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Abstract 

 

        In this paper a new method is proposed for the solution of special case of two-

point second order boundary-value problems( TPBVP ) ,that is we concerned with 

constructing polynomial solutions to two point second order boundary value problems 

for ordinary differential equation. 

        A semi-analytic technique using two-point osculatory interpolation with the fit 

equal numbers of derivatives at the end points of an interval [0,1] is compared with 

conventional methods via a series of examples and is shown to be that seems to 

converge faster and more accurately than the conventional methods and generally 

superior, particularly for Variations on a problems . 

 Also we introduce some general observations about control of a residual and 

control of the true error and we prove, there is a more useful connection between 

scaled residual and true error.  

 

1. introduction 

          The most general form of the problem to be considered is: 

                        y" = f(x ,y, y' ),   x ∈ [a , b] ,  

with boundary conditions :      y(a) = A     ,       y(b) = B                     

there is no loss of generality in taking a = 0 and b = 1, and we will sometimes employ 

this slight simplification. We view f as a generally nonlinear function of y and y', but 

for the present, we will take f = f(x) only. For such a problem to have a solution it is 

generally necessary either that f(x) ≠ 0 hold, or that A≠  0 at one or both ends of the 

interval. When f(x) ≡ 0, and A = 0 , B=0 the BVP is said to be homogeneous and will 

in general have only the trivial solution, y(x) ≡ 0,[1].In this chapter we introduce a new 

technique for the qualitative and quantitative analysis of non homogeneous TPBVP 

using two-point polynomial interpolation . 
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2. Approximation Theory 

         The primary aim of a general approximation is to represent non-arithmetic 

quantities by arithmetic quantities so that the accuracy can be ascertained to a 

desired degree. Secondly, we are also concerned with the amount of computation 

required to achieve this accuracy. A complicated function f(x) usually is approximated 

by an easier function of the form φ(x; a0, . . . , an) where a0, . . . , an are parameters to 

be determined so as to characterize the best approximation of f. 

            In this paper, we shall consider only the interpolatory approximation.          

From Weierstrass Approximation Theorem , it follows that one can always find a 

polynomial that is arbitrarily close to a given function on some finite interval. This 

means that the approximation error is bounded and can be reduced by the choice of 

the adequate polynomial .Unfortunately Theorem Weierstrass Approximation 

Theorem is not a constructive one, i.e. it does not present a way how to obtain such 

a polynomial. i.e. the interpolation problem can also be formulated in another way, 

viz. as the answer to the following question: How to find a .good. representative of a 

function that is not known explicitly, but only at some points of the domain of interest . 

In this paper we use Osculatory Interpolation since has high order with the same 

given points in this domain. 

 

2.1. Osculatory Interpolation [2] 

         Given {xi}, i = 1, . . .k  and values fi
(0), . . . , fi

(ri) ,where ri are nonnegative 

integers and fi = f(xi ).We want to construct a polynomial P(x) such that        P(j)(xi) = 

fi
(j)             ……………                 (1) 

for i = 1, . . . , k and j = 0, . . . , ri. Such a polynomial is said to be an Osculatory 

interpolating polynomial of a function f . 

 

Remark 

            The degree of P(x) is at most      1)1(
1




k

i

ir  

 

          In this paper  we use two-point osculatory  interpolation [2]. Essentially this is 

a generalization of interpolation using Taylor polynomials and for that reason 

osculatory interpolation is sometimes referred to as two-point Taylor interpolation. 

The idea is to approximate a function y(x) by a polynomial P(x) in which values of 

y(x) and any number of its derivatives at given points are fitted by the corresponding 

function values and derivatives of P(x).  
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           In this paper we are particularly concerned with fitting function values and 

derivatives at the two end points of a finite interval, say [0,1],wherein a useful and 

succinct way of writing a osculatory interpolant P2n+1(x) of degree 2n + 1 was given 

for example by Phillips [3] as: 

 

P2n+1(x)=


n

j 0

{y
)( j
(0) q

j
(x)+(-1)

j
 y

)( j
(1) q

j
(1-x)}………….(2) 
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j
/j!)(1-x)
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j
(x)/j!  ...………..(3) 

so that (2) with (3) satisfies 

y
)(r
(0)= 

)(

12

r

nP  (0)  ,   y
)(r
(1)= 

)(

12

r

nP  (1)  ,     r=0,1,2,…,n. 

implying that P2n+1(x) agrees with the appropriately truncated Taylor series for y(x) 

about x = 0 and x = 1.The error on [0, 1] is given by 

R2n+1=y(x)-P2n+1(x)= 
)!22(

)()1()1( )22(1)1(1



 

n

yxx nnnn 
 where  0   1  and  y

)22( n
 is 

assumed to be continuous. 

          The osculatory interpolant for P2n+1(x) may converge to y(x) in [0,1] irrespective 

of whether the intervals of convergence of the constituent series intersect or are 

disjoint .The important consideration here is whether R2n+1 → 0 as n→∞ for all x in 

[0,1]. In the application to the boundary value problems in this thesis such 

convergence with n is always confirmed numerically .We observe that (2) fits an 

equal number of derivatives at each end point but it is possible and indeed 

sometimes desirable to use polynomials which fit different numbers of derivatives at 

the end points of an interval. As an example of a two-point osculatory interpolant we 

may take n = 2 so that (2) with (3) becomes the quintic 

P5(x)=(1-x)
3
(1+3x+6x

2
)y(0)+x

3
(10-15x+6x

2
)y(1)+x(1-x)

3
(1+3x)y'(0)-  

          x
3
(1-x) (4-3x) y'(1)+1/2x

2
(1-x)

3
y''(0)+1/2x

3
(1-x)

2
y''(1) 

    Satisfying   :    

P5(0)=y(0) , P'5(0)= y'(0)  ,  P''5(0)= y''(0) . 

 

P5(1)=y(1) , P'5(1)= y'(1)  ,  P''5(1)= y''(1) . 

          Finally we observe that (2) can be written directly in terms of the Taylor 

coefficients ai and bi about x = 0 and x = 1 respectively, as 

  P2n+1(x)=


n

j 0

{ a j Q j (x) + (-1)
j
b j Q j (1-x) }       ………..….(4) . 
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Solution Of Two Point Second-Order Boundary   Value Problems  

        We consider the boundary value problem 

                                      y''+ f (x ,y,y') = 0             ………………. (5)  

                          g i ( y(0) , y(1) ,y'(0), y'(1) ) = 0 ,    i=1 , 2  ……. (6)  

where f , g1, g2 are in general nonlinear functions of their arguments and g1 and g2 

are given in three kinds [4]: 

 

1- y(0)=a0 ,y(1)=b0 ……(6a), and we call this kind Dirichlet condition(value 

specified). 

2- y'(0) = a1 ,y'(1) = b1 ….(6b)  , and we call this kind Neumann 

condition(Derivative specified). 

3- c0y'(0)+c1y(0)=a , d0y'(1)+d1y(1)= b  ….(6c), where c0,c1,d0,d1 are all positive 

constants not all are zero but c1,d0 are equal to zero or c0,d1are equal to zero 

and we call this kind Mixed condition (Gradient & value). 

 

        The simple idea behind the use of two-point polynomials is to replace y(x) in 

problem (5)–(6), or an alternative formulation of it, by a P2n+1 which enables any 

unknown boundary values or derivatives of y(x) to be computed .The first step 

therefore is to construct the P2n+1 . To do this we need the Taylor coefficients of y (x) 

at x = 0:  

                y = a 0 + a1 x + 


2i

a i x
i
              ….….(7a) 

into (5)and equate coefficients of powers of x. The resulting system of equations can 

be solved to obtain ai (a0, a1)for all i ≥ 2.  Also we need the Taylor coefficients of y (x) 

at x = 1. Using MATLAB throughout we simply insert the series forms: 

 

                 y = b 0 + b1 (x-1) + 


2i

b i (x-1)
i
   ……..(7b) 

into (5) and equate coefficients of powers of (x−1). The resulting system of equations 

can be solved to obtain bi (b0, b1 ) for all i ≥ 2.The notation implies that the 

coefficients depend only on the indicated unknowns a0, a1, b0, b1. The algebraic 

manipulations needed for this process .We are now in a position to construct a 

P2n+1(x) from (7) of the form (2) and use it as a replacement in the problem (5)–(6). 

Since we have only the four unknowns to compute for any n we only need to 

generate two equations from this procedure as two equations are already supplied by 

the boundary conditions (6).An obvious way to do this would be to satisfy the 
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equation (5) itself at two selected points x = c1, x = c2 in [0,1] so that the two required 

equations become 

 

       P"2n+1(c i ) + f { P2n+1(c i ) , P׳
2n+1(c i ), c i }= 0 ,  i=1,2.   …………..(8) 

 

          An alternative approach is to recast the problem in an integral form before 

doing the replacement. Extensive computations have shown that this generally 

provides a more accurate polynomial representation for a given n. We therefore use 

this alternative formulation throughout this thesis although we should keep in mind 

that the procedure based on (8) is a viable option and shares many common features 

with the approach outlined below. Of the many ways we could provide an integral 

formulation we adopt the following. We first integrate (5) to obtain 

     y'(x) -a1 + 
x

0

f( y(s), y'(s) , s) ds = 0               ………………….(9) 

and again to find  

       y(x) -a 0 - x a 1 + 
x

0

(x-s) f (y(s),y'(s), s) ds =0     ……………….(10) 

where a0 = y(0) and a1 = y' (0). Putting x = 1 in (2.5) and (2.6) then gives 

    b1 - a1 + 
1

0

f ( y(s), y'(s) , s ) ds = 0         ……………………….(11) 

and 

    b 0 - a 0 -a1 + 
1

0

(1-s) f ( y(s), y'(s) , s ) ds = 0   ………………….(12) 

where b0 = y(1) and b1 = y'(1). 

          The precise way we make the replacement of y(x) with a P2n+1(x) in (11) and 

(12) depends on the nature of f(y,y',x) and will be explained in the examples which 

follow. In any event the important point to note is that once this replacement has 

been made, the equations (6), (11) and (12) constitute the four equations we require 

to determine the set {a0, b0, a1, b1}. As we shall see the fact that the number of 

unknowns is independent of the number of derivatives fitted represents perhaps the 

most important feature of the method. 

We make the following points at this stage : 

 (i) In the majority of cases where the boundary conditions are simple enough the 

system of algebraic equations may be reduced a priori to a system in two unknowns, 

since the boundary condition can be substituted directly into the integral formulations 
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(11) and (12), which MATLAB can be utilized to solve. That is, if we have the 

BC(6a),then we have only  the unknown pair {a1, b1}and is known the required 

polynomial can be constructed. For the benefit of the reader the entire procedure for 

Examples in section 4 .And if, we have the BC(6b), then we have only  the unknown 

pair {a0, b0}and is known the required polynomial can be constructed. Also if, we 

have the BC(6c), then we have only  the unknown pair {a0, b1}or {a1, b0} and is known 

the required polynomial can be constructed. 

 (ii) The method offers a certain amount of flexibility. For example we could choose to 

satisfy (9) and (10) at two internal points or we could use alternative integral 

formulations. The fact remains that whatever strategy we adopt produces a quickly 

convergent sequence of values of the set {a0, a1, b0, b1} as n increases. 

(iii) Throughout we assess the accuracy of the procedure by examining the 

convergence with n. Using a symbolic computational facility such as MATLAB, 

computing the required convergent is not an issue. Where possible we can also run 

checks on our solutions using shooting with MATLAB codes. 

(iv) We compare our method with the other method. We now consider a number of 

examples designed to illustrate the convergence, accuracy, implementation and 

utility of the method. In what follows the use of bold digits in the tables is intended to 

give a rough visual indication of the convergence. 

Remark 

 

1- All computations in the following examples were performed in the MATLAB 

environment, Version 7, running on a Microsoft Windows 2003 Professional 

operating system . 

2- In the following examples when analytical solutions are known so that we can 

measure the error of a solution. When analytical solutions are not known, we 

compare our results to values computed by other methods . 

 

 

4. EXAMPLES 

 

          In this section we introduce some examples illustrates suggested method:  

          Linear boundary value problems (BVPs) can be used to model several physical 

phenomena. For example, a common problem in civil engineering concerns the 

deflection of a beam of rectangular cross section subject to uniform loading, while the 

ends of the beam are supported so that they undergo no deflection. This problem is 
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linear second-order TPBVP[5] .Now, we give many other examples, Variations on a 

theme 

 

Example  

         Consider the problem : 

                y''+ sin(y)= e
x
,   With BC  [6] :   y(0) =1   and   y(1) =2. 

          The difficulty with this example is that is not in general possible to perform the 

integration involving sin(P2n+1 (x)) when using (11) and (12). We could of course. 

Consider using alternative strategies along the line of (8). However we choose to 

continue with the integral form and replace sin(P2n+1(x))  itself by a two-point polynomial 

q2n+1(x) in (11) and (12) . Thus using (7) we can write 

                                   sin( y(x))=


M

j 0

A j (a 0 ,a 1 )x
j
 

                                   sin( y(x))=


M

j 0

B j (b 0 ,b 1 )(x-1)
j
 

for which we can construct the q2n+1(x).Hence (11) and (12) become :  

                                  b1  - a 1 - e+1+ 
1

0
q n (s) ds  =  0 

                                  3- a 1  - e + 
1

0
(1-s) q n (s) ds = 0 

          The results are presented in Table 1 where the numerical cheek is the provided by 

MATLAB boundary value code.  

Table 1 : The result of the methods for n = 2 , 3 , 4 of example   

 

 P5 P7 P9 

a1 0.9546437343 0.9546437343 0.9546437343 

b1 1.5735564725 1.5735564725 1.5735564725 

X P5 P7 P9 

0 1.0000000000 1.0000000000 1.0000000000 

0.1 1.0951021206 1.0959577424 1.0962205749 

0.2 1.1863425778 1.1900752412 1.1921006431 

0.3 1.2719410499 1.2779504855 1.2821805540 
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0.4 1.3532887708 1.3586317374 1.3628107603 

0.5 1.4340372818 1.4359763691 1.4373206211 

0.6 1.5191871847 1.5172753788 1.5153798274 

0.7 1.6141768941 1.6104660681 1.6075745287 

0.8 1.7239713898 1.7212553665 1.7196810207 

0.9 1.8521509691 1.8514762874 1.8512586115 

1 2.0000000000 2.0000000000 2.0000000000 

  

          Then from table 1 and the relation (2)and (3) in the previous chapter  we have :  

                           

P5=-.759373 X5+2.08085 X4-1.35539 X3+.792645e-1 X2+.954644 X+1. 

  

P7=2.62398 X7-9.30802 X6+11.4208 X5-4.85139 X4+.807006e-1 X3+.792645e- 1 

X2+.954644 X+1. 

 

P9=-9.15463 X9+41.5400 X8-71.9896 X7+56.8392 X6-17.4196 X5+.700507e-1 

X4+.807006e-1 X3+.792645e-1 X2+.954644 X+1. 

 

Table 2: A Comparison between P9 and other methods of example  

xi 

( p9, q9 ) by using 

Osculatory 

interpolation 

Chebyshev 

polynomial 
Numerical solution 

0.2 1.1921006431 1.153932 1.153931 

0.5 1.4373206211 1.410936 1.410870 

0.8 1.7196810207 1.728972 1.728983 

 

 

          Summarize thus far we have shown how we can use two-point osculatory  

interpolation to construct polynomial solutions to two-point boundary value problem .In 

general the method appears to be superior to other method in terms of accuracy and the 

ability to consistently identify multiple solutions of nonlinear problems where even 

numerical methods are problematical . Where feasible we have checked our results with 

those obtained from MATLAB boundary value or initial value code . 
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5. Error Estimation And Control 

         In this section we begin with some general observation about control of a 

residual and control of the true error and we prove that if the scaled  residual is less 

than a given tolerance , then the true error is also less than the tolerance. And if the 

BVP is well- conditioned , a small residual implies a small true error , but this need 

not be true if the BVP is ill-conditioned [7]. A practical distinction is that the method 

we consider approximate r(x) (residual) to a lower order than e(x) (true 

error).Furthermore ,the solution y(x) is the natural weight when controlling a norm of 

e(x) and y'(x) is the natural weight when controlling a norm of r(x) .We describe a 

new BVP solver that controls a residual and the true error .We consider method 

suggested in this thesis that approximate    the    solution    of    y(x)      of     (5)  -  (6)    

on    a    mesh 0 = x0< x1  < ……..< xN+1 = 1 by a function P(x) that is smooth on 

subinterval [xi , xi+1].The mesh spacing hi = xi+1 - xi and convergence is the considered 

as = maxi hi  tented to zero. We assume that the true error e(x) = P(x) - y(x) and a 

natural measure of error is the residual in the differential equations [8]  :   

                    r(x) = P''(x) - f(x, P(x), P'(x))……….(13)                         

This can be interpolated as saying that P(x) is the exact solution of the problem (5)-

(6) with in data f(x, y, y') and g(y(a),y(b)) perturbed by residual , e,g,          

                                 P''(x) = (x ,P(x) , P'(x)) + r(x)   

 5.1. Residual  

          In this subsection we introduce some details about how controls the size of the 

residual . The residual is scaled so that it has same order of convergence as the true 

error [9]. Residual control  has important virtues : residual are well-defined no matter 

how bad the approximate solution , and residuals can be evaluated any where simple 

by evaluating :                       f(x , P(x), P'(x)) or g(P(0) , P(1) ). 

   

            Now the approximate solution P(x) is smooth on subintervals [xi , xi+1] , so the 

size of the residual on the subinterval is measured by using a weighted norm │r(x) │ 

at each x and defining       || r(x) ||i    =   
1 ii xxx

Max │r(x) │.   For a given tolerance  є  , the 

aims to produce solution for which      maxi   || r(x) ||    ≤ є.  

 

           In this constructs a mesh that approximately equidistributes  the residual. It 

might seem that controlling the scaled residual , hi || r(x) ||i , is obviously less 

demanding than controlling the residual , || r(x) ||i , because of the small factor  hi , but 

this neglects the role of the norm. Now , subtracting (5) from (13) lead to :   
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   r(x) = P''(x) - y''(x) - [f(x ,P(x) , P'(x)) – f(x,y(x),y'(x))]   ……(14) 

With the usual assumption that f satisfies a Lipschitz  condition,  

 

            │  f(x , P(x), P'(x)) - f(x ,y(x), y'(x)) │ ≤ L │P(x) - y(x) │ .   

         We assume that e(x) = P(x) – y(x)  is O( hn+1) and  P'(x) – y'(x) is O( hn) , so     

P''(x) – y''(x)     is   O(hn-1)   ,   hence the last term in (14)  is O(hn+1) , so to leading 

order the residual is equal to the error in the 2nd derivative .This implies that the 

scaled residual is O(hn+1) , the same as the true error. Now , if the residuals are 

uniformly small, P(x) is a good solution in the sense that it is the exact solution of a 

problem close to the  one supplied to the solver. Further , for reasonable well-

condition problem , small residuals imply that P(x) is close to y(x) , even when h is 

not small enough [10] that the (n+1) order convergence is evident .  

                                                          

         We prove now ,that there is a  more useful connection between scaled residua 

and true error. To investigate the relationship between scaled residual and true error 

,we begin by integrating  (14)  over a subinterval of [xi , x] , where  xi < x  xi+1                           

     
x

xi
r(x) dx =e'(x) – e'(xi) - 

x

xi
 [f(x ,P(x), P'(x)) –f( x, y(x),y'(x)]dx    

               where :      e' = P' – y' 

Again integrate over [ xi , β ], where  β  ( xi , xi+1], we get : 

 


B

xi
(x-s)r(s)ds=e(β)–e(xi)–e'(xi)(β–xi)- 

B

xi
(x-s)[f(s,P(s),P'(s),)–f(s,y(s),y'(s)] ds…(15)   

 

          Suppose now that the method of order n is super convergent at mesh point , 

meaning that if the method is of order n , a norm of the error at mesh points is at 

least O(hn+1) [9] , so that e(xi) is O( hn+1) and  e'(xi) = P'(xi) - y'(xi)    is O( hn) and  

│e(β) │= || e(x) ||i.  As argued earlier , the integrand on the right hand side of  (15) is 

O(hn+1) and the interval is of length no bigger than hi , so 

                            
B

xi
|| (x-s) r(s) ds || = || e(x) ||i. + O( hn+1)   

           Then we have the inequality     
B

xi
|| (x-s) r(s) ds ||  ≤  hi   || r(s) ||i.  

                        

         Then the size of the scaled residual is an upper bound on the size of the true 

error. Now , if we require that  maxi hi ||r(s) ||i.  ≤ є , for a tolerance  є, then we have    

maxi  ||e(x) ||i. ≤ є , this is a strong argument for controlling the size of the residual .                                

.                                                                                     
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5.2 . Error Estimates  

            The error on [0,1] is given by : 

                      en = Pn(x) – y(x)=
)!12(

)()1()1( )22(1)1(1



 

n

yxx nnnn 
                 

where  0 ‹ ζ‹ 1  and  y
)22( n
 is assumed to be continuous .The Osculator interpolant 

for Pn(x) may converge to y(x) in [0 , 1]  irrespective of whether the intervals of 

convergence of the constituent series intersect  or are disjoint. The important 

consideration her is whether en → 0 as n→∞ for all x in [0 , 1].In the application to the 

B.V.Ps in this thesis such convergence with n is always confirmed numerically . 
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حول حــــل حالة خاصة هن هسائـل القين الحذودية الخطية هن الرتبة 
   الثانية رات نقطتين باستخذام الطــريقة شـــبه التحـلـيلية

  خالذ هنذيل هحوذ الآبراهيويلوـى ناجـي هحوـذ توفـيق    و  .د.م.       أ

  جامعة بغذاد - التربية ابن الهيثم  كلية  -الرياضيات            قسم 
 

 

 

المـستخلص المـستخلص 

 هسائل القين الحذوديت  هسائل القين الحذوديت لحل حالت خاصت هي لحل حالت خاصت هي  طريقت خذيذة يخضوي البحثيخضوي البحث

حيث ًقخرذ الحل كوخؼذدة حذود حيث ًقخرذ الحل كوخؼذدة حذود ( ,( ,TTPPBBVVPP)الخطيت راث ًقطخيي راث الرحبت الثاًيت )الخطيت راث ًقطخيي راث الرحبت الثاًيت 

للوؼادلاث  (TTPPBBVVPP) هسائل القين الحذوديت الخطيت بٌقطخيي راث الرحبت الثاًيت ) هسائل القين الحذوديت الخطيت بٌقطخيي راث الرحبت الثاًيت لحللحل للوؼادلاث  (

    .اديت.اديتالخفاضليت الاػخيالخفاضليت الاػخي

  ttwwoo--ppooiinntt )اسخخذهٌا الإسخراحيديت شبه الخحليليت باسخخذام ًىع هي الاًذراج )اسخخذهٌا الإسخراحيديت شبه الخحليليت باسخخذام ًىع هي الاًذراج

oossccuullaattoorryy  iinntteerrppoollaattiioonn )  لؼذد هي هشخقاث ًقطخي ًهايت الفخرة     [[11  ,,00]]لؼذد هي هشخقاث ًقطخي ًهايت الفخرة  ( 

وقىرًج الٌخائح هغ الحل باسخخذام الطرق الخقليذيت الأخري وأثبخٌا هي خلال الأهثلت وقىرًج الٌخائح هغ الحل باسخخذام الطرق الخقليذيت الأخري وأثبخٌا هي خلال الأهثلت 

 أيضا  قذهٌا بؼض الولاحظاث الؼاهت  أيضا  قذهٌا بؼض الولاحظاث الؼاهت .باى الطريقت الوقخرحت هي الأسرع والأدق .باى الطريقت الوقخرحت هي الأسرع والأدق 

حىل السيطرة ػلً الباقي والسيطرة ػلً الخطاء الحقيقي وأثبخٌا وخىد ػلاقت وثيقت حىل السيطرة ػلً الباقي والسيطرة ػلً الخطاء الحقيقي وأثبخٌا وخىد ػلاقت وثيقت 

. خذا بيي الباقي والخطاء الحقيقي . خذا بيي الباقي والخطاء الحقيقي 
 

 

 

 

 
 

 


