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A B S T R A C T 

     In this paper, an Exponentially fitted - Diagonally implicit Runge-Kutta method is 

constructed, which can solve fifth-order ordinary differential equations (ODEs) directly. The 
order conditions are calculated using the expansion of the B-string theory and the colored 
tree theory to determine the ranking criteria of the Diagonally Implicit Runge-Kutta Method 
(DIRKF) approach. As a result, a five-degree, three-stage exponentially fitted - diagonally 
implicit Runge-Kutta method (EFDIRKFO5) is formulated. Comparing this method with 
existing implicit Runge-Kutta methods, numerical experiments show that the former is more 
accurate and requires fewer function evaluations. 
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Introduction  

       Ordinary differential equations are widely used in many scientific and engineering fields such as modeling the 
motion of objects (Jaleel & Fawzi,2023), studying vibrating systems (Hairer &Wanner,1991), heat and energy 
propagation, analysis of electrical circuits (Saleh, Fawzi & Hussain, 2023), fluid dynamics, structural mechanics 
(Fawzi & Jaleel, 2023), and biological processes such as biochemical reactions(Fawzi & Globe,2023). Differential 
equations are a powerful mathematical tool for providing a deep understanding of dynamic changes in various 
systems, and are an integral part of studying and interpreting the world around us (Butcher, 2016). 

Implicit methods are significant due to their capacity to achieve high accuracy levels with a comparable number 
of stages, presenting an advantage that results in more precision than explicit approaches. This aids in resolving the 
challenges associated with the previously listed applications (Fawzi & Jaleel, 2023). Consequently, implicit Runge-
Kutta methods are significant. Classifying physical and mathematical problems, such as differential algebraic 
equations, is essential (Hairer, Wanner & Lubich, 2006). 
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Recently, numerous scholars have formulated exponentially-fitted implicit Runge-Kutta methods for addressing 
first-order and second-order ordinary differential equations. Vanden Berghe et al. (Ghawadri, Senu, Ismail & 
Ibrahim, 2018) formulated exponentially-fitted Runge-Kutta algorithms. (Simos,2000) expanded these 
exponentially-fitted Runge-Kutta methods for the numerical resolution of the Schrödinger equation and associated 
issues. (Kalogiratou, & Simos,2002) developed trigonometrically and exponentially fitted Runge-Kutta-Nyström 
algorithms for the numerical resolution of the Schrödinger equation and associated issues, attaining an eighth 
algebraic order. Simos et al. (Simos,2002) developed an exponentially-fitted Runge-Kutta-Nyström approach for 
numerically solving initial-value problems characterized by oscillatory solutions. (Berghe, Meyer, Daele & 
Hecke,2000) investigated an exponentially-fitted fourth-order explicit modified Runge-Kutta method for addressing 
third-order ordinary differential equations. (Fawzi & Jumma, 2022) devised Runge-Kutta methods for addressing 
third-order ordinary differential equations and first-order oscillatory issues. 

Conventional numerical methods used to solve higher-order ordinary differential equations require 
transforming the higher-order differential equation into a system of first-order differential equations. This 
transformation takes time and effort, and the method may be inaccurate. In this paper, we will derive a direct 
numerical method to solve the fifth-order differential equation directly, without the need to transform it into a 
system of first-order differential equations. The method will be derived based on the colored trees theory and beta 
series theory to obtain the values of the phase conditions for the fifth-order method, exponential functions are 
included to obtain new values for the method coefficients. The purpose of this inclusion is to obtain an exponentially 
fitted - diagonally implicit Runge - Kutta method of order fifth (EFDIRKFO5) capable of direct solve a fifth-order 
differential equations in addition to dealing with stiff problems. 

This work deals with exponentially-fitted explicit modified Runge-Kutta type methods for solving fifth-order 
ordinary differential equations (ODEs) of the form 
 ( )( )     (   ( ))             (1) 
with initial conditions 
 (  )         (  )    

        (  )    
        (  )    

           (  )    
      

 
      where a continuous-valued function   ( )                 is that does not include its first, second, 
third, or fourth derivatives. 

Derivation Of  The O rder  Condi tions  For Efdi rkfo5 Method 

Problem (1.1) can be express by a system of first-order ODEs, as below: 
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with initial conditions 
 (  )               (  )    
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       The s-stage Runge-Kutta technique for solving first-order initial value problems (IVPs)      (   ( ))  define 
as: 

         ∑   (          )  

 

   

 

       ∑     (          ) 
 
       (3)                                                                   

     We can be expressed The EFDIRKFO5 technique with an s-stage for solving equation (2) in the following general 
form:      
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      (5) 
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Consequently, the specific fifth-order IVP (1), as indicated by the DIRKF approach, can be solved using the 

following direct integration method. DIRKF approach for solving the initial value problem (1) is represented by the 

following formula: 
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       All parameters          
    

     
      

     and     where           . are real numbers. Representation of the 

DIRKF method (20) – (25) in the Butcher tableau is as follows: 
 

Table 1 - the butcher tableau EFDIRKFO5 method  

       

 

 

 

 

 

 

 

 

    By expanding the EFDIRKFO5 method statement, using Taylor series expansion, the parameters of the new 

method given by (20) – (25) are derived, as this expansion is equivalent to the exact solution obtained by Taylor 

series expansion. The specific conditions of the new technique are determined by analyzing the direct truncation 

error at the local level. This concept is based on the development of criteria for determining the order of the RK 

approach, as mentioned in references. 

Definition 1 The EFDIRKFO5 method (20)– (25) has order p when problem (1) is considered with the assumption 

 (  )         (  )    
        (  )    

        (  )    
           (  )    

     

       Therefore, the local truncation error (LTE) for the exact solution, as well as its first, second, third, and fourth 

derivatives, must be satisfied (Hussain, Ismail & Senu, 2016). 
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  We use the next autonomous form of problem (1) to derive the order conditions for the EFDIRKFO5 method (20) – 

(25). 

 ( )( )     (  ( )) (27) 

with initial conditions 

 (  )         (  )    
        (  )    

        (  )    
           (  )    

     

      Problem (1) can be reformulated as an equivalent autonomous problem by extending it with an additional one-

dimensional vector       as follows: 

 ( )     (28) 

 ( )     (    )  (29) 
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Applying EFDIRKFO5 method (20) – (25) to the scheme (27)– (30), we obtain: 
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Substituting Equation (30) into the system of equations (32) – (43), we get 
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      We can conclude that Equations (50)– (55) are entirely analogous to the system of equations (20) – (25) was 

derived by using the EFDIRKFO5 method to problem (1). Hence, it is adequate to consider the numerical solutions 

for the autonomous form provided by Equation (27). Consequently, the EFDIRKFO5 method, as outlined in 

Equations (20) – (25), can be reformulated as follows: 
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     The elementary differentials listed below are derived by applying the elementary differential notation to the 

analytical solution  ( ) 

 ( )         ( )           ( )            ( )             ( )     

 ( )        ( )           (     )  

 ( )             (      )      (        ) 
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 ( )              (       )      (       )    ( )((         )   ( )((           ) 

 (  )  

        (        )       (        )     ( )((          )     ( )((          )       ( )((            )  

 ( )((              ) (57)  

       These processes become more difficult very quickly as demand increases. An optimal way to overcome this 

challenge, according to (Hussain, Ismail & Senu, 2016), would be to use a graphical representation with some 

modifications of fifth-order ODEs, which are denoted by relevant colored trees. The five types of nodes in trees with 

related colors are “meager”, “black ball”, “white ball”, “meager ball inside the white ball” and “star inside the white 

ball” and they are connected by arcs. In these trees: 

1- The meager node is used to denote every   . 

2- The end black ball node to denote every    . 

3- The end white ball node to denote every     . 

4- The end meager ball node to denote every       . 

5- The end star inside the white ball node to denote every   , and every arc to denote every arc, leaving this node to 

represent the m-th derivative of   with respect to  . In addition,              and    denote from first to fifth -order 

tree respectively. (see Fig.1) 

 

               
     

Figure 1- the colored trees  

 

      The following basic definitions of relevant-colored trees and their associated B series are necessary to support 

this work. 

Definition 2 The symmetry  ( ) and order ( ) functions are defined recursively as follows: 

1-   (  )     (  )     (  )     (  )     (  )   , 

2-  (  )   (  )   (  )   (  )   (  )   ,  
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3- If   ,          -  for each     , then  (  )    ∑  (  )
 
    and  (  )  ∏  (  )(       

 
    )  where 

number of nodes of   is  ( ),       and            count equal trees among             . Then, defined 

the set    which consists of every tree    of order. 

Lemma 1: Let   be a function      * +     with  ( )   . Thus    ( (   ) is also a B-series    ( (   ))  

 (    )  where   ( )    (  )    (  )    (  )    (  )         (  )   , and for   ,          -        

   ( )   (   )    (  )  

Lemma 2: If we assume that the analytic solution of Equation (27) is a B-series  (    ) which is defined on 

   * +  with a real function    , then. 

 (  )   (  )    (  )   (  )   (  )     

And   ,          -    , the following formula is obtained: 

 ( )  
 

 ( )( ( )   )( ( )   )( ( )   )( ( )   )
 ( (  )    (  ))  

Proposition 1: The density  ( ) is the nonnegative integer factors defined on trees           satisfies: 

1-  (  )     (  )      (  )   ,  (  )       (  )      

2- with     ,          - , this equation is obtained. 

 ( )    ( )( ( )   )( ( )   )( ( )   )( ( )   )( (  )    (  ))  

Proposition 2:  The non-negative integer    ( )        satisfy. 

1-  (  )     (  )     (  )        (  )     (  )    

2- For the tree   [  
       

  ]
 
      with distinct    , this from is obtained 

 ( )  ( ( )   )  ∏
 

  
.

 (  )

 (  ) 
/

  
   

    where     count similar tree of           . 

Theorem 1:  For the exact solution (27) the B-series is: 
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And from first to furth derivatives have the following B-series, respectively: 

  (    )  ∑
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Lemma 3:  The function   ( )      {           } can be calculated recursively as: 
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2- For the tree    ,  
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Theorem 2: When the DIRKFO5 method is applied to for the problem (27), it produces      as the numerical 

solution and the numerical derivatives                       and          , with the following B-series; 
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ALGEBRAIC ORDER COND ITIONS 

The main objective of this study is to achieve the order conditions of the EFDIRKFO5 method through Theorem 1 

and Theorem 2 (Hussain, Ismail & Senu, 2016). the colored trees with ranks up to seventh are listed In Table 2, with 

the values of the associated functions.                         

 

Table 2- elementary differentials, relevant-colored trees of up to eight orders, and related 
functions 

Order 

 ( ) 

  tree  ( ) density n(t) elementary 

0     1 1    

1     1 1     

2     1 2      
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3     1 6       

4     1 24        

5    
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6     1 720 c     
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     1 2520       (     ) 

     1 5040 
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3 13440 
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Based on Theorem 1, the order conditions for the EFDIRKFO5 method up to the seventh order can be written as 

follows: 
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Exponentially -Fitted  Method  

      To derive EFDIRKFO5 of Fifth order - three stages method, employed order conditions up to the fifth order. 
Consequently, we get system of equations contain of fifteen nonlinear equations that must be solved, letting         
and solving the system together yields the family of solution as follows: 
   

   
 

 
 

√ 

  
     

 

 
 

√ 

  
   

     
 

 
   

     
 

 
 

√ 

  
   

     
 

 
 

√ 

  
   

        
    

 

 
 

√ 

  
   

  
    

 

 
 

√ 

  
         

 

   
 

 √ 

    
    

 

   
 

 √ 

    
   

       
   

 

  
 

√ 

  
     

  

  
   

 

  
 

√ 

  
   

   
 

  
 

 

 
   

 √   
 

 
   

  
 

  
 √     

  
 

 
   

 √  
 

 
   

  
 

  
 

 

  
 √   

The global error in eight free parameters given by 
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By using minimize command in Maple for equation (68), we get 
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and the global error is   
( )

           .  

       To construct the exponentially-Fitted Runge-Kutta type three-stage fifth-order method needs at each stage to 
integrate exactly the function     and     , therefore the following four equations are obtained (Jaleel & 
Fawzi,2023). 
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     These lead to our new method exponentially - fitted explicit modified Runge-Kutta type method three-stage fifth-
order method denoted as (EFDIRKFO5), The corresponding Taylor series expansion of the solution is given by 
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NUMERICAL RESULTS 

        In this paper, the new method was compared with the DIRKFO5 method and Radua I  method to prove the 
effectiveness of the new method. We used the following equations (Butcher, 2016)  to compare the numerical 
methods: 
Problem1:    ( )     ( )   ( )      ( )       ( )         ( )          ( )     

    Exact:  ( )     ( )   

Problem2:     ( )         ( )      ( )        ( )         ( )          ( )     

   Exact:  ( )       

Problem 3:   ( )               ( )      ( )           ( )        ( )          ( )      

   Exact:  ( )  
 

   
 

Problem 4:       ( )                         ( )      ( )          ( )        ( )         ( )      

   Exact:  ( )           

 

Table 3. Numerical comparisons for problem 1,2,3, and 4  

problem H Methods Maxerror Function call 

 
 
 
 

 
1 

0.05 
EFDIRKFO5 
Radua I 
DIRKFO5 

1.867090e-003 
9.987503e-001 
7.976149e-003 

256 
384 
256 

0.025 

EFDIRKFO5 

Radua I 
DIRKFO5 

1.361409e-003 

9.996875e-001 
7.086568e-003 

504 

756 
504 

0.00625 
EFDIRKFO5 
Radua I 
DIRKFO5 

1.056264e-003 
9.999805e-001 
6.849297e-003 

2016 
3024 
2016 

0.000125 

EFDIRKFO5 

Radua I 
DIRKFO5 

9.408668e-004 

1.000000e+00 
6.684801e-003 

12567 

150804 
12567 

 
 
 
 

 
2 

0.05 
EFDIRKFO5 
Radua I 

DIRKFO5 

1.917723e-004 
9.512294e-001 

7.188142e-004 

160 
240 

160 

0.025 
EFDIRKFO5 
Radua I 
DIRKFO5 

1.435004e-004 
9.753099e-001 
6.771130e-004 

320 
480 
320 

0.00625 
EFDIRKFO5 
Radua I 
DIRKFO5 

1.062120e-004 
9.937695e-001 
6.638844e-004 

1288 
1932 
1288 



16 Khalid A. M. Al-fayyadh et al., Journal of Al-Qadisiyah  for Computer Science and Mathematics Vol.71.(7) 2025,pp.Math 142–158

 

0.000125 
EFDIRKFO5 
Radua I 
DIRKFO5 

8.919178e-005 
9.998750e-001 
6.331451e-004 

64000 
96000 
64000 

 
 
 
 
 

3 

0.05 
EFDIRKFO5 
Radua I 
DIRKFO5 

8.278770e-003 
9.070295e-001 
4.732103e-002 

160 
240 
160 

0.025 
EFDIRKFO5 
Radua I 
DIRKFO5 

7.394370e-003 
9.518144e-001 
4.606572e-002 

320 
480 
320 

0.00625 
EFDIRKFO5 
Radua I 
DIRKFO5 

6.711436e-003 
9.876162e-001 
4.604044e-002 

1288 
1932 
1288 

0.000125 

EFDIRKFO5 

Radua I 
DIRKFO5 

6.222574e-003 

9.997500e-001 
4.428127e-002 

64000 

96000 
64000 

 
 
 

 
 

4 

0.05 

EFDIRKFO5 

Radua I 
DIRKFO5 

1.427496e-002 

1.531841e+001 
4.182804e-002 

160 

240 
160 

0.025 
EFDIRKFO5 
Radua I 
DIRKFO5 

9.736498e-003 
1.531841e+001 
3.860521e-002 

320 
480 
320 

0.00625 
EFDIRKFO5 
Radua I 
DIRKFO5 

6.388726e-003 
1.549903e+001 
3.739140e-002 

1288 
1932 
1288 

0.000125 

EFDIRKFO5 

Radua I 
DIRKFO5 

4.988286e-003 

1.531841e+001 
3.535101e-002 

64000 

96000 
64000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2- competence graphs for problem 1               
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Figure 3- competence graphs for problem 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4- competence graphs for problem 3  
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       Figure 5- competence graphs for problem 4  

Conclusion  

This study introduces an exponential implicit Runge-Kutta method for solving fifth-order ordinary differential 
equations represented as  ( )( )     (   ). Consequently, we develop a three-stage, fourth-order exponential 
implicit approach known as the EFDIRKFO5 method, which is directly utilized to solve differential equations. The 
numerical findings in table 3 and figures 1,2,3 and 4 indicate that the global inaccuracy of the new approach is 
reduced and it demonstrates much greater efficiency compared to the Radua I and DIRKFO5 methods. The reason 
for this is due to the high accuracy of the implicit methods compared to the conventional methods, in addition to 
including exponential functions in the derivation of our new method. Consequently, our novel approach is more 
precise and efficient for addressing fifth-order ordinary differential equations represented as  ( )( )     (   ). 
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