omega)}\right) = Re\left(\frac{1+\omega}{1-\omega}\right) = Re\left(\frac{1+r(\cos\theta+i\sin\theta)}{1-r(\cos\theta+i\sin\theta)}\right)$$
$$= \frac{1-r^2}{1-2r\cos\theta+r^2} > 0, \text{ where } r = |\omega| < 1, \theta \in \mathbb{R},$$

the function ℓ is starlike.

Let $f(\omega) = \omega + 2\omega^2$, $s = \lambda = 0$, m = 1, n = 2, we obtain

$${}^{0}_{\rho}\Upsilon^{1}_{0,0}f(\omega) = \omega + \frac{4}{3}\omega^{2} \text{ and } {}^{0}_{\rho}\Upsilon^{2}_{0,0}f(z) = \omega + \frac{8}{9}\omega^{2}.$$

Using Theorem (2.1), we obtain

$$\frac{\omega}{(1-\omega)^2} \prec_F \omega + \frac{16}{9}\omega^2 \Longrightarrow \frac{\omega}{(1-\omega)} \prec_F \omega + \frac{8}{9}\omega^2, \qquad \omega \in \mho.$$

Theorem 2.6: Let $\ell(\omega)$ be convex function with $\hbar(0) = 1$.Let $f \in \mathcal{A}$, $m \in \mathbb{N}$, $\alpha > 0, \beta \ge 0$, $\rho \in \mathbb{C} \setminus \mathbb{Z}_0^-$, $s \in \mathbb{C}$ and suppose that

$$\left(\frac{\omega_{\rho}^{s} \Upsilon_{\beta,\alpha}^{m-1} f(\omega)}{{}_{\rho}^{s} \Upsilon_{\beta,\alpha}^{m} f(\omega)}\right)' \text{ is univalent and } \frac{{}_{\rho}^{s} \Upsilon_{\beta,\alpha}^{m-1} f(\omega)}{{}_{\rho}^{s} \Upsilon_{\beta,\alpha}^{m} f(\omega)} \in \aleph[1,1] \cap Q. \text{ If}$$
$$\ell(\omega) \prec_{F} \left(\frac{\omega_{\rho}^{s} \Upsilon_{\beta,\alpha}^{m-1} f(\omega)}{{}_{\rho}^{s} \Upsilon_{\beta,\alpha}^{m} f(\omega)}\right)', \tag{2.5}$$

then

$$q(\omega) \prec_F \left(\frac{{}_{\rho}^{\varsigma} \Upsilon_{\beta,\alpha}^{m-1} f(\omega)}{{}_{\rho}^{\varsigma} \Upsilon_{\beta,\alpha}^m f(\omega)} \right), \quad \omega \in \mho,$$

where $q(\omega) = \frac{1}{\omega} \int_0^{\omega} \ell(t) dt$. The function q is convex and it is the fuzzy best subordinant.

Proof. Define the function by

$$p(\omega) = \frac{{}_{\rho}^{s} \Upsilon_{\beta,\alpha}^{m-1} f(\omega)}{{}_{\rho}^{s} \Upsilon_{\beta,\alpha}^{m} f(\omega)}, \qquad \omega \in \mho.$$
(2.6)

Then the function p is analytic in \mathcal{V} and p(0) = 1. Differentiating (2.6) with respect to ω , we have

$$p(\omega) + zp'(\omega) = \left(\frac{z_{\rho}^{s} \Upsilon_{\beta,\alpha}^{m-1} f(\omega)}{\frac{s}{\rho} \Upsilon_{\beta,\alpha}^{m} f(\omega)}\right)', \qquad \omega \in \mho.$$

Consequently, the fuzzy differential superordination given in equation (2.5) transforms into:

$$F_{\ell(\mathbb{U})}(\hbar(\omega)) \leq F_{(\mathbb{C}^2 \times \mathbb{U})}(p(\omega) + \omega p'(\omega)), \qquad \omega \in \mathbb{U}.$$

By using the theorem (1.6) for $\gamma = 1$, we obtain

$$F_{q(\mathbb{U})}(q(\omega)) \leq F_{p(\mathbb{U})}(p(\omega)), i.e.F_{q(\mathbb{U})}(q(\omega)) \leq F_{\left(\frac{\beta Y_{\beta,\alpha}^{m-1}f(\omega)}{\beta Y_{\beta,\alpha}^{m}f(\omega)}\right)(\mathbb{U})} \left(\frac{\sum\limits_{\rho}^{\gamma Y_{\beta,\alpha}^{m-1}f(\omega)}}{\sum\limits_{\rho}^{\gamma Y_{\beta,\alpha}^{m}f(\omega)}}\right),$$

where $q(\omega) = \frac{1}{\omega} \int_0^{\omega} \hbar(t) dt$. The function q is convex and serves as the optimal fuzzy subordinant. Upon setting $\ell(\omega) = e^{\tau\omega}, |\tau| \le 1$ in Theorem (2.6), As a consequence, we obtain the following result. **Corollary 2.7:** Let $f \in \mathcal{A}, m \in \mathbb{N}, \alpha > 0, \beta \ge 0, \rho \in \mathbb{C} \setminus \mathbb{Z}_0^-, s \in \mathbb{C}$ and suppose that

$$\left(\frac{\omega_{\rho}^{s} Y_{\beta,\alpha}^{m-1} f(\omega)}{{}_{\rho}^{s} Y_{\beta,\alpha}^{m} f(\omega)}\right)' \text{ is univalent and } \frac{{}_{\rho}^{s} Y_{\beta,\alpha}^{m-1} f(\omega)}{{}_{\rho}^{s} Y_{\beta,\alpha}^{m} f(\omega)} \in \aleph[1,1] \cap Q. \text{ If}$$
$$e^{\tau \omega} \prec_{F} \left(\frac{\omega_{\rho}^{s} Y_{\beta,\alpha}^{m-1} f(\omega)}{{}_{\rho}^{s} Y_{\beta,\alpha}^{m} f(\omega)}\right)', \qquad \omega \in \mho, |\tau| \leq 1,$$
(2.7)

then

$$\frac{e^{\tau\omega}-1}{\tau\omega} \prec_F \left(\frac{\omega_{\rho}^{s}\Upsilon_{\beta,\alpha}^{m-1}f(\omega)}{{}_{\rho}^{s}\Upsilon_{\beta,\alpha}^m f(\omega)}\right), \quad \omega \in \mho.$$

The function $\frac{e^{\tau\omega}-1}{\tau\omega}$ It is convex and serves as the optimal fuzzy subordinate.

Proof. We have $\ell(\omega) = e^{\tau \omega}$, with $\ell(0) = 1$, $\ell'(\omega) = \tau e^{\tau \omega}$, and $\ell''(\omega) = \tau^2 e^{\tau \omega}$.

Therefor

11

$$Re\left(\frac{\omega\ell''(\omega)}{\ell'(\omega)}+1\right) = Re(\tau\omega+1) > 0,$$

the function h is convex.

By following the same steps as in the proof of Theorem (2.6) and considering $\mathcal{P}(\omega) = \frac{{}_{\rho}^{s} Y_{\beta,\alpha}^{m-1} f(\omega)}{{}_{\rho}^{s} Y_{\beta,\alpha}^{m} f(\omega)}.$

The fuzzy differential superordination (2.7) becomes

$$e^{\tau\omega} \prec_F \mathscr{P}(\omega) + \omega \mathscr{P}'(\omega), \qquad \omega \in \mathfrak{V}.$$

By applying Theorem (1.6) for $\gamma = 1$, we have

$$\begin{split} F_{q(\mathbb{U})}\big(q(\omega)\big) &\leq F_{p(\mathbb{U})}\big(p(\omega)\big), i.e. \\ F_{q(\mathbb{U})}\big(q(\omega)\big) &\leq F_{\left(\frac{\rho Y_{\beta,\alpha}^{m-1}f(\omega)}{\rho^Y_{\beta,\alpha}^m f(\omega)}\right)_{(\mathbb{U})}} \left(\frac{\sum\limits_{\rho} Y_{\beta,\alpha}^{m-1}f(\omega)}{\sum\limits_{\rho} Y_{\beta,\alpha}^m f(\omega)}\right), \end{split}$$

and

$$q(\omega) = \frac{1}{\omega} \int_{0}^{\omega} e^{\tau t} dt = \frac{e^{\tau \omega} - 1}{\tau \omega}, \qquad \omega \in \mho.$$

Theorem 2.8: Let $\ell(\omega)$ be convex function with $\ell(0) = 1$.Let

$$f \in \mathcal{A}, \qquad m \in \mathbb{N}, \ \alpha > 0, \beta \ge 0, \rho \in \mathbb{C} \setminus \mathbb{Z}_0^-, \qquad s \in \mathbb{C},$$

$$F(\omega) = \frac{c+2}{\omega^{c+1}} \int_0^{\omega} t^c \ell(t) dt , \operatorname{Re}(c) > -2, \text{ and}$$

suppose that $\binom{s}{\rho} \Upsilon^m_{\beta,\alpha} f(\omega)'$ is univalent in $\mathfrak{V}, \binom{s}{\rho} \Upsilon^m_{\beta,\alpha} F(\omega)' \in \mathfrak{K}[1,1] \cap Q$ and

$$\ell(\omega) \prec_F \left({}_{\rho}^{s} \Upsilon^m_{\beta, \alpha} f(\omega) \right)', \qquad \omega \in \mathfrak{V},$$
(2.8)

then

$$q(\omega) \prec_F \left({}^{s}_{\rho} \Upsilon^m_{\beta, \alpha} F(\omega) \right)', \quad \omega \in \mathbb{U},$$

where $q(\omega) = \frac{c+2}{\omega^{c+2}} \int_0^z t^{c+1} \ell(t) dt$. The function q is convex and serves as the optimal fuzzy subordinant.

Proof. we have $\omega^{c+1}F(\omega) = (c+2)\int_0^{\omega} t^c \ell(t) dt$ and differentiating it, with respect to ω , we obtain $(c+1)F(\omega) + \omega F'(\omega) = (c+2)f(\omega)$ and

$$(c+1)_{\rho}^{s}\Upsilon_{\beta,\alpha}^{m}F(\omega) + \omega \left({}_{\rho}^{s}\Upsilon_{\beta,\alpha}^{m}F(\omega)\right)' = (c+2)_{\rho}^{s}\Upsilon_{\beta,\alpha}^{m}f(\omega), \qquad \omega \in \mathfrak{V}.$$

Differentiating the last relation with respect to ω ,

$$\left({}_{\rho}^{s} \Upsilon^{m}_{\beta,\alpha} F(\omega)\right)' + \frac{1}{(c+2)} \omega \left({}_{\rho}^{s} \Upsilon^{m}_{\beta,\alpha} F(\omega)\right)'' = \left({}_{\rho}^{s} \Upsilon^{m}_{\beta,\alpha} f(\omega)\right)', \qquad \omega \in \mathfrak{V}.$$
(2.9)

Using (2.9), the fuzzy superordination (2.8) becomes

$$\ell(\omega) \prec_F \left({}_{\rho}^{s} \Upsilon^m_{\beta,\alpha} F(\omega)\right)' + \frac{1}{(c+2)} \omega \left({}_{\rho}^{s} \Upsilon^m_{\beta,\alpha} F(\omega)\right)''.$$

Now, if we set $\mathcal{P}(\omega) = \left({}_{\rho}^{s} \Upsilon_{\beta,\alpha}^{m} f(\omega)\right)'$, we obtain

$$\ell(\omega) \prec_F p(\omega) + \frac{1}{(c+2)} \omega p'(\omega), \qquad \omega \in \mathfrak{V}.$$

Using Theorem (1.6) for $\gamma = (c + 2)$, we have

$$F_{q(\mathbb{U})}(q(\omega)) \leq F_{\mathcal{P}(\mathbb{U})}(\mathcal{P}(\omega)), i. e. F_{q(\mathbb{U})}(q(\omega)) \leq F_{\left(\begin{smallmatrix}s \\ \rho \\ f \\ \beta, \alpha f \end{smallmatrix}\right)'(\mathbb{U})}\left(\begin{smallmatrix}s \\ \rho \\ f \\ \beta, \alpha f \\ \beta, \alpha f \\ (\omega) \end{smallmatrix}\right)',$$

where $q(\omega) = \frac{c+2}{\omega^{c+2}} \int_0^{\omega} t^{c+1} \hbar(t) dt$. The function q is convex and serves as the optimal fuzzy subordinate.

References

[1] W. G. Atshan and Khudair O. Hussain. "Fuzzy differential superordination." Theory and Applications of Mathematics & Computer Science, 7(1) (2017): 27.

[2] S. S. Miller, P. T. Mocanu, Subordinants of differential superordinations, Complex Variables, 48 (10) (2003), 815–826.
[3] S. S. Miller, P. T. Mocanu, Differential Subordinations: Theory and Applications, Pure Appl. Math., vol. 225, Dekker, New York, (2000).

[4] G. I. Oros, Gh. Oros, The notion of subordination in fuzzy set theory, General Mathematics, Vol. 19, Issue 4, (2011), pp. 97-103

[5] G. I. Oros and Gh. Oros, Fuzzy differential subordination, Acta Universitatis Apulensis, 30 (2012), 55-64.

[6] G. I. Oros and Gh. Oros, Dominants and best dominants in fuzzy differential subordinations, Stud. Univ. Babeş - Bolyai Math., 57 (2012), 239-248.

[7] N. N. Pascu, Alpha-close-to-convex functions, Romanian Finish Seminar on Complex Analysis, Springer-Verlag, Berlin, (1979), 331-335.

[8] Q. A. Shakir, F. M. Sakar, "On Third-Order Differential Subordination and Superordination Properties of Analytic Functions Defined by Tayyah-Atshan Fractional Integral Operator" *Advances in Nonlinear Variational Inequalities*. (2025). https://doi.org/10.52783/anvi.v28.2528.

[9] Q. A. Shakir, W. G. Atshan. "On Sandwich Results of Univalent Functions Defined by Generalized Abbas-Atshan Operator." Journal of Al-Qadisiyah for Computer Science and Mathematics 15.4 (2023): 11-20.

[10] A. S. Tayyah, W. G. Atshan, "Differential subordination and superordination results for p-valent analytic functions associated with (r,k)-Srivastava fractional integral calculus," *MethodsX*. 13(2024), 103079.

[11] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.