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 Abstract 

     We apply the no-arbitrage and no-free lunch definitions of Kreps (1981). Arbitrage 

is a linear algebraic notion, while free lunch is a topological notion. The notion of free 

lunch, unlike that of arbitrage, is somewhat ambiguous because it depends on a 

topological choice that is often tacit, i.e. there is source of problem when we use the 

topology in our work. 

 Our main point in this paper is that how the choice of a topology which the 

space are free lunches. We consider a number of topological spaces depending on: 

(1) not a free lunch. (does not converge). 

(2) a free lunch (converge to a positive limit). 

(3) not a free lunch (converge to a non-positive limit). 

1.Introducation 

In recent years the mathematical theory of stochastic integration (stochastic process) 

has become of interest because of its several areas of mathematical stochastic integrals 

with respect to martingales which were first discussed by Winer (1923). The extension 

of this definition is due of square martingale. 
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 The relation between the theorem of price asset and arbitrage were introduced 

from (Arrow-Debreu)(1959) model, formula of Black and Scholes (1973), linear price 

model of Cox and Ross (1976). 

 In their fundamental paper, Harrison and Kreps (1979), discussed the 

fundamental theorem and introduced the concepts of equivalent martingale measure. 

Absence of arbitrage alone was not sufficient to obtain an equivalent martingale 

measure for the stochastic process. . Different solutions have been introduced to relate 

the topological conditions of arbitrage [see Back and pliska (1991), Dalank, Morton. 

 The triple (,F,P) is called probability space, where  be a non –empty set ,F 

is a -field on , and P is a probability measure. i.e P()=1 where P be a measure on 

(,F )  ,the process X, Sometimes denoted (Xt)tI is supposed to be  -valued,  

i.e the function X: is called random variable if  X is measurable function. This 

mean the function X:  is random variable if and only if {Xa} F  for all a. 

 

2. L
p
-spaces 

 We recall all definitions and concepts which we need in this paper. Also, we 

recall if (,F,P) is a probability space and  p  is a real number with  p  1, the space of 

all real-valued measurable functions  f  such that  f
p
 is     P-integrable has many 

important properties. In order to fully develop these properties, it will introduced all 

definitions in this subject. 

Definition (2.1), [6]: 

 Let X,Y be topological spaces and let F(X,Y) be the set of all mappings from X 

into Y. Let  be set of all finite subsets of X,  is called of simple convergence (or 

pointwise convergence) on X. If    is the set of all bounded subsets of X,   is called 

the topology of bounded convergence. If    consist of all compact subsets of X,  

is called topology of compact convergence.  

Definition (2.2), [6]: A subset E of X is called weakly compact if every sequence 

in E contains a subsequence which is weakly convergent in E. 
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Definition (2.3), [6]: A set A is called balance set if  AA for all real number    

with 1  

 

Definition (2.4), [7]: 

 The uniform convergence topology on the set of all weakly compact, convex 

and balanced subsets    of X is called Mackey topology. 

Definition (2.5), [3]: 

 Let (,F,) be a measure space and let p be a real number with  (1 p <). We 

define  L
p
(,F,)  as follows: 

L
p
=L

p
(,F,)={f: f:  is -measurable, fp <}. 

Where  

p

1

p
μdff

p











 

Ω

 

for all  fL
p
. 

If  fp<  for some p with (1  p <), then f  is said to be p-integrable. 

Definition (2.6), [6] 

If p and q are positive real numbers, such that 
p

1
+

q

1
=1, p and q are called a pair of 

conjugate exponents. 

 

Theorem (2.7) (Hőlder’s Inequality), [6] 

 Let p and q be conjugate exponents. If  f,qL
p
  then  fgL

p
  and  

 fg1  fp gq   i.e. 
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Theorem (2.8) “(Minkowski’s Inquality), [6] 

 If f, gL
p
 (1  p <), then f+gL

p
 and  
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by Minkowski’s inequality and the fact fp= fp for all fL
p
, L

p
 (1  p<) is a 

vector space over the real field.  

 If a statement holds for every  t  except for a subset of measure zero, then it 

is said to hold almost every where (a.e.) on . The space X is usually  L
p
 (,F, P), for  

1  p<. 

 Now, we construct L

  as follows: 

firstly, we define the essential supermum of real-valued measurable function g on 

(,F,)  as: 

                               ess sup g=inf {
*
 : { : g() >}=0}              [6] 

that is, the smallest number    such that  g  a.e.[]. 

If f is real-valued measurable function on (,F,), we define 

                               f=ess sup f 

i.e.    f=inf {
*
: {: f()>}=0} 

                =inf {
*
: f() for -almost every } 

L

(,F,)={f: f:, f is -measurable and  f<} 

                ={f: f:, f is measurable and there exists a finite constant    such that 

f()    for -a.e. }. 

Thus fL

, f is essential bounded, that is, bounded outside a set of measure 0 [i.e., 

there is a positive real    such that f()    for -a.e. ]. 

Now, we have 

                         f+g  f+g 

In particular f,gL

  implies  f+gL


.  

Thus L

  is a vector space over the real field. .  is a semi norm on  L


. 



 5  

 

  

 We now wish to give metric structures to the space of all p-integrable functions 

and to the spaces of all essentially bounded measurable functions on  . Minkowski’s 

inequality shows that if we let dp(f,g)=f+gp  with               (1  p ), then dp 

satisfies all the properties of a metric except that  dp(f,g)=0. 

 f=g at all point of . 

 We can, in effect change .  into norm by passing to equivalence classes as 

follows: 

If  f,gL
p
, define  fg  if and only if  {t : f(t)g(t)}=0. It is easily seen that if f is 

a non-negative measurable function on  L
p
  then  f0  if and only if  



fd μ =0.If we 

identify two p-integrable or essentially bounded functions which belong to the same 

equivalence class, then  dp  is indeed a metric on these spaces of functions. 

 The set of all equivalence classes of p-integrable (resp., essentially bounded) 

function is denoted by L
p
(,F,) (resp. L


(,F,)), that is L

p
 (1  p<) is a normed 

space. Hence, L
p
  is locally convex since any normed space is locally convex. 

3. Free lunch in p-norm topology 

 Let (,F,P) be a probability Lebesgue measure when =[0,1], F =([0,1]), and  

P  is a probability space, and let  X=L
p
(,F,P). It is clear  L

p
 (1  p <) is topological 

space, in which case    is usually either 

(1) p, the  L
p
  norm topology. 

(2) m, the topology of convergence in P-measure. 

 

 Let  M0= {}(0,B   where  B:  a function by  B()=1  for all    

, and :  defined by  =I,  

i.e. 

                           1       ,       = 

                 =  
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                           0        ,       

          It is clear to show that the  the indicter function  is a measurable function for 

all (0, 1 ,and  B  is a measurable function. 

 

Define  0:M0  by: 

0(m0)= 


)()(m0 wdpw    for all  m0M0. 

                                0(B) = 


)()B( wdpw = 


dp1 =P()=1. 

Let K=positive part of X 

i.e. K=X+{0} and M=span{M0}. 

Now,  

define  :M  as follows: 

                                    (m)= 


m

1i
i )m(πλ i0  

for all  m=imiM  where  miM0  for all  i=1,2,…,m.  

Then by definition, mM if and only if: 

m=0B+ 


n

1i
iiδα  for some n  0.Then 

 

 

                      0+   if     n 

      m()=                                        

                      0         if     > n                     …………………………..….(1) 

                  (m)=  )ω(dP)B(πα 00  + 



n

1i
)ω(dPδα ii  

                          =0+ 


n

1i
iiα Γ        where  i=  )ω(dPiδ  
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                          =  


n

1i
i )αα( 0 +0(1- 



n

1i
iΓ ) ……………………………..(2) 

                  (m)=E[my] +0(1- 


n

1i
iΓ )     ……………………………….. (3) 

where         y()=d/dp 

                E[my]=  ωdp)ω(y)ω(m =  ωd)ω(m Γ  

                  E[y] =       . 

If  mK  

for all  , m()  0. That is  

          0  0 and 0+  0 for all    n. 

By definition, there are no arbitrage opportunities whenever (m) > 0 for all m. From 

(2) we see this condition holds if and only if: 

           i > 0   i, E[y]  1                          ………………………………..(4) 

 

Theorem (3.1): 

 The price system (M,) in (L
p
,p) (1  p <) is no-free lunch. 

 

Proof: 

 Next let  (X,)=(L
p
,p)  where  1p<, in which case  X

*
=L

q
, where  q=p/(p-1). 

In such spaces, every price system  has a Riesz Representation z such that: 

               (x)= 


)ωdP()ω()ω( zx   

                      =E[xz]                                   ………………………………..(5) 

Where   ,z()>0  and  zX
*
. 

Comparing (3) with (5), we see that if    extends  , then we must have: 

(a) z=y, 

(b) E[y] =1, and 

(c) y=
dP

dΓ
X

*
. 
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         The latter condition means that (for p>1) 

                           (yq)
q 

= 
 

)ωdP(
q

)ωy(


 

                                       = 


dP
dP

dΓ
q

ω

ω <. 

For p=1, yX
*
 requires that y be bounded. 

If    cannot be extended, there are free lunches; this happens in two cases: 

first, extension fails whenever E[y] <1, in which case have (B) 0(B) =1. 

Consider 

     zn=     BωPdω
i
δ

1 


                     ……………………………… (6) 

Define 

              z=(1/E[y]-1)B 

and that for all  n,znM, 

             (zn)=0, and Lim
n 

(zn-z)
 p

=       ωPd

p

ByE1ωPdω
i
δ

1
 





              

                    = 





ω
p

B)/1(
1

dP  

therefore  znz >0. 

Second, assuming E[y]=1, extension fails (and there are free lunches) whenever yX
*
. 

when this happens, there exists an element x  such that  E[ x y]=.Define   

xn= iδx M, and consider the sequence  znM, where: 

              zn=B-
]yx[E

x

n

n . 

Then, (zn) =0 for all nN, and  

                 Lim
n 

 zn-Bp= Lim
n 

 
]yx[E

x

n

n
=0. 

Therefore  znB>0, which shows that {zn}  is free lunch.              
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Theorem (3.2): 

 Let X=L

 with the Mackey topology   The price system (M,) in (L


,) is 

free lunch. 

 

Proof: 

 The representation for  (x)  is given by (5). 

Since yL
1
,  (as represented by y) extends    to all of X  provided only that  E[y]=1. 

If this condition is not satisfied there are free lunches, an example being provided by 

the sequence in (6). 

A more general representation does exist: for xL

, we have 

 (x)=E[xy] +  Φxd .Where  

                        Φmd =0(1-E[y]) for all mM.                              

 

Theorem (3.3): 

 Let (X,) = (L
p
(P),p) , (1 p ). Assume y()>0  for all    and  E[y]=1. 

Then there exists equivalent measure on L
p
-space. 

 

Proof: 

 Let Q: F by 

                 Q[A]=  )ω(dP)ω(y   for all  , for all  AF. 

(1) Q(A)0  since  dP 0, y()=d/dP>0 

(2) Q{ 


1i
iA }= 

 iA

ωdP)ω(y               iA , and   iA = 

                      = 
1A

ωdP)ω(y + 
2A

ωdP)ω(y +… 

                      =  


n

1i Ai

dP)ω(y  



 10  

 

If  Q(A)=0  
A

ωdP)ω(y =0  P(A)=0  since  y0, that is Q is equivalent measure of  

P. To prove there exists    extending to .  

Since  L
p
  is lattice   M is lattice. 

If  mM  mM, where 

         m={x:m(x)0}. 

Since  QP 

Then pE [xy]=  ωdP)ω(y)ω(x  

   pE [xy]=  ωdQ)ω(x = QE (x) 

Then pE [my]= QE  (m) 

Hence  (m)= QE (m)+0(1-E[y]) 

Since  E[y]=1 

Then (m)= pE [my]= QE (m).                                                            
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