Continuous BA- finitely set function

Noori F. Al- Mayahi **Department of Mathematics** College of Computer Science and Mathematics University of Al-Qadisiva

Abstract

Let μ be an BA- finitly additive set function on a measurable space (Ω, F) . In this paper, we proved the following statement

- (1) If μ is BA- countably additive, then μ is continuous at A for all $A \in F$.
- (2) If μ is continuous from below at every set $A \in F$, then μ is BA- countably additive.
- (3) If μ is, finitly and continuous from above at ϕ , then μ is BA- countably additive.

1.preliminaries

[1] introduced the notations of Banach algebra valued- measure.

Definition (1.1)

Let X be a real vector space. A partial order relation \leq on X is called vector order if the following axioms are satisfied

(1) $x \le y \implies x + z \le y + z \qquad \forall x, y, z \in X$ (2) $x \le y \implies \lambda x \le \lambda y \qquad \forall x, y \in X$ $\forall x, y \in X \quad and \quad \lambda \geq 0$

A real vector space endowed with a vector order is called an ordered vector space. An element x of an ordered vector space X is said to be **positive** if $x \ge 0$, and negative if $x \le 0$. The set of all positive elements of an ordered vector space X will be denoted by X_+ , i.e. $X_+ = \{x \in X : x \ge 0\}$, X_+ is called the **positive cone** of X. It is easy to show that

(1) X_+ is a convex cone of X, i.e. $X_+ + X_+ \subseteq X_+$ and $\lambda X_+ \subseteq X_+$ (2) $X_{+} \cap (-X_{+}) = \{0\}$

Definition (1.2)

Let X be a real vector space. A function $\| \cdot \| : X \to R$ is said to be norm on X if the following axioms are satisfied

- $(1) \|x\| \ge 0 \qquad \forall x \in X$
- (2) ||x|| = 0 iff x = 0
- (3) $\|\lambda x\| = |\lambda| \|x\|$ $\forall x \in X, \lambda \in \Re$ (4) $\|x + y\| \le \|x\| + \|y\|$ $\forall x, y \in X$

A normed space is the pair $(X, \|\cdot\|)$ where X is a real vector space and $\|\cdot\|$ a norm on X. A Banach space is a normed space which is complete in the metric defined is by its norm.

Definition (1.3)

An algebra is a vector space in which a multiplication is defined that satisfies

- (1) x(yz) = (xy)z, $\forall x, y, z \in X$
- (2) x(y+z) = xy+xz, (x+y)z = xz+yz, $\forall x, y, z \in X$
- (3) $\lambda(x y) = (\lambda x)y = x(\lambda y)$, $\forall x, y, z \in X$, $\lambda \in R$

Definition (1.4)

A real vector space X is called Banach algebra if the following axioms are satisfied

- (1) X is a Banach space
- (2) X is algebra
- (3) $\exists e \in X \text{ s.t } ex = xe = x \quad \forall x \in X \text{ and } \|e\| = 1$
- (4) $||x y|| \le ||x|| ||y|| \quad \forall x, y \in X$

A commutative algebra is an algebra where the multiplication satisfies the condition: xy = yx, $\forall x, y \in X$

An algebra with identity is an algebra with the following property. There exists a non – zero element in the algebra, denoted by 1 and called the multiplication identity element, such that $1 \cdot x = x \cdot 1 = x$, for all x.

A normed algebra X, is a normed space, also an algebra over F and $||xy|| \le ||x|| ||y||$

 $\forall x, y \in X .$

Example (1.5)

Let X be a Banach space, and let B(X) denote the set of all bounded (or continuous) linear function of X into itself then B(X) is a Banach algebra with the algebra operation (1) (f + g)(x) = f(x) + g(x)(2) (fg)(x) = f(g(x))(3) $(\lambda f)(x) = \lambda f(x)$ and the operator norm $||f|| = \sup\{||f(x)||: x \in X, ||x|| \le 1\}$

Remark

If $X \neq \{0\}$, then the identity linear function I is the identity element of B(X) such that $\|I\| = 1$.

2. The main results

Definition (2.1)

Let (Ω, F) be a measurable space, and let X be an ordered Banach algebra. A set function $\mu: F \longrightarrow X$ is said to be

(1) BA- finitely additive if $\mu(\bigcup_{k=1}^{n} A_k) = \sum_{k=1}^{n} \mu(A_k)$, whenever A_1, A_2, \dots, A_n disjoint sets in F.

(2) BA-countably additive if $\mu(\bigcup_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} \mu(A_k)$, wherever $\{A_k\}$ is a sequence of disjoint sets in F.

(3) BA- measure if μ is BA- countably additive and $\mu(A) \ge 0 \quad \forall A \in F$

Definition (2.2)

Let μ be an BA- finitly additive set function on a measurable space (Ω, F) , for all $A \in F$. We say that μ is

- (1) Continuous from below at $A \in F$, if $\mu(A_n) \longrightarrow \mu(A)$ wherever $\{A_n\}$ is a sequence of sets in F with $A_n \uparrow A$
- (2) Continuous from above at $A \in F$, if $\mu(A_n) \longrightarrow \mu(A)$ wherever $\{A_n\}$ is a sequence of sets in F with $A_n \downarrow A$
- (3) Continuous at $A \in F$, if it is continuous both from below and from above at A.

Theorem (2.3)

Let μ be an BA- finitly additive set function on a measurable space (Ω, F) , for all $A \in F$.

- (1) If μ is BA- countably additive, then μ is continuous at A for all $A \in F$.
- (2) If μ is continuous from below at every set $A \in F$, then μ is BA- countably additive.

(3) If μ is, finitly and continuous from above at ϕ , then μ is BA- countably additive.

Proof

Let $\{A_n\}$ be a sequence of sets in F with $A_n \uparrow A$

$$\Rightarrow \{A_n\} \text{ is an increasing sequence and } \bigcup_{n=1}^{\infty} A_n = A$$

 $A = A_1 \cup (\bigcup_{n=1}^{\infty} (A_{n+1} | A_n))$ is a disjoint decomposition and

$$\mu(A) = \mu(A_1) + \sum_{n=1}^{\infty} \mu(A_{n+1} \mid A_n) = \mu(A_1) + \lim_{k \to \infty} \sum_{n=1}^{\infty} \mu(A_{n+1} \mid A_n) = \lim_{k \to \infty} \mu(A_n)$$

Since μ is BA - finitly additive on F. Thus μ is continuous from below at A

Now suppose $\{A_n\}$ be decreases sequence and $\bigcap_{n=1}^{\infty} A_n = A$

Put $B_n = A_k | A_n$ for $n \ge k$ $\Rightarrow \{B_n\}$ is increasing to $A_k | A$. Hence, as $n \longrightarrow \infty$, we have

$$\mu(B_n) \longrightarrow \mu(A_k \mid A) = \mu(A_k) - \mu(A)$$

But

 $\mu(B_n) = \mu(A_k) \longrightarrow \mu(A_n)$ so that $\mu(A_n) \longrightarrow \mu(A)$ as $n \longrightarrow \infty$ since $\mu(A_n)$ is finite, and μ is also continuous from above at A.

(2)

Suppose $A \in F$, $A_n \in F$, $n = 1, 2, \cdots$ are such that $A = \bigcup_{n=1}^{\infty} A_n$ and the sets A_n are

disjoint. Put $B_n = \bigcup_{i=1}^n A_i \in F$, $n = 1, 2, \cdots$, and $\{B_n\}$ is a monotone sequence of sets in F which converges to $A \in F$. If μ is continuous from below at A.

$$\sum_{i=1}^{n} \mu(A_i) = \mu(B_n) \to \mu(A) \text{ as } n \to \infty$$

So that again $\mu(A) = \sum_{i=1}^{\infty} \mu(A_i)$ and μ is BA-countably additive.

(3)

In the notation of (2), put $G_n = A - B_n \in F$, $n = 1, 2, \dots$. Then $\{G_n\}$ is a monotone decreasing sequence converging to ϕ and, for $n = 1, 2, \dots$

$$\mu(A) = \sum_{i=1}^{n} \mu(A_i) + \mu(G_n)$$

If μ is finite and continuous from above at ϕ we must have $\mu(G_n) \to 0$ as $n \to \infty$. So that again $\mu(A) = \sum_{i=1}^{\infty} \mu(A_i)$.

References

[1] Al-Mayahi, N.F., Banach Algebra Valued - Measure, to appear

- [2] Doob. J. L., "measure theory", 1994, New York.
- [3] Folland. G. B., "Real Analysis", 2nd, 1999, New York.
- [4] Rudin. W., "Functional Analysis", 1973, New Delhi