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Abstract 
        In this paper, the concepts of submodule with finite submodule-length, and 

module with finite submodule-lengths are introduced. These  concepts are 

generalizations of the concepts of ideal with finite ideal-length and ring with 

finite ideal-length. 

        A submodule N of an R-module M is said to have finite submodule length 

if comp(I) is finite and (M / I M)P , is an Artinian and Noetherian (R / I)P-

module,  P = P / I , I = (N:M) and P  comp(I). An R-module M has finite 

submodule-lengths if each submodule of M has finite submodule-length. The 

basic results about these concepts, and some relationships between modules with 

finite submodule-lengths and other classes of modules are given. 

 

 

:المستخلص  
هقاسُة -  هقاسٍ جزئٍ هٌحهٍ وهقاس ذٌ اطىال- الوفهىهاى هقاس جزئٍ ذٌ طىل,فٍ هرا البحث قدهٌا  

هثالٍ هٌحهٍ وحلقة ذات اطىال –هراى الوفهىهاى هوا جعوُواى للوفهىهُي هثالٍ ذٌ طىل . جزئُة هٌحهُة 

.هثالُة هٌحهُة –  

  comp(I)هقاسٍ جزئُة هٌحهٍ اذا كاى - َوحلك طىلR علً M هي هقاس Nَقال عي هقاس جزئٍ 

   -P(R / I) هقاس ازجٌٍُ و ًىثُسٌ علً الحلقة P(M / I M)هجوىعة هٌحهُة و

 P = P / I , I = (N:M) and P  comp(I). .  هقاسM  علً الحلقة R هقاسُة  – َوحلك اطىال 

الٌحائج الاساسُة  حىل هر َي . جزئُة اذاكاى كل هقاس جزئٍ هٌه َوحلك طىل هقاسٍ جزئٍ هٌحهٍ 
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 الوقاسُة الجزئُة الوٌحهُة و اصٌاف اخسي هي –الوفهىهُي وبعض العلاقات بُي الوقاسات ذات الأطىال 

. اللوقاسات قد اعطُث 

   

 

 

 

 

 

 

 

Introduction 
 

        Zariski and Samuel in [11] introduced the concept of ideal-length for a 

decomposable ideal I , where a proper ideal I of a commutative ring R is said to 

be decomposable if it has a primary decomposition; that is, I can be written as    

I  
n

1i

iQ


 with Qi is Pi-primary,  i 1, 2, …, n. 

        Zariski and Samuel put the following condition (*), where: 

(*) : M  {P1, P2, …, Pn} is the set of all minimal prime ideals of I. 

        Zariski and Samuel in [11, P.233] gave the following definition: let R be a 

ring with identity and let I be a decomposable ideal, which satisfies (*). The 

length of the R-module RS(I)/IRS(I) is called the length of I and is denoted by (I), 

where S(I)  R   
n

1i

ii MP:P


 . 

        J. Beachy and W. Weakley in [2], used the terminology ideal-length 

suggested by Zariski and Samuel in [11], they extended the notion ideal-length 

to an arbitrary ideal. In fact, they introduced the notion of finite ideal-length, 

where, an ideal I of a ring R is said to have finite ideal-length if the ring RS(I) / I 

RS(I) is an Artinian ring, where S(I)  R   {P : P  comp(I)} and comp(I) 

represents the set of all minimal prime ideals of I. In this case the length of a 

composition series of RS(I) / I RS(I) which is denoted by (I) is called the ideal-

length of I. 

        Moreover, Beachy and Weakley introduced in [2] another concept, they 

said a ring R have finite ideal-lengths if each ideal of R has finite ideal-length. 

        Our aim in this paper is to extend these notions to submodules and 

modules. 

        In §.1 of this paper, the concepts of submodules with finite submodule-

length and, modules with finite submodule-lengths are introduced. We call a 

submodule N of an R-module M, a submodule with finite submodule-length if 
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comp(N
R
: M) is finite and (M/(N:M)M)P is a Noetherian and Artinian 

(R/(N
R
: M))P-module,  P  P/(N

R
: M),where P  comp(N:M). We also call the 

module M, a module of finite submodule-lengths if each submodule of M has 

finite submodule-length. 

        We study the basic properties of such submodules and modules; we give 

characterization for submodules with finite submodule-lengths. We also give 

descriptions for such submodules in the class of finitely generated modules or 

multiplication modules. 

        In §.2, we look for any relation between modules with finite submodule-

lengths and Noetherian, Artinian and Laskerian modules.  

        Finally, we remark that R in this paper stands for a commutative ring with 

1, and all modules are unitary 

 

 

§.0  Preliminaries  
 

        In this section, we give some basic definitions and results which are needed 

later. 

 

Definition 0.1 : [8] 

        For any ideal I of a ring R,the  component of I (briefly comp (I)) is the set 

of all prime ideals of R which are minimal over I. We say that R has finite 

component (briefly FC) if comp (I) is finite for every ideal I of R. 

 

Definition 0.2 : [2]  

        Let I be an ideal of R, and let S(I) denotes the complement of                  

{P : P  comp(I)} in R. Then I is said to have afinite ideal-length if the ring 

RS(I) / I RS(I) is an Artinian ring. 

 

        In this case, the length of a composition series for RS(I) / I RS(I) is denoted by 

(I) and is called the ideal-length of I. If each ideal of R has finite ideal-length, 

then the ring R is said to have finite ideal-length. 

 

Proposition 0.3 : [2, prop.1.2] 
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        Let I be an ideal of R. Then I has finite ideal-length iff comp(I) is finite and 

the ring RP / I RP is Artinian for each P  comp(I). 

 

Theorem 0.4 : [2, prop. 1.3] 

        Let R be a ring. Then the following statements are equivalent : 

1. R has finite ideal-lengths. 

2. R has FC, and for each ideal I of R and each P  comp(I), the ring              

RP / I RP ( (R/I)p) is Artinian. 

3. R has FC, and for each prime ideal P of R, the set of P-primary ideals 

satisfies a.c.c. 

 

 

§.1   Modules with Finite Submodule- 

      Lengths; Basic Properties 
 

        In this section, the basic properties about modules with finite submodule-

lengths are given, some results are generalizations of known results about rings 

with finite ideal-lengths which are given in [2]. 

 

Definition 1.1 : 

        Let N be a submodule of an R-module M. Then N is said to have finite 

submodule-length if comp(I) is a finite set and (M / I M) P is an Artinian and 

Noetherian (R/I) P-module,  P  P / I, where I  (N
R
: M), P  comp(I). 

        If each submodule of M has finite submodule-length, then M is said to have 

finite submodule-lengths. 

 

Definition 1.2 : 

        Let M be an R-module. M is said to have finite component (briefly M has 

FC), if for each submodule N of M, (N
R
: M), has FC. 

 

Remarks and Examples 1.3 : 
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1. For any ring R, R has finite ideal-lengths iff R as R-module has finite 

submodule-lengths. 

 

2. Let M be the Z-module p
Z , where p is any prime number. M has FC 

since for each submodule N of M, (N
Z
: M)  (0) and hence                 

comp(N
Z
: M)  {(0)}. Moreover, for any P  P / (N

Z
: M) = P/(0),                

(M / (N
Z
: M)M)P  MP  ( p

Z )P, and (Z / (N
Z
: M))P  ZP. Hence ( p

Z )P is 

an Artinian ZP-module. Then by [10, lemma 1.5], ( p
Z )P satisfies a.c.c. on 

semiprime submodule and hence satisfies a.c.c. on prime submodules. On the 

other hand Zp  Q the field of rational numbers). Then by [10, Lemma 

1.1], ( p
Z )P is a Noetherian ZP-module. Thus the Z-module p

Z  has finite 

submodule-lengths. 

 

3. Let R be an integral domain. Let K be the total quotient field of R. Then 

K as R-module has finite submodule-lengths. In particular, the Z-module Q 

of rational numbers has finite submodule-lengths. 

 

 

        Before giving a characterization of modules with finite submodule-lengths, 

we give the following lemma: 

 

Lemma 1.4 : 

        Let N be a submodule of an R-module M. Then (N
R
: M)  ((N

R
: M) M

R
: M). 

Proof.   It is straightforward, so is omitted  

 

Theorem 1.5 : 

        Let M be an R-module. Then M has finite submodule-lengths iff M has FC 

and for each submodule N of M, (M / N)P is an Artinian and Noetherian  

(R/(N
R
: M))P- module,  P  P / (N

R
: M), P  comp(N

R
: M). 
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Proof.   Assume M has finite submodule-lengths. Then the result follows by 

definition 1.2 and [9, lemma 9.12, p.173]. 

        Conversely, let N be any submodule of M. Then by applying the hypothesis 

on N  (N:M)M and using lemma 1.4, the required result is obtained. 

 

 

        In the class of finitely generated modules, the following theorem is a 

characterization of submodules with finite submodule-lengths, but first we need 

the following lemma: 

Lemma 1.6 : 

        Let N be a submodule of an R-module M, and let P  comp(N
R
: M). Then 

(M / N)P is a faithful (R / (N:M))P-module, where P  P / (N:M). 

 

Proof.   It is easy, so is omitted. 

 

Theorem 1.7 : 

        Let M be a finitely generated R-module, and let N be a submodule of M. 

Then N has finite submodule-length iff (N
R
: M) has finite ideal-length. 

 

Proof    If N has a finite submodule-length, then (N
R
: M) has FC and (M / N)P 

is an Artinian and Noetherian (R / (N
R
: M))P-module,  P  P / (N

R
: M),            

P  comp(N
R
: M). Since M is a finitely generated R-module, so (M / N)P is a 

finitely generated R   (R / (N
R
: M))P-module,  P  P / (N:M),                          

P  comp(N:M). Hence R  / ann
R

(M / N)P is an Artinian ring by [7, Th. 2, 

p.180]. However by lemma 1.6, ann R  (M/N)P  ( 0 ). Thus R  is an Artinian 

ring, so the result is obtained. 

        The proof of the converse is similar. 

 

        The following corollaries follow directly by Th. 1.7: 
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Corollary 1.8 : 

        Let M be a finitely generated R-module. Then M has finite submodule-

lengths iff for each submodule N of M, (N
R
: M) has a finite ideal-length. 

 

Corollary 1.9 : 

        Let M be a finitely generated R-module. If R has finite ideal-lengths, then 

M has finite submodule-lengths. 

 

Remark 1.10 : 

        The condition M is a finitely generated R-module cannot be dropped from 

theorem 1.7 and corollaries 1.8 and 1.9, as the following example shows: 

 

Example : 

        Let M be the Z-module Z  Z   . For each submodule N of M, (N
Z
: M) 

has a finite ideal length, since Z has finite ideal-lengths by [2]. However if         

N = 4Z  4Z   , then it is easy to see that N has no finite submodule-length. 

 

        Recall that an R-module M is called a multiplication R-module if for every 

submodule N of M, there exists an ideal I of R such that N  I M, [1]. 

 

Theorem 1.11 : 

        Let M be a multiplication R-module and let N be a submodule of M. Then 

N has finite submodule-length iff (N
R
: M) has finite ideal-length. 

 

Proof.   If N has finite submodule-length, and let I  (N
R
: M), then I has FC 

and (M / N)P is an Artinian and Noetherian (R / I)P-module,  P  P / I,           

P  comp(I). Since M is a multiplication R-module, (M / N)P is a multiplication 

(R / I)P-module,  P  P / I, P  comp(I) and by lemma 1.6, (M / N)P is a 

faithful (R / I)P-module,  P  P / I, P  comp(I).Hence (R / I)P is an Artinian 

ring,  P  P / I, P  comp(I). Thus I has finite ideal-length. 

        The proof of the converse is similar. 
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Corollary 1.12 : 

        Let M be a multiplication R-module. Then M has finite submodule-lengths 

iff for each submodule N of M, (N:M) has finite ideal-length. 

 

Remark 1.13 : 

        The condition M being a multiplication R-module cannot be dropped from 

theorem 1.11 and corollary 1.12 as is seen by the example following remark 

1.10. 

        For our next result, we prove the following lemma: 

 

Lemma 1.14 : 

        Let M be a multiplication R-module. If M has FC or R has FC, then M is 

finitely generated. 

 

Proof.   If M has FC or R has FC, then comp((0) 
R
: M)  comp(annRM) is a 

finite set. Hence by [3, remark. following corollary. 2.11], M has a finite number 

of minimal submodules. Then by [3, Th. 3.7], M is finitely generated. 

 

Proposition 1.15 : 

        Let M be a faithful multiplication R-module. Then M has finite submodule-

lengths iff R has finite ideal-lengths. 

Proof.   It follows by lemma 1.14, corollary1.12, and [3, theorem 3.1]. 

 

        To give the next result, we need the following lemmas: 

 

Lemma 1.16 : 

        Let P be a prime ideal of R, and let J, K be two P-primary ideals of R 

containing an ideal I of R such that (J / I)P  (K / I)P. Then J  K. 

 

Proof.   It is straightforward, so it is omitted. 
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Lemma 1.17 : 

        Let R be a ring. Then R has finite ideal-lengths iff R has FC and every 

primary ideal of R has finite ideal-length. 

 

Proof.   The if part is clear. 

        The proof of the converse follows by theorem 1.4 and lemma 1.16. 

 

 

        Recall that a proper submodule N of an R-module M is called primary if 

whenever r  R, x  M, r x  N, implies either x N or r
n
  (N:M), for some    

n  Z+ [4, P. 39]. 

 

Proposition 1.18 : 

        Let M be a faithful multiplication R-module. Then M has FC and every 

primary submodule of M has finite submodule-lengths iff R has finite ideal-

lengths. 

 

Proof.   Assume M has FC and every primary submodule of M has finite 

submodule-length. By lemma 1.14, M is finitely generated. Thus M is a finitely 

generated faithful multiplication R- module and so for any primary ideal I of R, 

N  I M is a primary submodule of M and I  (N:M). Since N has finite 

submodule-length, then by Th. 1.11, I has finite ideal-length. Moreover, for any 

ideal J of R, W  J M is a submodule of M which has FC and hence (W:M) = J 

has FC. Thus by Lemma 1.17, R has finite ideal-lengths. 

         The proof of the converse follows by Prop.1.15 and def. 1.1. 

 

Corollary 1.19 : 

        Let M be a faithful multiplication R-module. Then the following statements 

are equivalent : 

1. M has finite submodule-lengths. 

2. M has FC and every primary submodule of M has finite submodule-

length. 

3. R has finite ideal-lengths. 
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Proof.   (1)  (2) : It is obvious. 

               (2)  (3): It follows by proposition 1.18. 

               (3)  (1): It follows by proposition 1.15. 

 

 

Proposition 1.20 : 

        Let M be an R-module which has finite submodule-lengths. Then any 

factor module of M has the same property 

Proof.   It follows easily, so it is omitted. 

 

 

        The following result explains the behavior of modules with finite 

submodule – lengths under localization. 

 

Theorem 1.21 : 

        Let M be a finitely generated R-module and let S be a multiplicatively 

closed subset of R. If M has finite submodule-lengths, then MS as RS-module 

has finite submodule-lengths. 

 

Proof.   Let N be a submodule of MS, hence N  WS for some submodule W of 

M. Since M has finite submodule-lengths, I  (W
R
: M) has FC, and since M is a 

finitely generated, IS  (WS

SR
: MS) by [7, prop. 8, p.152]. However it is easy to 

see that, comp(IS)  {PS : P  comp(I)}, hence comp(IS) is finite. Thus MS has 

FC. Moreover, by using [7, prop. 10, p. 156], [7, prop. 19, p.165], [7, prop. 20, 

p. 166] and (M / I M)P is an Artinian and Noetherian (R / I)P-module,                

 P  P / I, P  comp(I), we have (MS / IS MS)
SP   is an Artinian and Noetherian 

(RS / IS)
SP  -module,  PS  PS / IS, PS  comp(IS). Thus MS as RS-module has 

finite submodule-lengths. 

 

 

§.2 Modules with Finite Submodule- 

    Lengths and Related Concepts 
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        In this section, we give some relationships between modules with finite 

submodule-lengths and other known classes of modules, for examples: 

Noetherian modules, Artinian modules and Laskerian modules. 

 

        First we have: 

 

Proposition 2.1 : 

        Let M be a Noetherian R-module. Then M has finite submodule-lengths. 

 

Proof.   Since M is a Noetherian R-module, R  = R / ann M is a Noetherian 

ring and hence R  has finite ideal-lengths by [2]. Let N be any submodule of M, 

then I  (N:M)  ann M, so I   I / ann M has finite ideal-length and hence I  

has FC. However it is easy to check that, for any P  comp(I),                           

P   P / ann M  comp( I ) and conversely , hence I  (N:M) has FC. Thus M has 

FC. Now, since R  has finite ideal-lengths, ( R / I )
I/P
 which is isomorphice to 

(R / I)P/I is an Artinian ring,  P  comp(I) see [7, th. 2, p. 16] and th. 0.4. On 

the other hand, M is a Noetherian R-module, so (M / I M)P/I is a finitely 

generated over (R / I)P/I,  P  comp(I). Thus (M / I M)P/I is an Artinian and 

Noetherian (R / I)P/I-module,  P  comp(I). Thus M has finite submodule-

lengths. 

        The converse of prop. 2.1 is false by the following example: 
 

        Let R be the ring of all matrices of the form 








kx

k 0
 , where k  Z,             

x  2
Z  with usual addition and multiplication of matrices. R is not Noetherian, 

but R has finite ideal-lengths. (see [2]). 

 

Proposition 2.3 : 

        Every finitely generated Artinian R-module M has finite submodule-

lengths. 

Proof.   Since M is a finitely generated R-module, R = R / annRM is an 

Artinian ring, and so it is Noetherian. Then by a similar argument of proof of 

proposition 2.1, M has finite submodule-lengths.  

        Recall that if M be an R-module which contains prime submodule, then the 

height of P (denoted by ht P), is the greatest non-negative integer n such that 
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there exists a chain of prime submodules of M, P0  P1 …  Pn  P, and        

ht P   if no such n exists. The dimension of M is defined by: 

D(M)  sup {ht P : P is a prime submodule of M}.[5] 

 

Proposition 2.4 : 

        Let M be a Noetherian R-module with D(M)  0. Then M is Artinian. 

 

Proof.   Since M is Noetherian, and D(M)  0, every prime submodule N of M 

is maximal and hence M / N is simple module, so N is virtually maximal. Thus 

by [6, Th. 3.5], M is Artinian. 

        The converse of prop. 2.4 is not true as the following example shows. 

 

Example : 

        The Q-module Q  Q , where Q is the set of rational numbers is Artinian, 

D(M) = 1  0. 

 

 

        Recall that an R-module M is called Laskerian if every submodule of M 

can be written as a finite intersection of primary submodules. 

 

        Aring R is Laskerian iff the R-module R is Laskerian. 

 

        The following lemmas are needed for our next results. 

 

Lemma 2.5 : 

        Every Laskerian module has FC. 

 

Proof.   It follows easily. 

 

Lemma 2.6 : 

        Let M be a faithful multiplication R-module. Then M is a Laskerian 

module iff R is a Laskerian ring. 
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Proof.   Assume M is Laskerian. Then by lemma 2.5, M has FC. Thus M is a 

multiplication R-module with FC, so that M is finitely generated by lemma 1.14, 

and this implies that R is a Laskerian ring.  

        The proof of the converse is similar. 

 

Proposition 2.7 : 

        Let M be a faithful multiplication R-module. Then the following statements 

are equivalent: 

1. M is Noetherian. 

2. M is a Laskerian module and every primary submodule of M has finite 

submodule-length. 

3. M is a Laskerian module with finite submodule-lengths. 

4. R is Laskerian with finite ideal-lengths. 

5. R is Noetherian. 

 

Proof.   (1)  (2). It follows by [7, th. 14, P.192] and prop 2.1. 

        (2)  (3). It follows by lemma 2.5 and cor. 1.19. 

        (3)  (4). It follows by cor. 1.19 and lemma 2.6. 

        (4)  (5). It follows by.[2 th.1.8]. 

        (5)  (1). It follows by [3, §.3, p.765]. 

 

Theorem 2.8 : 

        Let M be a Laskerian R-module. Then M has finite submodule-lengths iff 

every primary submodule of M has finite submodule-length. 

 

Proof.   If every primary submodule has finite submodule lengths. Let N be a 

submodule of M. Since M is Laskerian, N is a decomposable submodule and it 

has a minimal primary decomposition, so assume that N  
k

i

iN
1

 be a minimal 

primary decomposition of N. Then Ni is Pi-primary submodule in M. 1  i  k, 

such that Pi  )M:N( i , P1, P2, …, Pn are distinct and for all j 1, 2, …, n,     
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Nj   
k

ji
1i

iN




. It follows that I  (N:M)  
k

1i

i )M:N(


 with (Ni:M) is a Pi-primary 

ideal of R, for i  1, 2, …, k. Therefore I is decomposable, so there are two 

cases: 

(i) The above decomposition of I is a minimal primary decomposition. Then 

by [9, prop. 4.24, p.72], for any P  spec(R), P  comp(I) iff P is a 

minimal member of {P1, P2, …, Pn}. Without loss of generality, assume 

that P1comp(I). Then (N:M)
1P  (N1:M)

1P  (N2:M)
1P  …  (Nk:M)

1P . 

Then one can check that (N:M)
1P   (N1:M)

1P . Moreover,                          

R / (N:M)) )M:N/(P1
  R

1P / (N:M)
1P  by [7, th. 10, p. 156] and hence      

R
1P / (N:M)

1P   R
1P / (N1:M)

1P . Also, one can see that                             

(M / N) )M:N/(P1
  M

1P / (N1) 1P , (N)
1P  = (N1) 1P , thus (M / N) )M:N/(P1

  

M
1P / (N1) 1P   (M / N1) )M:N/(P 11

. On the other hand, (M / N1) )M:N/(P 11
 is 

an Artinian and Noetherian (R / (N1:M)) )M:N/(P 11
. Hence (M / N) )M:N/(P1

 is 

an Artinian and Notherian (R / (N:M)) )M:N/(P1
. Furthermore M is a 

Laskerian so by lemma 2.4, M has F.C. Thus M has finite submodule-

lengths. 

(ii) If the decomposition of I  (N:M), where I  
k

1i

i )M:N(


 is not a minimal 

primary decomposition. Assume that (N1:M)  
k

2i

i )M:N(


. Hence             

I  
k

2i

i )M:N(


. Without loss of generality suppose that I
k

2i

i )M:N(


 is a 

minimal primary decomposition. Assume P2  comp(I), then by the same 

process of case (i), (M / N) )M:N/(P2
 is an Artinian and Noetherian             

(R / (N:M) )M:N/(P2
-module and M has FC. Thus M has finite submodule-

lengths. 

 

Note: 

        We remark that the equivalence ((2)  (3)) of prop.2.7 can be obtained 

directly by th.2.8. 
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