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Abstract

In this paper, the concepts of submodule with finite submodule-length, and
module with finite submodule-lengths are introduced. These concepts are
generalizations of the concepts of ideal with finite ideal-length and ring with
finite ideal-length.

A submodule N of an R-module M is said to have finite submodule length
if comp(l) is finite and (M / | M)p , is an Artinian and Noetherian (R / 1)p-
module, V P" =P /1,1 =(N:M) and P € comp(l). An R-module M has finite
submodule-lengths if each submodule of M has finite submodule-length. The
basic results about these concepts, and some relationships between modules with
finite submodule-lengths and other classes of modules are given.
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Introduction

Zariski and Samuel in [11] introduced the concept of ideal-length for a
decomposable ideal | , where a proper ideal |1 of a commutative ring R is said to
be decomposable if it has a primary decomposition; that is, | can be written as

n
| = ()Q; with Q;is Pi-primary, Vi=1,2, ..., n.
i=1
Zariski and Samuel put the following condition (*), where:

(*) : M ={Py, P, ..., P } is the set of all minimal prime ideals of I.

Zariski and Samuel in [11, P.233] gave the following definition: let R be a
ring with identity and let | be a decomposable ideal, which satisfies (*). The
length of the R-module Rsqy/IRs is called the length of | and is denoted by A(l),

n
where S(I) =R — [ J{P; : P, e M}.

i=1

J. Beachy and W. Weakley in [2], used the terminology ideal-length

suggested by Zariski and Samuel in [11], they extended the notion ideal-length
to an arbitrary ideal. In fact, they introduced the notion of finite ideal-length,
where, an ideal | of a ring R is said to have finite ideal-length if the ring R / |
Rsqy is an Artinian ring, where S(I) = R — u {P : P € comp(l)} and comp(l)
represents the set of all minimal prime ideals of I. In this case the length of a
composition series of Rsg)/ | Rsgy which is denoted by A(l) is called the ideal-
length of I.

Moreover, Beachy and Weakley introduced in [2] another concept, they
said a ring R have finite ideal-lengths if each ideal of R has finite ideal-length.

Our aim in this paper is to extend these notions to submodules and
modules.

In .1 of this paper, the concepts of submodules with finite submodule-
length and, modules with finite submodule-lengths are introduced. We call a
submodule N of an R-module M, a submodule with finite submodule-length if



comp(N : M) is finite and (M/(N:M)M)p is a Noetherian and Artinian
R
(R/(N : M))p-module, V P’ =P/(N : M),where P € comp(N:M). We also call the
R R

module M, a module of finite submodule-lengths if each submodule of M has
finite submodule-length.

We study the basic properties of such submodules and modules; we give
characterization for submodules with finite submodule-lengths. We also give
descriptions for such submodules in the class of finitely generated modules or
multiplication modules.

In §.2, we look for any relation between modules with finite submodule-
lengths and Noetherian, Artinian and Laskerian modules.

Finally, we remark that R in this paper stands for a commutative ring with
1, and all modules are unitary

§.0 Preliminaries

In this section, we give some basic definitions and results which are needed
later.

Definition 0.1 : [8]

For any ideal | of a ring R,the component of | (briefly comp (1)) is the set
of all prime ideals of R which are minimal over I. We say that R has finite
component (briefly FC) if comp (1) is finite for every ideal | of R.

Definition 0.2 : [2]

Let | be an ideal of R, and let S(I) denotes the complement of
U{P : P € comp(l)} in R. Then 1 is said to have afinite ideal-length if the ring
Rsay/ 1 Rsqy is an Artinian ring.

In this case, the length of a composition series for Ry / | Rgy is denoted by
A(l) and is called the ideal-length of I. If each ideal of R has finite ideal-length,
then the ring R is said to have finite ideal-length.

Proposition 0.3 : [2, prop.1.2]




Let | be an ideal of R. Then I has finite ideal-length iff comp(l) is finite and
the ring Rp/ I Rp is Artinian for each P € comp(l).

Theorem 0.4 : [2, prop. 1.3]
Let R be a ring. Then the following statements are equivalent :

1. R has finite ideal-lengths.

2. R has FC, and for each ideal | of R and each P e comp(l), the ring
Re/ 1 Rp (= (R/)p) is Artinian.

3. R has FC, and for each prime ideal P of R, the set of P-primary ideals
satisfies a.c.c.

§.1 Modules with Finite Submodule-
Lengths; Basic Properties

In this section, the basic properties about modules with finite submodule-
lengths are given, some results are generalizations of known results about rings
with finite ideal-lengths which are given in [2].

Definition 1.1 :

Let N be a submodule of an R-module M. Then N is said to have finite
submodule-length if comp(l) is a finite set and (M / | M) » is an Artinian and
Noetherian (R/l) p-module, ¥ P"=P /I, where | = (N : M), P € comp(l).

R

If each submodule of M has finite submodule-length, then M is said to have
finite submodule-lengths.

Definition 1.2 :

Let M be an R-module. M is said to have finite component (briefly M has
FC), if for each submodule N of M, (NF:Q M), has FC.

Remarks and Examples 1.3 :




1. For any ring R, R has finite ideal-lengths iff R as R-module has finite
submodule-lengths.

2. Let M be the Z-module Zpoo, where p is any prime number. M has FC
since for each submodule N of M, (NéM) = (0) and hence
comp(NéM) = {(0)}. Moreover, for any P’ = P / (NéM) = P/(0),
M/ (NéM)M)pr = Mp = (pr )e, and (Z/ (NéM))p’ = Zp.. Hence (pr )er IS
an Artinian Zp-module. Then by [10, lemma 1.5], (pr )pr Satisfies a.c.c. on

semiprime submodule and hence satisfies a.c.c. on prime submodules. On the
other hand Z, = Q (the field of rational numbers). Then by [10, Lemma
1.1], (pr)p, Is a Noetherian Zp-module. Thus the Z-module pr has finite

submodule-lengths.

3. Let R be an integral domain. Let K be the total quotient field of R. Then
K as R-module has finite submodule-lengths. In particular, the Z-module Q
of rational numbers has finite submodule-lengths.

Before giving a characterization of modules with finite submodule-lengths,
we give the following lemma:

Lemmal4:
Let N be a submodule of an R-module M. Then (NF:e M) = ((NF:e M) MF:Q M).

Proof. It is straightforward, so is omitted

Theorem 1.5:

Let M be an R-module. Then M has finite submodule-lengths iff M has FC
and for each submodule N of M, (M / N)p is an Artinian and Noetherian
(R/(NFIe M))p- module, V P’ =P/ (NF:e M), P e comp(NF:e M).




Proof. Assume M has finite submodule-lengths. Then the result follows by
definition 1.2 and [9, lemma 9.12, p.173].

Conversely, let N be any submodule of M. Then by applying the hypothesis
on N’ = (N:M)M and using lemma 1.4, the required result is obtained.

In the class of finitely generated modules, the following theorem is a
characterization of submodules with finite submodule-lengths, but first we need
the following lemma:

Lemma l1.6:
Let N be a submodule of an R-module M, and let P e comp(NF:zM). Then

(M / N)p: is a faithful (R / (N:M))p-module, where P’ =P / (N:M).

Proof. Itis easy, so is omitted.

Theorem 1.7 :

Let M be a finitely generated R-module, and let N be a submodule of M.
Then N has finite submodule-length iff (N : M) has finite ideal-length.
R

Proof If N has a finite submodule-length, then (NF:e M) has FC and (M / N)p:
iIs an Artinian and Noetherian (R / (NF:QM))p'-moduIe, VP =P/ (NF:QM),
Pe comp(NFzzM). Since M is a finitely generated R-module, so (M / N)p is a
finitely generated R = (R / (NF:QM))p'—moduIe, vV PP =P | (N:M),

P e comp(N:M). Hence R / annz(M / N) is an Artinian ring by [7, Th. 2,
p.180]. However by lemma 1.6, anng (M/N)p = (0). Thus R is an Artinian
ring, so the result is obtained.

The proof of the converse is similar.

The following corollaries follow directly by Th. 1.7:



Corollary 1.8 :

Let M be a finitely generated R-module. Then M has finite submodule-
lengths iff for each submodule N of M, (NF:Q M) has a finite ideal-length.

Corollary 1.9 :

Let M be a finitely generated R-module. If R has finite ideal-lengths, then
M has finite submodule-lengths.

Remark 1.10 :

The condition M is a finitely generated R-module cannot be dropped from
theorem 1.7 and corollaries 1.8 and 1.9, as the following example shows:

Example :
Let M be the Z-module Z ® Z @ --- . For each submodule N of M, (N : M)
z

has a finite ideal length, since Z has finite ideal-lengths by [2]. However if
N=4Z@®4Z @ -, then it is easy to see that N has no finite submodule-length.

Recall that an R-module M is called a multiplication R-module if for every
submodule N of M, there exists an ideal | of R such that N =1 M, [1].

Theorem 1.11 :

Let M be a multiplication R-module and let N be a submodule of M. Then
N has finite submodule-length iff (N : M) has finite ideal-length.
R

Proof. If N has finite submodule-length, and let | = (N : M), then | has FC
R

and (M / N)p is an Artinian and Noetherian (R / I)p-module, V P’ = P / I,
P e comp(l). Since M is a multiplication R-module, (M / N)p: is a multiplication
(R / )p-module, Vv P =P /I, P € comp(l) and by lemma 1.6, (M / N)p is a
faithful (R / 1)p-module, V P" =P / I, P € comp(l).Hence (R / I)p is an Artinian
ring, Vv P"=P /1, P e comp(l). Thus I has finite ideal-length.

The proof of the converse is similar.



Corollary 1.12 :

Let M be a multiplication R-module. Then M has finite submodule-lengths
Iff for each submodule N of M, (N:M) has finite ideal-length.

Remark 1.13:

The condition M being a multiplication R-module cannot be dropped from
theorem 1.11 and corollary 1.12 as is seen by the example following remark
1.10.

For our next result, we prove the following lemma:

Lemmal.14 :

Let M be a multiplication R-module. If M has FC or R has FC, then M is
finitely generated.

Proof. If M has FC or R has FC, then comp((0) F:QM) = comp(anngM) is a

finite set. Hence by [3, remark. following corollary. 2.11], M has a finite number
of minimal submodules. Then by [3, Th. 3.7], M is finitely generated.

Proposition 1.15 :

Let M be a faithful multiplication R-module. Then M has finite submodule-
lengths iff R has finite ideal-lengths.

Proof. It follows by lemma 1.14, corollary1.12, and [3, theorem 3.1].

To give the next result, we need the following lemmas:

Lemma 1.16:

Let P be a prime ideal of R, and let J, K be two P-primary ideals of R
containing an ideal | of R such that (J/ 1)p < (K / I)p. ThenJ c K.

Proof. Itis straightforward, so it is omitted.



Lemmal.17 :

Let R be a ring. Then R has finite ideal-lengths iff R has FC and every
primary ideal of R has finite ideal-length.

Proof. Theif partis clear.
The proof of the converse follows by theorem 1.4 and lemma 1.16.

Recall that a proper submodule N of an R-module M is called primary if
whenever r e R, x e M, r x € N, implies either x eN or r" e (N:M), for some
neZ[4,P.39]

Proposition 1.18 :

Let M be a faithful multiplication R-module. Then M has FC and every
primary submodule of M has finite submodule-lengths iff R has finite ideal-
lengths.

Proof. Assume M has FC and every primary submodule of M has finite
submodule-length. By lemma 1.14, M is finitely generated. Thus M is a finitely
generated faithful multiplication R- module and so for any primary ideal | of R,
N =1 M is a primary submodule of M and | = (N:M). Since N has finite
submodule-length, then by Th. 1.11, | has finite ideal-length. Moreover, for any
ideal J of R, W =J M is a submodule of M which has FC and hence (W:M) =]
has FC. Thus by Lemma 1.17, R has finite ideal-lengths.

The proof of the converse follows by Prop.1.15 and def. 1.1.

Corollary 1.19 :

Let M be a faithful multiplication R-module. Then the following statements
are equivalent :

1. M has finite submodule-lengths.

2. M has FC and every primary submodule of M has finite submodule-
length.

3. R has finite ideal-lengths.



Proof. (1) = (2): Itis obvious.
(2) = (3): It follows by proposition 1.18.
(3) = (1): It follows by proposition 1.15.

Proposition 1.20:
Let M be an R-module which has finite submodule-lengths. Then any
factor module of M has the same property

Proof. It follows easily, so it is omitted.

The following result explains the behavior of modules with finite
submodule — lengths under localization.

Theorem 1.21 :

Let M be a finitely generated R-module and let S be a multiplicatively
closed subset of R. If M has finite submodule-lengths, then Ms as Rs-module
has finite submodule-lengths.

Proof. Let N be a submodule of Mg, hence N = Ws for some submodule W of
M. Since M has finite submodule-lengths, | = (W : M) has FC, and since M is a
R

finitely generated, Is = (Ws : Ms) by [7, prop. 8, p.152]. However it is easy to
Rs
see that, comp(ls) < {Ps : P € comp(l)}, hence comp(ls) is finite. Thus Ms has
FC. Moreover, by using [7, prop. 10, p. 156], [7, prop. 19, p.165], [7, prop. 20,
p. 166] and (M / | M)p is an Artinian and Noetherian (R / I)p-module,
V P'=P/1,P e comp(l), we have (Ms / IsMs)p. is an Artinian and Noetherian
(Rs/ 1s) Py -module, V P's = Ps/ Is, Ps € comp(ls). Thus Ms as Rs-module has

finite submodule-lengths.

§.2 Modules with Finite Submodule-
Lengths and Related Concepts



In this section, we give some relationships between modules with finite
submodule-lengths and other known classes of modules, for examples:
Noetherian modules, Artinian modules and Laskerian modules.

First we have:

Proposition 2.1 :
Let M be a Noetherian R-module. Then M has finite submodule-lengths.

Proof. Since M is a Noetherian R-module, R = R / ann M is a Noetherian
ring and hence R has finite ideal-lengths by [2]. Let N be any submodule of M,
then 1 = (N:M) o ann M, so 1 =1/ ann M has finite ideal-length and hence 1
has FC. However it is easy to check that, for any P e comp(l),
P =P /ann M e comp(1) and conversely , hence | = (N:M) has FC. Thus M has
FC. Now, since R has finite ideal-lengths, (R/1)5,; which is isomorphice to
(R / gy is an Artinian ring, ¥V P € comp(l) see [7, th. 2, p. 16] and th. 0.4. On
the other hand, M is a Noetherian R-module, so (M / | M)p, is a finitely
generated over (R / Dpy, V P € comp(l). Thus (M / | M)p, is an Artinian and
Noetherian (R / 1)p;-module, vV P € comp(l). Thus M has finite submodule-
lengths.
The converse of prop. 2.1 is false by the following example:

k 0
Let R be the ring of all matrices of the form (x k] , Where k € Z,

x € Z . with usual addition and multiplication of matrices. R is not Noetherian,
but R has finite ideal-lengths. (see [2]).

Proposition 2.3 :

Every finitely generated Artinian R-module M has finite submodule-
lengths.

Proof. Since M is a finitely generated R-module, R= R / anngM is an
Artinian ring, and so it is Noetherian. Then by a similar argument of proof of
proposition 2.1, M has finite submodule-lengths.

Recall that if M be an R-module which contains prime submodule, then the
height of P (denoted by ht P), is the greatest non-negative integer n such that



there exists a chain of prime submodules of M, P, P, ... < P, = P, and
ht P = o if no such n exists. The dimension of M is defined by:

D(M) =sup {ht P : P is a prime submodule of M}.[5]

Proposition 2.4 :
Let M be a Noetherian R-module with D(M) = 0. Then M is Artinian.

Proof. Since M is Noetherian, and D(M) = 0, every prime submodule N of M
is maximal and hence M / N is simple module, so N is virtually maximal. Thus
by [6, Th. 3.5], M is Artinian.

The converse of prop. 2.4 is not true as the following example shows.

Example :

The Q-module Q @ Q , where Q is the set of rational numbers is Artinian,
D(M)=1=0.

Recall that an R-module M is called Laskerian if every submodule of M
can be written as a finite intersection of primary submodules.

Aring R is Laskerian iff the R-module R is Laskerian.

The following lemmas are needed for our next results.

Lemma 2.5 :
Every Laskerian module has FC.

Proof. It follows easily.

Lemma 2.6 :

Let M be a faithful multiplication R-module. Then M is a Laskerian
module iff R is a Laskerian ring.




Proof. Assume M is Laskerian. Then by lemma 2.5, M has FC. Thus M is a
multiplication R-module with FC, so that M is finitely generated by lemma 1.14,
and this implies that R is a Laskerian ring.

The proof of the converse is similar.

Proposition 2.7 :

Let M be a faithful multiplication R-module. Then the following statements
are equivalent:

1. M is Noetherian.

2. M is a Laskerian module and every primary submodule of M has finite
submodule-length.

3. M is a Laskerian module with finite submodule-lengths.
4. R is Laskerian with finite ideal-lengths.
5. R is Noetherian.

Proof. (1) = (2). It follows by [7, th. 14, P.192] and prop 2.1.
(2) = (3). It follows by lemma 2.5 and cor. 1.19.
(3) = (4). It follows by cor. 1.19 and lemma 2.6.
(4) = (5). It follows by.[2 th.1.8].
(5) = (). It follows by [3, 8.3, p.765].

Theorem 2.8 :

Let M be a Laskerian R-module. Then M has finite submodule-lengths iff
every primary submodule of M has finite submodule-length.

Proof. If every primary submodule has finite submodule lengths. Let N be a
submodule of M. Since M is Laskerian, N is a decomposable submodule and it

k
has a minimal primary decomposition, so assume that N = (| N, be a minimal

i=1
primary decomposition of N. Then N; is Pj-primary submodule in M. 1 <i <Kk,
such that P; = \/(N; : M), Py, P,, ..., P, are distinct and for all j =1, 2, ..., n,



K k
N; 2 ﬂNi . It follows that | = (N:M) = ﬂ(Ni : M) with (N;:M) is a P;-primary

i=1 i=1
i#]

ideal of R, for i =1, 2, ..., k. Therefore I is decomposable, so there are two
cases.

(i) The above decomposition of | is a minimal primary decomposition. Then
by [9, prop. 4.24, p.72], for any P € spec(R), P € comp(l) iff P is a
minimal member of {P, P,, ..., P,}. Without loss of generality, assume
that Pyecomp(l). Then (N:M)p = (N1:M)p, N (N2:M)p N ... (NiM)p,
Then one can check that (N:M)p = (Ni:M)p . Moreover,
R / (N:M)) PUINM) = Rp, / (N:M)p, by [7, th. 10, p. 156] and hence
Rp /' (N:M)p = Rp/ (Ni:M)p . Also, one can see that
(M7 N)pynmy = Mp ! (N)p s (N)p, = (No)p, , thus (M / N) g ymy =
Mp, 7 (N1)p, = (M/ Ny1) pynpmy- On the other hand, (M 7 N1) g my IS
an Artinian and Noetherian (R / (N1:M)) g n,my - Hence (M/ N)p vy 1S
an Artinian and Notherian (R / (N:M))p m)- Furthermore M is a

Laskerian so by lemma 2.4, M has F.C. Thus M has finite submodule-
lengths.

k
(i1) If the decomposition of | = (N:M), where | = ﬂ(Ni : M) is not a minimal
i=1

K
primary decomposition. Assume that (N;:M) o ﬂ(Ni:M). Hence
i=2
K Kk
I = ()(N; :M). Without loss of generality suppose that I=[(N; :M) is a
i=2 i=2
minimal primary decomposition. Assume P, € comp(l), then by the same
process of case (i), (M / N)pz,(N:M) is an Artinian and Noetherian

(R 7 (N:M)p, j(n:vy-module and M has FC. Thus M has finite submodule-
lengths.

Note:

We remark that the equivalence ((2) < (3)) of prop.2.7 can be obtained
directly by th.2.8.
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