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A B S T R A C T 

In this paper, we introduce two new subclasses   ∑ (     ) and   ∑ 
∗ (     ) of the m-fold 

symmetric bi-univalent functions that are defined in the open unit disc  . Moreover, the 
upper bounds for the first two Taylor-Maclaurin |    | , |     | (   )  are obtained with 
some corollaries. 
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1. Introduction 

Letting   represents the set of functions   which are analytic within the open unit disc   *     | |   +, 
constrained by  ( )    while    ( )   , and conforming to the stated form: 
 

 ( )    ∑   
                                                                                                        

 

   

 (   ) 

  denotes the subset of   including functions in  (1.1) which  are univalent in  . As per the Koebe one-quarter 
theorem (see [10]), each function      has an inverse     that fulfills 
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A function   is considered bi-univalent in   if   and its inverse     are univalent in  . We designate ∑ to be the 
collection of bi-univalent functions in   as defined in (1.1). The seminal work of Srivastava et al. [19], has 
reinvigorated the investigation of bi-univalent functions in the past few years, where a substantial number of 
sequels his work are established and examined many families of the bi-univalent function family by numerous 
authors (see, for instance, [1,2,5,6,8,11,15,16,17,18,23,24,26]). For every function      , the function  ( )  

√ (  ) , where     and    , is univalent as well as maps the unit disc into an area exhibiting symmetric m-
fold. 
 A function is classified as m-fold symmetric (see [11]) if it possesses the following normalized representation: 
 

 ( )    ∑      
               (        )                                                                  

 

   

 (   ) 

Letting     be the collection of  -fold symmetric univalent functions in  , normalized by the series expansion (1.3). 
The functions of the   family exhibit unilateral symmetry. 
In [20], Srivastava et al. delineated m-fold symmetric bi-univalent functions, paralleling the notion of m-fold 
symmetric univalent functions. Their findings demonstrate that each function   ∑ yields an m-fold symmetric bi-
univalent function across all    . Furthermore, using the normalized form delineated by (1.3), they calculated 
the series expansion for     as follows: 
 ( )         

    ,(   )    
       - 

     

 [
 

 
(   )(    )    

  (    )               ]  
                (   ) 

hence     equals  . We represent ∑  as the collection of m-fold symmetric bi-univalent functions in  . It is obvious 
that for = 1, equation (1.4) corresponds with equation (1.2) of the family.  
Examples of m-fold symmetric bi-univalent functions are presented as follows: 
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alongside the respective inverse functions in that order: 
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In recent years, numerous writers examined bounds for different subfamilies of m-fold bi-univalent functions ( 

[3,4,9,7,14,20,21,22,25]). To substantiate our principal findings, we necessitate the following lemma. 

Lemma 1.1 [3]. If    , then |  |    for every    , where   denotes the set of all h such that   ( ( ))   , with 

    

 ( )           
    (    )   

2. Coefficient Bound for the Function Family   ∑ (     ) 

Definition 2.1. A function  ( ) in (1.3) is classified into the class   ∑ (     ) if the subsequent requirements are 

met: 

|   ( [
     ( )  

(   ( ))
   

]  (   )[
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where  ( ) given by (1.4),      ,                      . 
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Remark 2.1:  By specializing the parameters     and  , one can delineate the numerous new and established 
subclasses of analytic bi-univalent functions previously examined in the literature. 

1- Considering      , we derive a novel class of bi-univalent functions. 

  ∑ (     )    ∑(     )   

2- For       and    , we derive a class that comprises m-fold symmetric bi-starlike functions as defined by 
Altinkaya and Yalcin [3]. 

  ∑ (     )=  ∑ 
    

3- Assuming       and    , we derive a class comprising m-fold symmetric convex bi-univalent functions 
as established by A. Wanas and Majeed [18]. 

  ∑ (     )=  ∑ (       )  

4- Assuming            , and      , we derive the class of bi-univalent functions presented by Brannan 
and Taha [9]. 

  ∑ (     ) = ∑
∗( )   

5- Considering            , with      , we derive a family of convex bi-univalent functions as presented 
by Brannan and Taha [9].      

  ∑ (     )= ∑ ( ). 

 

Theorem 2.1. If     ∑ (     ), (                    ), then  

|    |  
  

√|
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Proof: Let     ∑ (     )  Then 
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     ( )  
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+  , ( )-                                                                                   (   ) 

where  ( ) as well as  ( ) are in   and possess the following forms: 

 ( )                                                                                                                   (   ) 

and 
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 ( )                                                                                                                (   ) 

This yields the following relations 

, (    )  (   )-                                                                                                               (   ) 

,  (     )   (   )-      (   )[ (         )  
 

 
 (   )]    
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 , (    )  (   )-                                                                                                        (    ) 
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 By (2.9) and (2.11), we get that 

                                                                                                                           (    ) 

and 

 , (    )   (   )-     
    (  

    
 )                                                                   (    ) 

Now, from (2.10), (2.12) and (2.14), we obtain that 

    
  

  (     )

 [(   ),  (     )   (   )-   (   ) 0 (         ) 
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 (   ), (    )   (   )- 

        (    )  

        

Utilizing Lemma 1.1 for the coefficients     with    , we promptly obtain 

|    |  
  

√|
 [(   ),  (     )   (   )-   (   ) 0 (         ) 

 

 
 (   )1]

 (   ), (    )   (   )- 
|

   

which gives us the desired estimate on  |    | as asserted within (2.3). 

To determine the bound on |     |, we subtract (2.12) and (2.10), resulting in 

 ,  (     )   (   )-      [(   ),  (     )  (   )-]    
  

  (       )  
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 )                               (    ) 

From (2.13), (2.14) and (2.16), we obtain 
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Using Lemma 1.1 to the coefficients     and    , yields that 

|     |  |
  

,  (     )  (   )-
 

   (   )

, (    )  (   )- 
|   

which complete the theorem. 

When           in Theorem 2.1, we obtain the subsequent Corollary. 

Corollary 2.1. Letting  , as defined in (1.3), belongs to the class   ∑ (     ). Subsequently 

|  |  
  

√  (   )  (   )(   ) 
  

and 

|  |  
 

(    )
 

   

(   ) 
   

Assuming       as well as       in Theorem 2.1, we deduce the subsequent Corollary. 

Corollary 2.2. Letting  , as specified in (1.3), belongs to the class  ∑ 
 . Subsequently 

|    |  
  

 √   
   

and 

|     |  
 

 
 

   (   )

  
   

Assuming      ,      , as well as       in Theorem 2.1, the following corollary is established.  

Corollary 2.3. Suppose  , as defined in (1.3), belongs to the class  ∑
∗( ). Subsequently 

|  |  
  

√   
   

and 

|  |   (    )  

By substituting       as well as       in Theorem 2.1, we derive the subsequent conclusion. 

 Corollary 2.4. Assume f, as defined in (1.3), belongs to the class  ∑ (       ). Subsequently 

|    |  
  

 √  (   )  (   )(    ) 
   

and 

|     |  
 

 (    )
 

   

  (   ) 
   

Assuming            , with       in Theorem 2.1, we deduce the subsequent Corollary. 

 Corollary 2.5 Assume  , as defined in (1.3), belongs to the class  ∑ ( ). Subsequently 
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|  |     

and 

|  |  
 

 
    

3. 2. Coefficient Bound for the Function Family   ∑ 
∗ (     ) 

Definition 3.1. A function, such as  ( ) stated in (1.3) is classified as belonging to the class   ∑ 
∗ (     ) if it meets 

the subsequent requirements. 

   ( [
     ( )  

(   ( ))
   

]  (   )[
     ( ) 

( ( ))
   

])    (   )                                                                        (   ) 

and 

    . 0
     ( )  

(   ( ))   
1  (   ) 0

     ( ) 

( ( ))   
1/    (   )                                                             (   ) 

where  ( ) given by (1.4),  

Remark 3.1 By specializing the parameters      as well as    , one can delineate the numerous new and established 
subclasses of analytic bi-univalent functions previously examined in the academic literature. 

1- Considering      , we derive a novel class of bi-univalent functions. 

  ∑ 
∗ (     )    ∑

∗ (     )  

2-  Assuming       and      , we derive a class that comprises m-fold symmetric bi-starlike functions as 
established by Altinkaya and Yalcin [3]. 

  ∑ 
∗ (     )=  ∑  

 (   )   

3- Considering       and      , we derive a class comprising m-fold symmetric convex bi-univalent 
functions as established by Wanas with Majeed [18].    

  ∑ 
∗ (     )=  ∑ 

∗ (       )  

4- Assuming            , and      , we derive the class of bi-univalent functions presented by Brannan 
with Taha [9]. 

  ∑ 
∗ (     ) = ∑

∗( ). 

5- Assuming            , with      , we derive a class of convex bi-univalent functions as presented by 
Brannan with Taha [9]. 

  ∑ 
∗ (     )= ∑ ( ). 

Theorem 3.1 If      ∑ 
∗ (     ), (                    ), then  

|    |  √|
 (   )

[,  (     )   (   )-(   )   (   ) 0 (         ) 
 

 
 (   )1]

|       (   ) 

and 
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      |
 (   )

 (     )   (   )
 

 (   ) (   )

, (    )  (   )- 
|                                                       (   ) 

Proof. Consequently, using (4.23) along with (4.24), there exist   and     which means that 
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where   ( ) and  ( ) in   given by (2.7) and (2.8). 

This, we get the following relations 
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            (   )           (   )  
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 (   )]+     

  

 ,  (     )   (   )-      (   )                            (    ) 

According to (3.7) as well as (3.9): 

                                                                                                    (    ) 

and 

 , (    )   (   )-     
  (   ) (  

    
 )                                                   (    ) 

Now, from (3.8) and (3.10), we obtain that 

    
  

(   )(       )

[,  (     )  (   )-(   )   (   ) 0 (         )  
 

 
 (   )1]

                      (    ) 

By applying Lemma 1.1 to the coefficients     as well as      yields 

|    |  √|
 (   )

[,  (     )   (   )-(   )   (   ) 0 (         ) 
 

 
 (   )1]

|    

This provides the requisite estimate for |    | as stated within (3.3). To determine the bound on |     |, we 
remove (3.10) and (3.8), resulting in 

      
(   )(       )

  (     )  (   )
 

   

 
    
                                               

and       
  from (3.12), we obtain 
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(   ) (  
    

 )

 , (    )  (   )- 
  

By computing the absolute value of (39) and reapplying Lemma 1.1 to the coefficients     as well as    , we derive 

      |
 (   )

 (     )   (   )
 

 (   ) (   )

, (    )   (   )- 
|   

This concludes the evidence of Theorem 3.1. 

Assuming       with       in Theorem 3.1, we obtain the subsequent corollary.  

Corollary 3.1. Suppose    as defined by (1.3), belong to the class   ∑ 
∗ (     ). Subsequently 

|  |  √
 (   )

(   )
  

and 

|  |  
 (   )

(    )
 

 (   ) 

(   ) 
   

Assuming       and       in Theorem 3.1, we obtain the subsequent corollary. 

 Corollary 3.2. Suppose  , as specified by (1.3), belong to the class  ∑  
 (   ). Subsequently 

|    |  
 

 
√ (   )   

and 

|     |  
(   )

 
 

 (   ) (   )

  
   

Assuming            , and      , Theorem 3.1 yields an additional corollary. 

 Corollary 3.3. Suppose  , as defined in (1.3), belongs to the class  ∑
∗( ). Subsequently 

|  |  √ (   )   

and 

|  |  (   )   (   )   

Assuming      as well as      in Theorem 3.1, the subsequent corollary is derived. 

Corollary 3.4. Suppose f, as defined in (1.3), belongs to the class  ∑ 
∗ (       ). Subsequently 

|    |  
 

 
√
 (   )

   
  

and 

|     |  
(   )

 (    )
 

 (   ) 

  (   )
   

Assuming            , with       in Theorem 3.1 yields the subsequent corollary. 
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Corollary 3.5. Suppose that  , defined in (1.3), belongs to the class  ∑ ( ). Subsequently 

|  |  √(   )   

and 

|  |  
(   )

 
 (   )    

Conclusion  
This study has introduced new subfamilies   ∑ (     ) and   ∑ 

∗ (     ) of ∑  with have derived estimates for 

the coefficients |    | , and |     | for functions within each of these subfamilies. 
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