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A B S T R A C T 

In this paper , we introduced new subclasses    (       ) and   ∗(     ) of bi-univalent 
functions defined in the open unit disk  . As we get upper bounds for the first  two Taylor-
Maclaurin |  |  and  |  | . Some new corollaries are obtained for these subclasses 
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1. Introduction 

Let    denote the class of all  normalized analytic functions  in the open unit disk   *  | |   + which the shape  

 ( )    ∑    
 

 

   

         (   )                                                                                             (   ) 

and let   be the class of all functions form   which are univalent in    According to the Koebe One Quarter Theorem 

, - , for every     the inverse     which satisfies:    ( ( ))    (   )        ( ( ))    .| |    ( ) 

  ( )  
 

 
/  , where   

 

 
  denoted the radius of the image  ( ) . In fact the inverse function     is given by  

   ( )   ( )       
  (   

    ) 
  (   

          ) 
                                                  (   ) 

By means of subordination, Ma and Minda ,  - introduced the following classes : 

 ∗( )  ,     
   ( )

 ( )
  ( )-  

where  ( )      ( )   , and   is an analytic function having a positive real portion on  , mapping the unit disc 
  onto a starlike region with respect to 1, which is symmetric about the real axis. A function     ∗( ) is referred to 
as Ma-Minda starlike.  ( ) denotes the class of convex functions     such that 
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    ( )

  ( )
  ( )  

As special case of the classes  ∗( )      ( )  several well- known subclasses of starlike and convex function . By 
Robertson ,  - in 1970 the concept of subordination is generalized through introduction a new concept of quasi-
subordination. For two analytic functions   and    the function   is quasi-subordination to   written as 

 ( )    ( )     (   )                                                                                                     (   ) 

if there exist analytic functions  ( ) and    with | ( ) |     ( )    and | ( )|     such that  

 ( )

  ( )
  ( )    ( )    ( ) ( ( ))   (   )  

If  ( )     then  ( )   ( ( ))  so that  ( )   ( )in     also if  ( )     then  ( )    ( ) ( )  it is said that  ( ) 

is majorized by   ( ) and written as  ( )   ( )       Therefore, it is evident that quasi-subordination is a 
generalisation of both conventional subordination and majorization. The research on quasi-subordination is 
comprehensive and encompasses current studies [1,2,11,13], while further references may be found in 
[20,21,24,25]. 

In 1967, Lewin [11] examined class   of bi-univalent functions and established the constraint for the second 
coefficient   . Brannan and Taha [6] examined specific subclasses of bi-univalent functions analogous to the well-
known subclasses of univalent functions, which include starlike, extremely starlike, and convex functions. Obtained 
non sharp estimates on the first two Taylor-Maclaurin coefficients |  | and |  |  and they introduced the bi-starlike 
function, bi-convex function classes  Recently Ali et al. , -  Deniz , -  Peng et al. [16]  Ramchandran et al, Tang et al. 
,  -. ,  -  Murugusundaramoorthy et al. [14]  etc. have introduced and investigated Ma-Minda type subclasses of bi-
univalent functions class    Additional generalizations of Ma-Minda type subclasses of the class have been 
conducted by numerous authors, including ([4,13,15,22,26]), through the use of quasi-subordination. Inspired by 
research in [3,5,9,10] about quasi-subordination, we present and examine specific new subclasses of class  . It 
follows that  ( ) is analytic in A having  ( )      and let 

 ( )            
            (| ( ) |       )                                                                                   (   ) 

and 

 ( )           
                          (    

 )                                                                                        (   ) 

Lemma 1.1. ,  - : Let       be a family of all functions   analytic in  , for which   * ( )+     and have the form:  

 ( )           
     for      then |  |     for each    

2. Main Results 

 Definition2.1: Let                      * +  a function     is said to be in the class   (       )  if 
the following two conditions are satisfied: 

  
 

 
*(

   ( )  (   )     ( )

(   ) ( )  (   )   ( )    
  )+   ( ( )   )            

and  

 

  
 

 
*(

   ( )  (   )     ( )

(   ) ( )  (   )   ( )    
  )+   ( ( )   )       

where             is given by (1.5) and        
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Remark(2.1): We put               if a function     is of the kind (1.1) and belongs to the class  
  (       )  then 

*(  
    ( )

  ( )
)+   ( ( )   )      

and  

*(  
    ( )

  ( )
)+   ( ( )   )  

Remark(2.2): We put           if a function     is of the kind (1.1) and belongs to the class    (       )  
then 

  
 

 
*(
    ( )

  ( )
)+   ( ( )   )      

and  

  
 

 
*(
    ( )

  ( )
)+   ( ( )   )  

Remark(2.3): We put               if a function     is of the kind (1.1) and belongs to the class  
  (       )  then 

*(
   ( )       ( )

 ( )     ( )   
)+   ( ( )   ) 

and  

*(
   ( )       ( )

 ( )     ( )   
)+   ( ( )   )  

Remark(2.4): We put               if a function     is of the kind (1.1) and belongs to the class 
  (       )  then 

*(
   ( )

 ( )
)+   ( ( )   ) 

and  

*(
   ( )

 ( )
)+   ( ( )   )  

Remark(2.5): We put            if a function     is of the kind (1.1) and belongs to the class    (       )  
then 

  
 

 
*(
   ( )

 ( )
)   +   ( ( )   )     

and  

  
 

 
*(
   ( )

 ( )
)   +   ( ( )   )  

Theorem 2.1 :                  with     * +  If     is of the kind (1.1) and belongs to the class  
  (       )  then  

|  |     {
|   |  

 (     )
 √
|   |(   |     |)

         
}                                                                   (   ) 
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and 

|  |     ,
 |   |(   |     |)

            

 
 (          

      
 

 

      
[
     

(     )
|  |

   
    |     |

 |  ||     |]-                                                                                                                                           (   ) 

Proof: Let      (       )   there exist two analytic functions                ( )   ( )    | ( )|  
 and | ( )|      the function   defined by (1.4) satisfies: 

  
 

 
*(

   ( )  (   )     ( )

(   ) ( )  (   )   ( )    
  )+   ( )( ( ( )   )                                               (   ) 

and  

 

  
 

 
*(

   ( )  (   )     ( )

(   ) ( )  (   )   ( )    
  )+    ( )( ( ( )   )                                          (   ) 

Define the functions           by: 

  ( )  
   ( )

   ( )
          

                                                                                       (   ) 

  ( )  
   ( )

   ( )
          

                                                                                      (   ) 

which are equivalently  

 ( )  
  ( )   

  ( )   
 
 

 
*    (   

  
 

 
)     +                                                                      (   ) 

and 

  

 ( )  
  ( )   

  ( )   
 
 

 
*    (   

  
 

 
)    +                                                                   (   ) 

It is evident that   ( )    ( )  are analytic and possess positive real portions in  . Considering (2.3), (2.4), (2.7), and 
(2.8), it is evident 

  
 

 
*(

   ( )  (   )     ( )

(   ) ( )  (   )   ( )    
  )+   ( ). ((

  ( )   

  ( )   
)   )/                                     (   ) 

and  

  
 

 
*(

   ( )  (   )     ( )

(   ) ( )  (   )   ( )    
  )+    ( )( (

  ( )   

  ( )   
)   )                               (    ) 

The series expansions for  ( ) and  ( ) as shown in (1.1) with (1.2) respectively, give us 
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*(

   ( )  (   )     ( )

(   ) ( )  (   )   ( )    
  )+

   (
     

 
)    *(

      

 
)   

((   )    )

 
  
 +                                     (    ) 

and 

  
 

 
*(

   ( )  (   )     ( )

(   ) ( )  (   )   ( )    
  )+

 (
     

 
)    *(

 ((   )    )

 
 
        

 
)  

  (
      

 
)  + 

 

                                                     (    ) 

Using (2.5) and (2.6) together with (1.4) and (1.5), we get 

 ( ) ( (
  ( )   

  ( )   
)   )  

 

 
        *

 

 
       

 

 
    (   

  
 

 
)  

      
 

 
+                          (    ) 

and  

 ( ) ( (
  ( )  

  ( )  
)   )

 
 

 
        *

 

 
       

 

 
    (   

  
 

 
)  

      
 

 
+  

                                                                     (    ) 

Now equating (2.11) and (2.13) and comparing the coefficients to           we obtain  

(
     

 
)   

 

 
                                                                                                              (    ) 

and 

*(
      

 
)   

((   )    )

 
  
 +

 
 

 
       

 

 
    (   

  
 

 
)  

      
 

 
                                                                                 (    ) 

Similarly (2.12) and (2.14), gives us 

(
     

 
)   

 

 
                                                                                                                 (    ) 

and 

*(
 ((   )    )

 
 
        

 
)  

  (
      

 
)  +  

 

 
       

 

 
    (   

  
 

 
)  

      
 

 
      (    ) 

From (2.15) and (2.17), we find that  

   
       

 (     )
  (

       

 (     )
)                                                                                               (    ) 

which implies  
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|  |  
|   |  

 (     )
                                                                                                                   (    ) 

Adding (2.16) and (2.18), we obtain 

(
            

 
)  

  
 

 
    (     )  

    

 
(  

    
 )|     |                             (    ) 

which implies   

|  |
  

 |   |(   |     |)

            
                                                                                                   (    ) 

Subsequently, to get the upper bound for |  |, we subtract (2.16) from (2.18), yielding 

(
 (      )

 
)   (

 (      )

 
)  

  
 

 
    (     )  

 

 
    (     )                   (    ) 

by using Lemma 1.1  and (2.21) in (2.23), we obtain  

|  |  
 |   |(   |     |)

            
 
 (          

      
                                                                          (    ) 

Next, from (2.15) and (2.16), we have  

      

 
   

     

 (     )
  

   
   

  
 

 
       

 

 
       

 

 
      

  
 

 
      

   

which implies 

|  |  
 

      
[
     

(     )
|  |

   
    |     |  |  ||     |]                                    (    ) 

We have the special cases below are also previously uninhibited and they are as follows: 

In virtue of Remark (2.1)-(2.5) we obtain some corollaries below 

Corollary(2.1) :   Assume   is given by  (1.1) belonging to the class    (       )  then 

|  |     {
|  |  

 
 √
 |  |(    |     |)

 
}                   

and 

|  |     ,
 |  |(   |     |)

 
 
(          

 
 
 

 
[|  |

   
    |     |  |  ||     |]-     

Corollary(2.2):   Assume   is given by  (1.1) belonging to the class   (       )  then 

|  |     {
|   |  

 
 √
 |   |(    |     |)

 
}                   

and 

|  |     ,
 |   |(   |     |)

 
 
 (          

 
 
 

 
[|  |

   
    |     |  |  ||     |]-    
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Corollary(2.3): Assume   is given by  (1.1) belonging to the class   (       )  then 

|  |     {
|  |  

 
 √
 |  |(   |     |)

 
}                  

and  

|  |     ,
|  |(   |     |)

 
 
(          

 
 
 

 
[ |  |

   
    |     |  |  ||     |]-     

Corollary(2.4): Assume   is given by  (1.1) belonging to the class    (       )  then 

|  |     {
|  |  

 
 √
 |  |(    |     |)

 
}  

and 

|  |     ,
 |  |(   |     |)

 
 
(          )

 
 
 

 
[|  |

   
    |     |  |  ||     |]-      

Corollary(2.5): Assume   is given by  (1.1) belonging to the class    (       )  then 

|  |     {
|   |  

 
 √
 |   |(    |     |)

 
}                

and 

|  |     ,
 |   |(   |     |)

 
 
 (          

 
 
 

 
[|  |

   
    |     |  |  ||     |]-      

Definition 2.2: Let                      * +  a function     is said to be in the class   ∗(     )  if 
the following two conditions are satisfied: 

(   ) *(  
    ( )

  ( )
)   (

   ( )

 ( )
 
 ( )

 
  )+   *

      ( )  (   )   ( )    

   ( )
+   ( ( )   )    

and  

(   ) *(  
    ( )

  ( )
)   (

   ( )

 ( )
 
 ( )

 
  )+   *

      ( )  (   )   ( )    

   ( )
+   ( ( )   ) 

where             is given by (1.5) and        

Remark(2.6): we put       if a function     of the form (1.1) belonging to the class    ∗(     )  then 

*(  
    ( )

  ( )
)   (

   ( )

 ( )
 
 ( )

 
  )+   ( ( )   )      

and  

*(  
    ( )

  ( )
)  (

   ( )

 ( )
 
 ( )

 
  )+   ( ( )   )  

Remark(2.7): we put        if a function     of the form (1.1) belonging to the class    ∗(     )  then 

*
      ( )  (   )   ( )    

   ( )
+   ( ( )   )      
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and  

*
      ( )  (   )   ( )    

   ( )
+   ( ( )   )  

 

Theorem 2.2 : For              If     of the form (1.1) belonging to the class     ∗(     )  then  

|  |     {
|  |  

 (    )
 √
 |  |(   |     |)

        
}                                                                                        (    ) 

and 

|  |     ,
 |  |(   |     |)

        

 
(          )

    
 

 

    
[
       

 (    ) 
|  |

   
    |     |  |  ||     |]-    (    ) 

Proof: Let       ∗(     )   there exist two analytic functions                ( )   ( )    | ( )|  
     | ( )|      the function   defined by (1.4) satisfies: 

(   ) *(  
    ( )

  ( )
)   (

   ( )

 ( )
 
 ( )

 
  )+   *

      ( )  (   )   ( )    

   ( )
+ 

  ( )( ( ( )   )                         (    ) 

and  

 

(   ) *(  
    ( )

  ( )
)   (

   ( )

 ( )
 
 ( )

 
  )+ 

  *
      ( )  (   )   ( )    

   ( )
+    ( )( ( ( )   )               (    ) 

Define the functions           by: 

  ( )  
   ( )

   ( )
          

                                                                                 (    ) 

  ( )  
   ( )

   ( )
          

                                                                             (    ) 

which are equivalently  

 ( )  
  ( )   

  ( )   
 
 

 
*    (   

  
 

 
)    +                                                                   (    ) 

and 

 ( )  
  ( )   

  ( )   
 
 

 
*    (   

  
 

 
)    +                                                         (    ) 

It is clear that   ( )   ( ) are analytic and have positive real parts in    In view of (2.28), (2.29), (2.32) and (2.33), 
clearly 
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(   ) *(  
    ( )

  ( )
)   (

   ( )

 ( )
 
 ( )

 
  )+   *

      ( )  (   )   ( )    

   ( )
+ 

  ( ) . ((
  ( )   

  ( )   
)   )/                                       (    ) 

and  

(   ) *(  
    ( )

  ( )
)   (

   ( )

 ( )
 
 ( )

 
  )+ 

  *
      ( )  (   )   ( )    

   ( )
+    ( ) ( (

  ( )   

  ( )   
)   )                      (    ) 

The series expansions for  ( )      ( ) as given in (1.1) and (1.2) respectively, provide us 

(   ) *(  
    ( )

  ( )
)   (

   ( )

 ( )
 
 ( )

 
  )+   *

      ( )  (   )   ( )    

   ( )
+ 

   (    )    ,(    )   (       )  
 -                    (    ) 

and 

(   ) *(  
    ( )

  ( )
)   (

   ( )

 ( )
 
 ( )

 
  )+   *

      ( )  (   )   ( )    

   ( )
+ 

 (     )    [( (    )  (       ))  
  (    )  ] 

       (    ) 

Using (2.30) and (2.31) to gather with (1.4) and (1.5) 

 ( ) ( (
  ( )   

  ( )   
)   )  

 

 
        *

 

 
       

 

 
    (   

  
 

 
)  

      
 

 
+                      (    ) 

and  

 ( )( (
  ( )   

  ( )   
)   )  

 

 
        *

 

 
       

 

 
    (   

  
 

 
)  

      
 

 
+                 (    ) 

Now equating (2.36) and (2.37) and comparing the coefficients to           we obtain  

(    )   
 

 
                                                                                                    (    ) 

and 

,(    )   (       )  
 -  

 

 
       

 

 
    (   

  
 

 
)  

      
 

 
                                        (    ) 

Similarly (2.37) and (2.39), gives us 

(     )   
 

 
                                                                                                    (    ) 

and 
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[( (    )  (       ))  
  (    )  ]  

 

 
       

 

 
    (   

  
 

 
)  

      
 

 
              (    ) 

From (2.40) and (2.42), we find that  

   
       

 (    )
  (

       

 (    )
)                                                             (    ) 

which implies  

|  |  
|  |  

 (    )
                                                                              (    ) 

Adding (2.41) and (2.43), we obtain 

(        )  
  

 

 
    (     )  

    

 
(  

    
 )|     |                                                  (    ) 

which implies   

|  |
  

 |  |(   |     |)

        
                                                                                                      (    ) 

Subsequently, to get the upper bound for |  |, we subtract (2.41) from (2.43), yielding 

( (    ))   ( (    ))  
  

 

 
    (     )  

 

 
    (     )                                            (    ) 

by using Lemma 1.1  and (2.46) in (2.48), we obtain  

|  |  
 |  |(   |     |)

        
 
(          )

    
                                                                              (    ) 

Next, from (2.40) and (2.41), we have 

(    )   
       

 (    ) 
  

   
   

  
 

 
       

 

 
       

 

 
      

  
 

 
      

   

which implies 

|  |  
 

    
[
       

 (    ) 
|  |

   
    |     |  |  ||     |]                                               (    ) 

We have the special cases below are also previously uninhibited and they are as follows: 

In virtue of Remark (2.6), (2.7) we obtain some corollaries below 

Corollary(2.6) :   Assume   is given by  (1.1) belonging to the class    ∗(     )  then 

|  |     {
|  |  

 (    )
 √
 |  |(   |     |)

    
} 

and 
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|  |     ,
 |  |(   |     |)

    

 
(          )

    
 

 

    
[

   

 (    ) 
|  |

   
    |     |  |  ||     |]-  

Corollary(2.7):   Assume   is given by  (1.1) belonging to the class   ∗(     )  then 

|  |     {
|  |  

 (    )
 √
 |  |(   |     |)

    
} 

and 

|  |     ,
 |  |(   |     |)

    

 
(          )

    
 

 

    
[

    

 (    ) 
|  |

   
    |     |  |  ||     |]-  

Conclusion  
In this paper , we introduced subclass of the function of analytic and bi-univalent defined in the open unit disk   by 
applying quasi-subordination. Some results and properties about the corresponding bound estimations of the 
coefficients    and    are given and investigated. Here, we opened some new windows to find the coefficients using 
quasi-subordination. 
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