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A B S T R A C T 

This study investigates the application of orthogonal polynomial methods to address optimal 
partial observation problems in systems governed by partial differential equations (PDEs). It 
explores computational strategies to resolve challenges associated with incomplete or limited 
observational data in such systems. The research emphasizes leveraging the unique 
properties of orthogonal polynomials, such as their inherent orthogonality and spectral 
convergence, to enhance computational accuracy and stability. By integrating these 
techniques, the proposed approach aims to reduce numerical errors, accelerate solution 
convergence, and deliver reliable approximations for optimal observation designs. 
Theoretical advancements are systematically paired with computational frameworks, 
enabling rigorous analysis of system dynamics and observability. Numerical experiments 
demonstrate the practical efficacy of these methods across diverse scenarios, including high-
dimensional and nonlinear PDE systems. The findings highlight how orthogonal polynomial-
based techniques can transform computational methodologies for optimal observation 
challenges, offering scalable and precise solutions. This work establishes a robust foundation 
for advancing real-world applications in control, inverse problems, and data assimilation, 
positioning orthogonal polynomial methods as critical tools for researchers and practitioners 
in computational science and engineering. 

 

MSC.. 

https://doi.org/10.29304/jqcsm.2025.17.12037 

 

1. Introduction: 

Optimal partial observation problems play a critical role in managing complex dynamical systems across aerospace, 
robotics, fluid dynamics, and biomedical applications. These challenges demand strategies to steer PDE-governed 
systems toward objectives such as cost minimization, efficiency maximization, or stability enhancement under 
constraints Raissi et al. (2019). However, high-dimensional PDE systems introduce computational hurdles, including 
nonlinear dynamics, intricate solution spaces, and resource-intensive simulations, necessitating advanced numerical 
methodologies Afzal Aghaei et al. (2024). Traditional approaches, such as finite difference, finite element, and 
spectral methods, exhibit limitations despite their widespread use. Finite difference techniques, while simple to 
implement, struggle with slow convergence and instability in multi-dimensional or time-dependent scenarios. Finite 
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element methods accommodate complex geometries but escalate computational costs for large-scale problems. 
Spectral methods excel in accuracy for smooth solutions but falter with non-smooth data or irregular boundaries. 

To address these gaps, this work introduces a framework leveraging orthogonal polynomials—Chebyshev, 
Legendre, and Hermite—for solving PDE-constrained optimal observation problems. Building on foundational 
techniques like the Legendre Pseudospectra (PS) Method (1995), which exploits Legendre polynomials for spectral 
approximation, these approaches inherit rapid convergence, numerical stability, and systematic boundary condition 
treatment, enabling efficient approximation of solutions with fewer computational nodes Raissi et al. (2019) and 
Nellikkath et al. (2021). Their properties are particularly advantageous for nonlinear, time-dependent PDE systems, 
reducing computational overhead while maintaining precision. By reformulating optimal observation tasks as 
discrete nonlinear programming problems, orthogonal polynomial methods integrate seamlessly with modern 
optimization algorithms, enhancing scalability for large-scale or real-time applications Aghaei et al. (2024). 

The study validates this framework through case studies and numerical experiments, comparing its performance 
against conventional techniques. Results demonstrate superior efficiency in resolving complex observation 
challenges, achieving accurate solutions within practical computational timelines Arzani et al. (2021). These 
findings position orthogonal polynomial methods as transformative tools for overcoming limitations of traditional 
approaches, offering scalable, robust solutions to high-dimensional PDE systems. This advancement holds broad 
implications for fields requiring real-time control, inverse problem resolution, and adaptive system design, 
establishing a new paradigm in computational optimal observation research. 

 

2. Advanced Theoretical Framework: 

Orthogonal polynomial methods provide a foundational formalism for resolving partial optimal surveillance 
problems by transforming continuous PDE-constrained optimization into discrete nonlinear programming (NLP) 
formulations. Central to this transformation is the construction of operational matrices, which enable efficient 
approximation of differential and integral operators through polynomial expansions Kovachki et al. (2020). These 
matrices exploit the spectral approximation properties of orthogonal bases, such as Legendre and Chebyshev 
polynomials, to discretize governing PDEs while preserving system dynamics. Legendre polynomials, with their 
inherent orthogonality over bounded domains, and Chebyshev polynomials, renowned for exponential convergence 
on interval-based problems, offer distinct advantages in generating sparse, high-fidelity operational 
representations. The derivation of these matrices involves projecting derivative and integral operations onto 
polynomial subspaces, ensuring algebraic consistency with the underlying PDE constraints. This framework 
systematically addresses computational challenges in surveillance optimization, including adaptive resolution 
refinement and boundary condition enforcement. The section rigorously details the mathematical principles 
governing matrix construction, emphasizing their role in reducing PDE-constrained problems to structured NLP 
systems. By leveraging the recursive properties and orthonormal bases of Legendre and Chebyshev polynomials, the 
methodology achieves scalable discretization for high-dimensional surveillance scenarios Kovachki et al. (2020). 

3. Derivation for Legendre Polynomials: 

Legendre polynomials are widely employed in pseudospectral methods owing to their orthogonality and 
computational efficiency. Within the pseudospectral framework, system states  ( ) and surveillance inputs  ( ) are 
approximated through Lagrange interpolating polynomials defined at Legendre-Gauss-Lobatto (LGL) nodes. For any 
differentiable function  ( ), its derivative can be approximated as: 

 

  
 ( )  ∑      

 
            (1) 

Where: 

-    : are elements of the Legendre differentiation matrix. 

-   : represents the value of   at the j-th node. 

The entries of     are computed as: 
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where    and    are scaling factors, defined as      for boundary points (          ) and      for interior 

points. 

Chebyshev Polynomial Basis:  

Chebyshev polynomials exhibit superior numerical properties, notably their ability to mitigate Runge’s phenomenon 

near domain boundaries. In this approach, the system state  ( ) is represented as a spectral expansion using 

Chebyshev polynomial basis functions. The expansion takes the form: 

 ( )  ∑   ( )  
 
    ,         (3) 

 

where   ( ) are Chebyshev polynomials of the first kind. 

and the differentiation matrix     for Chebyshev polynomials is derived similarly to Legendre polynomials with 

entries: 
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Where    and    are scaling factors dependent on node type. 

 

4. Simplifying surveillance Problem Implementation 

The use of differentiation matrices     drastically simplifies the numerical implementation of optimal  surveillance 

problems. and by discretizing derivatives where continuous-time system dynamics [6]: 

 ̇( )   ( ( )  ( )) 

are transformed into a set of algebraic equations: 

    (   )         (5) 

where   and   are vectors of state and  surveillance variables evaluated at the nodes. This discretization enables the 

reformulation of the optimal surveillance problem as a constrained nonlinear programming (NLP) problem. The 

resulting NLP system can be efficiently solved using standard optimization algorithms. Operational matrices derived 

from orthogonal polynomial bases facilitate systematic handling of boundary conditions and integral constraints. By 

encoding differential operators and constraints algebraically, these matrices ensure computational tractability. The 

approach enhances the adaptability of orthogonal polynomial methods, making them robust tools for solving 

diverse surveillance challenges. 
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5. Reference Studies and Methodological Advances 

5.1 Reference Studies: 

Orthogonal polynomial methods have emerged as prominent tools for solving partial optimal surveillance problems 

in recent years. These techniques provide a robust alternative to conventional numerical approaches, such as finite 

difference and finite element methods. Traditional methods often encounter difficulties when addressing high-

dimensional or nonlinear systems governed by partial differential equations (PDEs). In contrast, orthogonal 

polynomial-based strategies, including pseudospectral formulations, demonstrate notable computational efficiency 

and precision. Their effectiveness has established these methods as indispensable components of modern 

surveillance theory. 

5.2 Overview of Methodological Advances 

A landmark advancement in this field is the Legendre Pseudospectral (PS) Method (1995), rigorously analyzed 

by Y. Wang et al. (2024). Their work emphasizes the method’s precision in solving finite-horizon optimal 

surveillance problems, particularly in space mission design. The method employs Legendre-Gauss-Lobatto (LGL) 

nodes, which ensure rapid convergence and computational robustness for time-sensitive applications such as 

trajectory optimization. Another pivotal contribution involves Shifted Gegenbauer Polynomials, applied by N. 

Ranasingh et al. (2024) to fractional optimal surveillance problems. These polynomials achieve exceptional accuracy 

and stability in fractional dynamical systems, outperforming traditional approaches that often fail in such regimes. 

Chebyshev Polynomials, renowned for their spectral convergence, have also been systematically leveraged in 

surveillance research. L. Yuan et al. (2022) demonstrated their efficacy in resolving boundary-value problems with 

complex constraints via Chebyshev pseudospectral methods. These techniques excel in systems demanding 

exponential convergence rates, particularly under non-trivial boundary conditions. 

Integration with Hybrid Techniques 

Hybrid methods that integrate orthogonal polynomial techniques with conventional numerical strategies represent 

a growing research frontier. One notable example is the spectral-finite difference hybrid approach, which synergizes 

the advantages of both methodologies. This combination enhances robustness in solving PDE-constrained 

surveillance problems by balancing global accuracy and local adaptability. Empirical studies demonstrate that such 

hybrids improve solution precision without compromising computational efficiency Harada et al. (2005). Their 

effectiveness has been validated across diverse domains, including robotic motion planning and turbulent flow 

control, where complex dynamics demand adaptive resolution. 

Radau Pseudospectral Methods, another variant, have proven advantageous for infinite-horizon surveillance 

problems. Y. Becerikli et al (2003) studies emphasized their effectiveness in stabilization mission, where the 

infinite-time horizon introduces unique challenges and these methods outperform other polynomial techniques in 

specific scenarios requiring real-time decision-making. 

Innovations in Numerical Techniques 

Integral Gaussian quadrature methods have been applied to improve the approximation of costate variables in 

optimal surveillance problems and these methods, particularly useful in scenarios with integral constraints, enhance 

computational accuracy and stability, as demonstrated in high-precision aerospace applications Ghasemi et al. 

(2017). 
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Finally, advances in the Covector Mapping Principle (CMP) and its integration into pseudospectra frameworks 

have provided new insights into the dual consistency of solutions and M. Benning et al (2021) unified approach to 

primal-dual weighted interpolations has set a benchmark in the rigorous application of Hamiltonian dynamics in  

surveillance systems. 

Table 1 - Summary Table of Studies 

Study Methodology Key Findings Ref 

Fahroo & Ross 

(2008) 

Legendre Pseudospectral 

Methods 

Accurate and efficient for finite-horizon  

surveillance 

14 

Ahmed & Melad 

(2018) 

Shifted Gegenbauer 

Polynomials 

Enhanced accuracy in fractional  

surveillance problems 

15 

Gong et al. (2008) 
Chebyshev Pseudospectral 

Methods 

High precision for boundary-value 

problems 

16 

F. Kheyrinataj 

(2023) 

Spectral-Finite Difference 

Hybrid 

Robust handling of nonlinear PDE 

constraints 

17 

T and taheri (2024) 
Gaussian Quadrature 

Collocation 

Improved computational accuracy for 

integral constraints 

18 

6. Methodology: 

6.1 Pseudospectral Discretization Framework 

This research employs advanced orthogonal polynomial methods to address partial optimal  surveillance problems, 

focusing on systems governed by partial differential equations (PDEs) and the methodology integrates the 

theoretical framework of pseudospectral (PS) methods with practical computational techniques and leveraging the 

spectral properties of orthogonal polynomials for Legendre, Chebyshev and Gegenbauer polynomials and 

foundation of this methodology lies in the Legendre Pseudospectral Method, which approximates state and  

surveillance variables using Lagrange interpolating polynomials at Legendre-Gauss-Lobatto (LGL) nodes and the 

state variable  ( ) is expressed as: 

 ( )  ∑     ( )
 
    ,         (6) 

Where: 

-    are the state values at LGL nodes? 

-   ( ) are the Lagrange basis functions?  

The differentiation matrix    , derived from the LGL nodes, approximates the time derivative as: 

This transformation reduces the continuous-time optimal surveillance problem into a discrete nonlinear 

programming (NLP) problem, which is solved using numerical optimization techniques. 

Chebyshev and Gegen Bauer Extensions 

Chebyshev and Gegenbauer polynomials are employed to improve solution accuracy in specialized surveillance 

problems. Chebyshev methods of the first and second kind excel at minimizing oscillatory artifacts near domain 
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boundaries due to their extremal node distributions. Gegenbauer polynomials, defined by their parameterized 

weight functions, extend the solution space for fractional optimal surveillance problems: 

 ( )  (    )     
 

 
         (7) 

This flexibility improves convergence rates and reduces truncation errors in fractional PDEs. 

6.2 Unified Convector Mapping Principle 

The Convector Mapping Principle (CMP) ensures dual consistency between primal and dual solutions, particularly 

for systems requiring Hamiltonian formulation and fahroo and Ross (2008) introduced the unified CMP framework 

to streamline the solution of dual systems, facilitating the derivation of costate variables without direct integration 

of the Hamiltonian system and this principle is mathematically represented as: 

 ( )  ∑      
 
    ,         (8) 

Where: 

-    : denotes the weighted interpolation matrix. 

6.3 Numerical Implementation 

The numerical implementation involves several steps: 

Legendre-Gauss-Lobatto (LGL) nodes are deployed for finite-horizon systems, while Legendre-Gauss-Radau (LGR) 

nodes are reserved for infinite-horizon formulations. A differentiation matrix is constructed by evaluating 

polynomial derivatives at the selected collocation points, discretizing continuous dynamics into algebraic 

constraints. The optimization phase employs nonlinear programming (NLP) solvers, such as DIDO or MATLAB's 

fmincon, to resolve the discretized problem while ensuring numerical convergence and stability. This methodology 

harnesses the intrinsic spectral accuracy and stability of orthogonal polynomials, yielding computationally efficient 

solutions for high-dimensional surveillance challenges. The unified discretization framework guarantees 

consistency across finite- and infinite-horizon problems, enabling seamless transitions between temporal domains. 

Table 2 - Node Properties Comparison 

Node Type Coverage Boundary Inclusion Application 

LGL Full Interval Both Ends Finite-Horizon  surveillance 

LGR Partial Interval One End Infinite-Horizon  surveillance 

Chebyshev (First) Full Interval None Boundary Layer Problems 
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Fig. 1 Legendre-Gauss-Lobatto Nodes Distribution 

 

7. Results: 

The study works to solve ideal partial observation problems governed by PDE equations by applying the methods 

proposed within the methodology and will be applied to several standard problems to evaluate fineness 

convergence rates and computational efficiency. 

   Numerical Experiments and Convergence Analysis 

7.1 Case Study 1: Finite-Horizon  surveillance Using Legendre Pseudospectra Methods 

In the first test case, a finite-horizon optimal  surveillance problem was solved using the Legendre-Gauss-Lobato 

(LGL) nodes and the problem aimed to minimize a quadratic cost function subject to a linear PDE constraint and the 

numerical solution was compared against the analytical solution, with results showing rapid convergence as the 

number of nodes increased and the error analysis indicated an exponential decay in the error, affirming the spectral 

accuracy of the Legendre pseudospectra method. 

The cost functional   was evaluated as: 

  ∫ ( ( )   ( ) )  
 

 
         (9) 

with the computed error for different node counts as shown in Table 3: 

 

Table 3 - Error Analysis for Legendre Pseudospectra Method 

Nodes Error (L2-Norm) 

10 1.2×10−3 
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Nodes Error (L2-Norm) 

20 3.5×10−5 

30 8.7×10−7 

 

Figure 2 visualizes the convergence, plotting the error against the number of nodes on a logarithmic scale. 

 

 

Fig. 2 Convergence Plot for Legendre Pseudospectra Method 

 

7.2 Case Study 2: Fractional Optimal  surveillance Using Gegen Bauer Polynomials 

This case involved a fractional PDE-constrained  surveillance problem solved using shifted Gegen Bauer polynomials 

and the fractional derivative was approximated using operational matrices, and results showed high accuracy even 

for non-smooth solutions and the Gegen Bauer-based approach significantly reduced computational costs compared 

to traditional finite element methods. 

The error convergence for varying fractional orders α\alphaα is summarized in Table 4 

 

Table 4 - Fractional Order Error Analysis 

Fractional Order (α) Error (L∞- Norm) 

0.5 2.8×10−4 
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Fractional Order (α) Error (L∞- Norm) 

0.7 1.6×10−4 

0.9 7.2×10−5 

7.3 Case Study 3: Infinite-Horizon  surveillance Using Radau Nodes 

For an infinite-horizon  surveillance problem, Legendre-Gauss-Radau nodes were employed to handle the semi-

infinite domain and the method demonstrated robust convergence, achieving stable solutions for systems with 

asymptotic boundary conditions. 

Computational Efficiency 

The computational time was significantly reduced due to the spectral properties of the methods and figure 3 

compares the CPU time required for pseudospectra methods versus finite difference approaches for increasing 

problem sizes and the pseudospectra method consistently outperformed traditional methods in terms of both 

accuracy and runtime efficiency. 

 

 

Fig. 3 CPU Time Comparison Between Pseudospectra and Finite Difference Methods 

 

Additional Case Studies: 

7.4 Case Study 4: Nonlinear Optimal surveillance Problem 
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In this case study, we address the optimal surveillance of a system governed by the Burger’s equation, a 

fundamental nonlinear PDE commonly used in fluid dynamics and traffic flow modeling: 

  

  
  

  

  
  

   

      , 

where  (   ) represents the velocity field, and   is the kinematic viscosity and the objective is to determine the 

optimal surveillance input  (   ) to minimize a performance index, such as: 

  ∫ ∫  ( (   )    (   ))   (   )      
 

 

 

 
 ,         (10) 

where   (   ) is the desired state, and  (   ) is a regularization term to penalize surveillance energy. 

 

 

Methodology: Applying Legendre Pseudospectral Methods 

To solve this optimal  surveillance problem, we discretize the Burger’s equation using the Legendre Pseudospectral 

Method and the spatial and temporal domains are approximated with Legendre-Gauss-Lobatto (LGL) nodes, 

reducing the PDE to a set of algebraic equations: 

      (   )          ,         (11) 

where: 

   is the vector of velocity values at the LGL nodes. 

               are differentiation matrices for time, space, and second spatial derivatives, 

respectively. 

   represents element-wise multiplication. 

 

The optimization problem is then transformed into a nonlinear programming (NLP) problem, which is solved using 

software like MATLAB’s fmincon or the DIDO pseudospectral solver and the Legendre pseudospectral method was 

tested on a domain x∈[0,1] and  ∈      , with T=1, ν=0.01, and boundary conditions u(0,t)=u(1,t)=0 and the results 

were compared against solutions obtained via traditional finite difference methods and the pseudospectral method 

exhibited superior accuracy, with exponential convergence as the number of nodes increased.  

 

Table 5 - presents the L2-norm error for different node counts: 

Nodes Error (L2-Norm) 

10 5.2×10−3 

20 1.8×10−4 

30 6.5×10−6 

 

Computational Performance 
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The pseudospectral method also demonstrated significant computational efficiency and figure 4 shows the 

reduction in CPU time compared to finite difference methods. 

 

 

Fig. 4 CPU Time Comparison for Nonlinear Burger’s Equation 

 

The Legendre pseudospectral style outperforms traditional approaches in both accuracy and computational speed 

for the Burger’s equation and these outcome highlight the method's capability to handle complex nonlinear 

dynamics efficiently and making it a valuable tool for fluid dynamics  surveillance applications. 

 

7.5 Dynamic  surveillance Simulations 

In this section this study present a dynamic simulation of the  surveillance strategy for a time-dependent PDE and 

the simulation illustrates how the  surveillance function u(t)u(t)u(t) evolves over time and providing insights into 

the settlement and accuracy of the Legendre Pseudospectral outcome and this method border the  surveillance 

function as: 

 ( )  ∑     ( )
 
            (12) 

where     are the  surveillance stage at the Legendre-Gauss-Lobatto (LGL) nodes also   ( ) are the corresponding 

Lagrange basis press. 

Simulation Setup 

The simulation was behavior for a finite-horizon optimal  surveillance dilemma with a time interval  ∈       where 

    and the thematic was to minimize a quadratic cost function while ensuring the system's state x(t)x(t)x(t) 

follows a desired path and the  surveillance values  ( ) were computed using the pseudospectral outcome and then 
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plotted to observe their time evolution and figure 4 below illustrates the  surveillance function u(t)u(t)u(t) over 

time and showing a sleek and stable  surveillance evolution. 

 

 

Fig. 5 Dynamic Simulation of surveillance Function 

 

The dynamic simulation results demonstrate several key aspects of the surveillance process: 

The  surveillance function u(t)u(t)u(t) evolves smoothly without oscillations or abrupt changes, indicating 

numerical stability and this is a significant advantage of the pseudospectral method, which ensures stability through 

its spectral accuracy and optimal node placement and   surveillance strategy closely aligns with the desired 

trajectory, minimizing deviations and this highlights the method's ability to achieve high precision with a relatively 

small number of nodes and the simulation required minimal computational resources, further affirming the 

method's suitability for real-time  surveillance applications and  dynamic  surveillance simulations provide strong 

evidence of the Legendre Pseudospectral Method's effectiveness in managing time-dependent  surveillance systems 

and by ensuring both stability and accuracy, the method proves to be a reliable tool for solving complex optimal  

surveillance problems. 

7.6 Scalability and Computational Efficiency: 

The computational efficiency of numerical methods is a critical consideration in solving optimal surveillance 

problems, particularly as system dimensionality and complexity escalate. This section evaluates the performance of 

the Legendre Pseudospectral Method against conventional finite difference techniques. The scalability of both 

approaches is assessed by analyzing their runtime behavior under increasing nodal resolutions. Computational 

durations for resolving a standard optimal surveillance problem were measured across varying numbers of 

collocation nodes. These metrics enable direct comparison of algorithmic efficiency between the Legendre 
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Pseudospectral framework and traditional finite difference discretization. and the results are summarized in Table 

5. 

 

Table 6 - Estimates of the computational time for solving a typical optimal  surveillance problem using both 

methods over different numbers of nodes. 

 

Nodes CPU Time (Pseudospectral) CPU Time (Finite Difference) Speedup Factor 

10 0.1s 0.5s 5.00x 

20 0.3s 1.1s 3.67x 

30 0.7s 2.4s 3.43x 

 

From the table, it is evident that the pseudospectral method demonstrates consistently shorter computational times 

compared to the finite difference method, achieving speedup factors between 3.43x and 5x as nodal resolution 

increases. Parallel computing strategies were implemented to further optimize the pseudospectral framework’s 

efficiency. By parallelizing differentiation matrix construction and optimization tasks across multiple processing 

cores, runtime reductions exceeding were achieved. Figure 5 quantifies the performance gains attributable to 

parallelization, highlighting its impact on large-scale surveillance problems, which shows the percentage decrease in 

computation time relative to serial execution. 

 

 

 

Fig. 6 Parallel Speedup for Pseudospectral Methods 
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The results demonstrate the superior scalability of the Legendre Pseudospectral Method, particularly when 

integrated with parallel computing architectures. As problem dimensionality increases, the computational efficiency 

of the pseudospectral approach becomes markedly more advantageous, solidifying its suitability for large-scale or 

real-time surveillance applications. The method’s spectral accuracy further reduces computational overhead by 

enabling high-precision solutions with fewer collocation nodes compared to traditional discretization techniques. In 

contrast, the finite difference method, though algorithmically simpler, suffers from slower convergence rates and 

escalating computational costs, especially in scenarios demanding fine spatial or temporal resolution. This 

performance disparity highlights the limitations of conventional approaches in high-fidelity surveillance 

optimization. The comparative findings underscore the transformative potential of orthogonal polynomial-based 

methods, emphasizing their practical superiority in modern computational frameworks for optimal surveillance. 

7.7 Sensitivity Analysis 

The sensitivity of numerical solutions in optimal surveillance problems is pivotal to assessing the robustness and 

reliability of computational methods. This section investigates how variations in critical parameters—time horizon 

 , polynomial degree  , and boundary conditions—affect the accuracy of orthogonal polynomial-based solutions. 

The time horizon  , defining the optimization interval, influences solution fidelity: a 20% extension of   reduces the 

  -norm error by approximately 15%, as longer intervals provide more collocation points for refining surveillance 

strategies. Polynomial degree  , which dictates nodal resolution, directly impacts approximation quality. Increasing 

  by 5 reduces the   -norm error by 25%, reflecting the exponential convergence inherent to spectral methods. 

Boundary conditions critically govern solution stability and feasibility, with modifications altering constraint 

structures and state trajectories. While not explicitly quantified here, prior studies emphasize that improper 

boundary condition treatment can induce numerical instability or divergence. These findings collectively 

underscore the interplay between parameter selection, algorithmic performance, and solution integrity in 

surveillance optimization 

Table 7 - Sensitivity Summary 

Parameter Change Effect on Solution Accuracy 

Time Horizon T Increase by 20% Decrease in L2-Error by 15% 

Polynomial Degree N Increase by 5 Decrease in L∞-Error by 25% 

Boundary Conditions Modified Significant impact on stability and accuracy (qualitative) 

 

The allergy analysis underscores the necessity of calibrating critical parameters to optimize algorithmic 

performance. Extending the time horizon   and increasing the polynomial degree   demonstrably enhance solution 

accuracy, as evidenced by reductions in   - and   -norm errors. These improvements highlight the pseudospectral 

method’s adaptability to varying problem scales and complexities. Effective management of boundary conditions 

remains vital for numerical stability, particularly in systems with intricate dynamics or constraints. The findings 

emphasize the robustness of orthogonal polynomial methods in accommodating diverse surveillance configurations 
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while preserving high precision. Their computational efficiency is retained even under demanding resolution 

requirements, solidifying their suitability for real-world applications. 

 

8. Conclusion: 

This study establishes the efficacy of advanced orthogonal polynomial methods in solving partial optimal 

surveillance problems governed by partial differential equations (PDEs). By harnessing the spectral properties of 

Legendre, Chebyshev, and Gegenbauer polynomials, the proposed methodologies achieve high accuracy with 

reduced computational costs. Pseudospectral techniques exhibit exponential convergence rates and significant 

runtime improvements, making them ideal for high-dimensional, time-sensitive implementations. Extensive 

numerical experiments validate the versatility of these methods across finite-horizon, infinite-horizon, and 

fractional-order surveillance systems. Results consistently demonstrate superior accuracy and efficiency compared 

to traditional numerical approaches. The Convector Mapping Principle ensures theoretical coherence between 

primal and dual problem formulations, enhancing robustness in practical applications. This work advances 

computational frameworks in surveillance theory, positioning orthogonal polynomial methods as pivotal tools for 

future research on complex, large-scale optimization challenges. 
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