
 1

Utilizing Reverse Engineering in Tracking Software to diagnose its

weaknesses

Rana Jumaa Surayh Al-janabi Hawraa Adil Nori

Al-Qadesya University- College of Medicine Babylon University- Computer Center

Abstract
In this research, Video Cutter Software was analyzed and that software uses a well known

protection method called "User Name and Registration Number". This software uses kind of complicated

key generating algorithm. The analyzer hits upon the protection routine of interested software and adds

suitable code to them. In other words, he discovers where in memory the entering data is stored and then to

find out what is done with it. In this research, a merge technique was adopted between code injection and

key generation i.e. (code is added to the execution file) in order to make the software itself browse

message that contains registration number and this is in turn would consume less time than expected in

analyzing (for key generation algorithm). Also, this research discusses how to support software protection

by using anti-reverse engineering techniques to prevent crackers from license code stealing.

 الخلاصة
ْذا .(اسى انًسخخدو ٔكهًت انًزٔر)حى حذهٍم بزَايج حقطٍع يهفاث انفدٌٕ ٔانذي ٌسخخدو أسهٕب دًاٌت يعزٔف , فً ْذا انبذث

 ٔقاو باضافت شفزة يُاسبت انزئٍسًانًذهم اكخشف بزَايج انذًاٌت انفزعً نهبزَايج. انبزَايج ٌسخخدو خٕارسيٍت حٕنٍد يفخاح َٕعاً يا يعقدة

فً ْذا . فً انذاكزة ٔياًْ انعًهٍاث انخً حًج عهٍٓا(اسى انًسخخدو ٔكهًت انًزٔر)بًعُى اخز اٌ انًذهم اكخشف يكاٌ انبٍاَاث انًدخهت . نٓى

نجعم انبزَايج ٌعزض رسانت (حى اضافت شفزة انى انًهف انخُفٍذي)اي حقٍُت انديج بٍٍ طزٌقت دقٍ انشفزة ٔيٕند انًفاحٍخ اسخخديج , انبذث

ْذا , اٌضا.(نخٕارسيٍت حٕنٍد انًفخاح)حذخٕي عهى كهًت انًزٔر انخاصت بّ ْٔذا بدٔرِ سٕف ٌسخٓهك ٔقج اقم يٍ انًخٕقع فً انخذهٍم

. انبذث َاقش طزق نخعشٌش دًاٌت انبزَايج يٍ خلال اسخخداو حقٍُاث يقأيت انُٓدست انعكسٍت نًُع انًخخزقٍٍ يٍ سزقت يفخاح انخزخٍص

Introduction
 Reverse engineering is the art that taking apart an object to see how it works in

order to duplicate or enhance the object. This practice is taken from older industries but

now, it is frequently used on computer hardware and software.[1]

Hardware reverse engineering involves taking apart a device to see how it works. For

example, if a processor manufacturer wants to see how a competitor's processor works,

they can purchase a competitor's processor, disassemble it, and then make a processor

similar to it. In general, hardware reverse engineering requires a great deal of expertise

and is quite expensive.[1]

 Software reverse engineering is the process of understanding the intricacies of designer's

program or even commercial software at a lower level than the compiler. It involves

reversing a program's machine code (the string of 0s and 1s that are sent to the logic

processor) back into the source code that it was written in, using programming language

statements. Software reverse engineering is very important since it can be used to retrieve

the source code of lost projects, to study how the program performs certain operations, to

improve the performance of a program, to fix a bug (correct an error in the program when

the source code is not available), to identify malicious content in a program such as a

virus , to adapt a program written for use with one microprocessor for use with another,

or to try to break the protection of software to determine weaknesses in that software in

order to reinforce its protection.[1,13]

Software Revere engineering theories may be used to inject code in software or build a

key generator. By code injection the breaker can insert code into software to change the

course of execution, while key generator is a program written for specific software, so the

 2

user can enter any name and then have the registration code for that name. In case Code

Injection is used to attack, the result can be disastrous, for instance, it's used by some

malicious software to propagate. [12]

In this research, Reverse engineering is used to analyze video cutter software and explain

how to break it in order to clarify its weaknesses and suggest a method to support its

protection and this method of protection can be explained in details in the next researched

because it's very complicated and need another research.

Tools & Method

1- Tools: In this research, the following tools were used:

a. OllyDbg: is the most widely used program for the debugging purposes, so it's a

debugger that emphasizes binary code analysis, which is useful when source code

is not available. It traces registers, recognizes procedures, API calls, constants and

strings, as well as locates routines from object files and libraries. The software is

free of cost, OllyDbg is downloaded from http://www.ollydbg.de/odbg110.zip.

Let's take a look at the whole program by showing the windows compromising it

as illustrated in figure (1) :-[8]

1: addresses of assembly instructions window

2: commands and instructions in assembly language

3: comments window

4: information window

5: registers window: involves general purpose registers, EIP register which

always points to instruction currently executed, segment registers, flags register

and

 another types of registers.

6: dump memory window: which contain the addresses, hexa representation and

 the ASCII corresponded to them.

7: Stack window

Figure1: Main OllyDbg Window

http://www.ollydbg.de/odbg110.zip

 3

b. PEiD : It detects most common packers, cryptors and compilers for PE files. This

program is used for examining, as it reveals whether or not the program is

protected, if protected, it will determine the type of protection method and if not,

it will determine the programming language used to write program. PEiD is

downloaded from http://www.peid.info/files/PEiD-0.94-20060510.zip. [11]

c. Video Cutter Software: is the attacked program. Video Cutter is a powerful

software that could assist user to select and cut video segments of his favorite

video file, and cut out the segments he dislike. It is downloaded from

http://www.xilisoft.com/video-cutter.html

2. Method: It includes two stages as explained in figure (2):-

a. Analyzing software: In this phase, Analyzers concern with problem definition,

requirements gathering and analysis.[3,9]

Video Cutter

Software

Analyzing Software

Software

Checking

Finding Out

 Security Procedure

Tracking Procedure to

discover Password

Merging Code Injection and Key Generating

Course of execution

Changing

Inject Code to

 Make Password Message

Debugged And Analyzed Software

Phase 1.

Phase 2.

Figure (2):- Block Diagram that explains the main stages for tracking

software to obtain registration key

Registration Key

http://www.peid.info/files/PEiD-0.94-20060510.zip
http://www.xilisoft.com/video-cutter.html

 4

Figure3: Main PEiD Window

Figure 4: Executable file opening in OllyDbg

1. checking video cutter software

with PEiD program as in figure

(3). The analyzer finds out that

the software is written in visual

C++7.0 and the software is

unpacked.

2. Opening video cutter software

using OllyDbg, as illustrated in

figure (4).

3. Through debugging software, by entering wrong (user name and license code)

then register them, we face a message that tell us the registration is wrong.

Analyzer pause the debugger then choose view call stack to give him the

ability to know from which procedure that message appear

4. depending on step(3) , the analyzer discovered that the module (UILib8-M) is

responsible for key generation function and founds that the size of serial number

that he entered it will be compared with 27hex (39 in decimal) and so the analyzer

choose that module as illustrated in figure (5):

 5

Figure (7) :How to put breakpoint

Figure (5) Explain transferring to module UILib8-M

5. According to what is mentioned in step 4. the analyzer choose compare

instruction (cmp eax, 27) and put breakpoint on it, as illustrated in figure (6).

6. To put break point, the analyzer presses

F2 to each instruction that he selects

and after that double click on any of

these instructions to return to (UILib8-

M) module, as illustrated in figure (7).

Figure (6) : how to search for instruction

 6

Figure (8): wrong password but it should be (39 char)

Figure (10) Using assemble command code can be changed

7. As the same way that illustrated in

step (4). Analyzer choose compare

instruction (cmp esi, 20) put

breakpoint on it. To calculate license

code

8. The analyzer runs the software using

F9 and then uses F8 until reach to

software interface. As it is

mentioned in step (4) he enter (39

character), as illustrated in figure (8).

9. using F8 until analyzer reaches to password that is shown in stack window as

illustrated in figure (9)

b. Merge code injection and key generating: in this phase, the analyzer uses an

easy way to add code to video cutter software which browses a Message Box that

shows password to user. The method involved these steps:- [2,4]

1. After password was

appeared in previous phase,

the analyzer finds (JMP

instruction) and changes it to

refer to main module

(VideoEdi) at address

(00404f96) using assemble

command as illustrated in

figure (10).

Figure (9) : password was appeared

 7

Figure (11) :How to insert data

2. Each message box has a title. There is a

way to add that title by selecting an

empty spaces (contains zero's) in

memory dump window and press space

key so windows of edit data is appeared

then the title can be written in (ASCII

field) as explained in figure (11)

3. The next step was to transfer control to main module (VideoEdi) at address

(00404F96) in order to add the following code using assemble command too, as

illustrated in figure (12).

4. By running software the password message Box was appeared as illustrated in

figure(13)

Figure (12): adding our code

 8

Result

In this research, code injection technique is used to discover a password in an

easier way and without needing to analyze the details of key generator as well as, this

research explains the general steps to track software that doesn't have source code.

Actually, by utilizing user name and password in original software (video cutter). It is

registered as illustrated below in figure (14)

In fact, there is no correlation between user name and license code because of using the

same license code with different user name the software was registered as explained in

figure (15). So, software designers use kind of different way in key generating because it

doesn't depend on user name.

Figure (13): Password is appeared in a Message

Figure (14): Software was registered to user name (reverse)

 9

Suggestions for Obtaining More Secure software

Software security is first and foremost about identifying and managing risks. One of the

most effective ways to identify and manage risk for an application is to iteratively review

its code throughout the development cycle. [10]

In fact, there is a question that always repeated" What can we do to secure our software

completely". Unfortunately, there is no single or easy answer to that question.

Application security must be dealt with and considered in every phase of the software

development cycle (SDLC). Security in the SDLC is essential, so that Microsoft has

bestowed upon it a completely new name: the Secure Development Lifecycle, or SDL.[5]

The Secure Development Lifecycle attempts to marry the pillars of the original SDLC

with fundamental secure practices throughout the lifecycle. This practice will create an

application that has a secure core and can better withstand attacks and protect against

reverse engineering. To achieve that protection, many protection techniques are used

such as anti-debug, anti-dump, and encryption layers, and also the ability to choose which

protector the executable should appear as in PEiD and other signature-based scanners.

Thus, packers and protectors try to slow down attackers as long as possible. [5,6]

In fact, there is an ongoing battle between the coders who develop programs that protect

against cracking, reverse engineering and the engineers themselves. Every time the

protectors release a new technique, the engineers find a way around that specific method.

This is the driving force behind the cracking "scene" and anti-reverse engineering fields.

Here are some of protection techniques researchers suggested to make video cutter

software more secure, these techniques are almost used by protectors:- [7,14]

1. Encryption Layers
To protect applications against analysis, packers and protectors often use

encryption layers. Usually, in a manner similar to viruses, polymorphic engines

Figure (15): using the same license code software was registered to

user name (everyone)

 10

are employed to generate a different crypt/decrypt algorithm for each protected

application. Two different kinds of encryption are usually observed:
A. Loader encryption

The protection code resides in the loader. To protect against static analysis and

modifications of the underlying code and protections, the loader is encrypted,

usually many times. Therefore, it is not possible to directly patch the code

underneath. The loader can be split into many parts, each of them encrypted by

many layers.
B. Application encryption

Like the loader, the application is also encrypted to prevent disassembly and

modifications. Although the application can be encrypted with many layers, most

of the time it has only one or two layers. On the other hand, the loader may vary

from a couple of layers to a few hundred. After parts of the loader have been

executed, they can be re-encrypted or destroyed, so that a fully decrypted loader is

never in memory at any time.

2. Obfuscation Techniques

 One of the first tricks that appeared in packers was code obfuscation, designed to

slow down analysis. Techniques are used to scramble the code, making it hard to

read, follow, and debug. Many techniques exist such as junk code (as its name

suggests, it utilizes code that is junk or not needed to confuse a reverse engineer

as to what the current code is actually trying to accomplish. When the junk code

that is inserted into a routine is convincing and successfully manages to confuse a

reverse engineer).

3. Anti Debugging Techniques
Using a debugger, it is possible to single-step through applications, and inspects

their code in real time. This is obviously a problem for packers and protectors,

since it enables an analyst to reverse-engineer them. To counteract this, anti-

debugging tricks are used.
A. IsDebuggerPresent

Despite being inefficient, the IsDebuggerPresent API function was very common

in the first packers and protectors, and some of them are still using it as a first-

stage check.
B. BreakPoint Detection

Another common technique is the detection of software breakpoint.

C. Timing Attacks

The theory behind timing attacks is that executing a section of code, especially a

small section, should only take a miniscule amount of time. Therefore, if a timed

section of code takes a greater amount of time than a certain set limit, then there is

most likely a debugger attached, and someone is stepping through the code.

4. Anti-Dump Techniques
Anti-dump refers to protections preventing process dumping or techniques used to

render the dumped executable unusable. Such protection is done either at runtime

or protection time.

Actually anti –reverse engineering techniques can not be covered in detailed here,

it needs another research. And finally, it is worth to mention that reinforcing security of

the software is really necessary issue but also software coders should compromise

between the cost of software security and security itself. As well as software coders even

 11

if they try to protect their software as much as they can, that software can be considered

more secure (not easy to break) but it is not completely secure.

Conclusion

Actually, this research discusses two issues. The first is how crackers can exploit

software weaknesses to attack software, so the analyzer focus on the specific code that he

really need for his own purpose because the entire software analysis requires too much

time and efforts consuming. So, the merge mechanism that the researchers use in this

paper has the benefit of avoiding analysis of complete key generator algorithm. Thus

researchers explain how crackers can attack software without needing to analyze the

entire software.

Second, using of reverse engineering by crackers can cause complicated problems to

software production companies by stealing their license code, so it is necessary for those

companies to use anti- reverse engineering techniques to make their software more secure

and also the companies themselves should use reverse engineering in all phase of

software development cycle to test their software security. So reverse engineering can be

used to support and also attack security.

References

1. Arleigh Crawford," Reverse Engineering", http://searchcio-

midmarket.techtarget.com/sDefinition/0,,sid183_gci507015,00.html , 2007.

2. Crudd, "Code Injection", http://www.reteam.org/papers/e19.pdf, 2002.

3. George N., Glafkos C., "Reverse Engineering: Anti-Cracking Techniques",

http://www.reteam.org/papers/e19.pdf, 2008.

4. Jame's, "Cracking and Patching With OllyDbg",

http://www.youtube.com/watch?v=wGXh 2kozjMA&feature=related, 2008.

5. Joe Basirico," Application security shouldn't involve duct tape, Band-Aids or

bubble gum",

http://searchsoftwarequality.techtarget.com/news/article/0,289142,sid92_gci1254

902,00.html, 2007.

6. Joren McReynolds, Packer Detection and Generic Unpacking Techniques,

http://securitylabs.websense.com/content/Blogs/2927.aspx,

2008.

7. Josh_Jackson, " An Anti-Reverse Engineering Guide",

http://www.codeproject.com/KB/security/AntiReverseEngineering.aspx, 2008.

http://searchcio-midmarket.techtarget.com/sDefinition/0,,sid183_gci507015,00.html
http://searchcio-midmarket.techtarget.com/sDefinition/0,,sid183_gci507015,00.html
http://www.reteam.org/papers/e19.pdf
http://www.reteam.org/papers/e19.pdf
http://www.youtube.com/watch?v=wGXh%202kozjMA&feature=related
http://searchsoftwarequality.techtarget.com/news/article/0,289142,sid92_gci1254902,00.html
http://searchsoftwarequality.techtarget.com/news/article/0,289142,sid92_gci1254902,00.html
http://securitylabs.websense.com/content/Blogs/2927.aspx
http://securitylabs.websense.com/content/Blogs/2927.aspx
http://www.codeproject.com/script/Articles/MemberArticles.aspx?amid=4951186
http://www.codeproject.com/KB/security/AntiReverseEngineering.aspx

 12

8. Master, "How to use OllyDBG", http://otfans.net/showthread.php?p=755360,

2007.

9. Oharan, "How to crack a simple serial",

http://www.youtube.com/watch?v=vr41J1-nVKs, 2007.

10. Steven Lavenhar,"Code Analysis" , https://buildsecurityin.us-

cert.gov/daisy/bsi/articles/best-practices/code/214-BSI.html, 2008.

11. Toralf, "PEiD - detect common packers, cryptors and compilers",

http://www.autohotkey.com/forum/topic17879.html, 2007.

12. Wikipedia, "Code Injection", http://en.wikipedia.org/wiki/Code_injection, 2008.

13. Wikibooks, Reverse Engineering/ Introduction,

http://en.wikibooks.org/wiki/Reverse_Engineering/Introduction, 2009.

14. Win32 Portable Executable Packing Uncovered,

http://securitylabs.websense.com/content/Assets/HistoryofPackingTechnology.pd

f.

http://www.youtube.com/watch?v=vr41J1-nVKs
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/code/214-BSI.html
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/code/214-BSI.html
http://en.wikipedia.org/wiki/Code_injection
http://en.wikibooks.org/wiki/Reverse_Engineering/Introduction
http://securitylabs.websense.com/content/Assets/HistoryofPackingTechnology.pdf
http://securitylabs.websense.com/content/Assets/HistoryofPackingTechnology.pdf

