Modules with Finite Submodule-Lengths

A.G.Naoum Inaam M.A.**Hadi**

Department of Mathematics Department of Mathematics College of Science Ibn-ALheitham College of Education University of Baghdad University of Baghdad

 عادل غسان نعوم أنعام محمذ علي هادي قسن السَاضُات قسن السَاضُات كلُة العلىم كلُةالحسبُة)ابي الهُثن(جاهعة بغداد جاهعة بغداد

Abstract

 In this paper, the concepts of submodule with finite submodule-length, and module with finite submodule-lengths are introduced. These concepts are generalizations of the concepts of ideal with finite ideal-length and ring with finite ideal-length.

 A submodule N of an R-module M is said to have finite submodule length if comp(I) is finite and $(M / I M)_{P'}$, is an Artinian and Noetherian $(R / I)_{P'}$ module, $\forall P' = P / I$, $I = (N:M)$ and $P \in comp(I)$. An R-module M has finite submodule-lengths if each submodule of M has finite submodule-length. The basic results about these concepts, and some relationships between modules with finite submodule-lengths and other classes of modules are given.

المستخلص: في هذا البحث قدمنا ¸المفهومان مقاس جزئي ذي طول- مقاسي جزئي منتهى ومقاس ذي اطوال- مقاسبة جزَّ ئية منتهية . هذان المفهومان هما تعميمان للمفهومين مثالي ذي طول –مثالي منتهى وحلقة ذات اطوال –مثالثة منتهنة $\mathop{\rm comp}\nolimits({\rm I})$ يقال عن مقاس جزئي N هن مقاس ${\rm N}$ على ${\rm R}$ يمتلك طول- مقاسي جزئية منتهى اذا كان $(R / I)_{\text{p}}$ مجموعة منتهية و $(M / I M)_{\text{p}}$ مقاس ارتيني و نوثيري على الحلقة -B) ةُه بعناك اطوال – مقاسية A مقاس M مقاس . $\forall P' = P / I$, I = (N:M) and $P \in comp(I)$. جزئية اذاكان كل مقاس جزئي منه يمتلك طول مقاسي جزئي منتهى . النتائج الإساسية حول هذ ين المفهومين وبعض العلاقات بين المقاسات ذات الأطوال – المقاسية الجزئية المنتهية و اصناف اخرى من اللوقاسات قد اعطُث .

Introduction

 Zariski and Samuel in [11] introduced the concept of ideal-length for a decomposable ideal I , where a proper ideal I of a commutative ring R is said to be decomposable if it has a primary decomposition; that is, I can be written as

 $I = \bigcap$ n $i = 1$ Q_i $=$ with Q_i is P_i-primary, \forall i =1, 2, ..., n.

Zariski and Samuel put the following condition (*), where:

 $(*): M = {P_1, P_2, ..., P_n}$ is the set of all minimal prime ideals of I.

 Zariski and Samuel in [11, P.233] gave the following definition: let R be a ring with identity and let I be a decomposable ideal, which satisfies (*). The length of the R-module $R_{S(I)}/IR_{S(I)}$ is called the length of I and is denoted by $\lambda(I)$, n

where
$$
S(I) = R - \bigcup_{i=1}^{n} {P_i : P_i \in M}.
$$

 J. Beachy and W. Weakley in [2], used the terminology ideal-length suggested by Zariski and Samuel in [11], they extended the notion ideal-length to an arbitrary ideal. In fact, they introduced the notion of finite ideal-length, where, an ideal I of a ring R is said to have finite ideal-length if the ring $R_{\text{S}(I)}$ / I $R_{S(I)}$ is an Artinian ring, where $S(I) = R - \cup \{P : P \in comp(I)\}\$ and comp(I) represents the set of all minimal prime ideals of I. In this case the length of a composition series of $R_{S(1)}$ / I $R_{S(1)}$ which is denoted by $\lambda(I)$ is called the ideallength of I.

 Moreover, Beachy and Weakley introduced in [2] another concept, they said a ring R have finite ideal-lengths if each ideal of R has finite ideal-length.

 Our aim in this paper is to extend these notions to submodules and modules.

In \S .1 of this paper, the concepts of submodules with finite submodulelength and, modules with finite submodule-lengths are introduced. We call a submodule N of an R-module M, a submodule with finite submodule-length if

comp(N R : M) is finite and $(M/(N:M)M)_{P'}$ is a Noetherian and Artinian $(R/(N))$ R : M))_{P'}-module, $\forall P' = P/(N)$ R : M), where $P \in \text{comp}(N:M)$. We also call the module M, a module of finite submodule-lengths if each submodule of M has finite submodule-length.

 We study the basic properties of such submodules and modules; we give characterization for submodules with finite submodule-lengths. We also give descriptions for such submodules in the class of finitely generated modules or multiplication modules.

In $\S.2$, we look for any relation between modules with finite submodulelengths and Noetherian, Artinian and Laskerian modules.

 Finally, we remark that R in this paper stands for a commutative ring with 1, and all modules are unitary

§.0 Preliminaries

 In this section, we give some basic definitions and results which are needed later.

Definition 0.1 **: [8]**

 For any ideal I of a ring R,the component of I (briefly comp (I)) is the set of all prime ideals of R which are minimal over I. We say that R has finite component (briefly FC) if comp (I) is finite for every ideal I of R.

Definition 0.2 **:** [**2]**

Let I be an ideal of R, and let S(I) denotes the complement of \cup {P : P \in comp(I)} in R. Then I is said to have afinite ideal-length if the ring $R_{S(D)}/I R_{S(D)}$ is an Artinian ring.

In this case, the length of a composition series for $R_{S(I)}/IR_{S(I)}$ is denoted by $\lambda(I)$ and is called the ideal-length of I. If each ideal of R has finite ideal-length, then the ring R is said to have finite ideal-length.

Proposition 0.3 **: [2, prop.1.2]**

Let I be an ideal of R. Then I has finite ideal-length iff comp(I) is finite and the ring $R_P / I R_P$ is Artinian for each $P \in comp(I)$.

Theorem 0.4 **: [2, prop. 1.3]**

Let R be a ring. Then the following statements are equivalent :

- **1.** R has finite ideal-lengths.
- **2.** R has FC, and for each ideal I of R and each $P \in \text{comp}(I)$, the ring $R_P / I R_P \ (\cong (R/I)_P)$ is Artinian.
- **3.** R has FC, and for each prime ideal P of R, the set of P-primary ideals satisfies a c.c.

§.1 Modules with Finite Submodule- Lengths; Basic Properties

 In this section, the basic properties about modules with finite submodulelengths are given, some results are generalizations of known results about rings with finite ideal-lengths which are given in [2].

Definition 1.1 **:**

Let N be a submodule of an R-module M. Then N is said to have finite submodule-length if comp(I) is a finite set and $(M / I M)$ $_{P'}$ is an Artinian and Noetherian (R/I) $_{P'}$ -module, $\forall P' = P / I$, where $I = (N : M)$, $P \in comp(I)$. R

 If each submodule of M has finite submodule-length, then M is said to have finite submodule-lengths.

Definition 1.2 **:**

 Let M be an R-module. M is said to have finite component (briefly M has FC), if for each submodule N of M, (N R : M), has FC.

Remarks and Examples 1.3 **:**

1. For any ring R, R has finite ideal-lengths iff R as R-module has finite submodule-lengths.

2. Let M be the Z-module $Z_{p^{\infty}}$, where p is any prime number. M has FC since for each submodule N of M, (N Z $:M$ = (0) and hence comp(N Z $(M) = \{(0)\}\$. Moreover, for any $P' = P / (N)$ Z : M) = $P/(0)$, (M / (N Z : M)M)_{P'} = M_{P'} \cong (Z_p ∞)_{P'}, and (Z / (N Z : M))_P' = Z_{P'}. Hence $(Z_{p^{\infty}})_{P'}$ is an Artinian Z_P-module. Then by [10, lemma 1.5], $(Z_{p^{\infty}})_{P'}$ satisfies a.c.c. on semiprime submodule and hence satisfies a.c.c. on prime submodules. On the other hand $Z_{p'} \cong Q$ (the field of rational numbers). Then by [10, Lemma 1.1], $(Z_{p^{\infty}})_{P'}$ is a Noetherian $Z_{P'}$ -module. Thus the Z-module $Z_{p^{\infty}}$ has finite submodule-lengths.

3. Let R be an integral domain. Let K be the total quotient field of R. Then K as R-module has finite submodule-lengths. In particular, the Z-module Q of rational numbers has finite submodule-lengths.

 Before giving a characterization of modules with finite submodule-lengths, we give the following lemma:

Lemma 1.4 **:**

 Let N be a submodule of an R-module M. Then (N R : M) = ((N R : M) M R : M).

Proof. It is straightforward, so is omitted

Theorem 1.5 **:**

 Let M be an R-module. Then M has finite submodule-lengths iff M has FC and for each submodule N of M, $(M / N)_{P'}$ is an Artinian and Noetherian $(R/(N))$ R : M))_{P'}- module, \forall P' = P / (N) R : M), $P \in \text{comp}(N)$ R : M).

Proof. Assume M has finite submodule-lengths. Then the result follows by definition 1.2 and [9, lemma 9.12, p.173].

 Conversely, let N be any submodule of M. Then by applying the hypothesis on $N' = (N:M)M$ and using lemma 1.4, the required result is obtained.

 In the class of finitely generated modules, the following theorem is a characterization of submodules with finite submodule-lengths, but first we need the following lemma:

Lemma 1.6 **:**

Let N be a submodule of an R-module M, and let $P \in \text{comp}(N)$ R : M). Then $(M/N)_{P'}$ is a faithful $(R/(N:M))_{P'}$ -module, where $P' = P/(N:M)$.

Proof. It is easy, so is omitted.

Theorem 1.7 **:**

 Let M be a finitely generated R-module, and let N be a submodule of M. Then N has finite submodule-length iff (N R : M) has finite ideal-length.

Proof If N has a finite submodule-length, then (N R : M) has FC and $(M/N)_{P'}$ is an Artinian and Noetherian (R / (N R : M))_{P'}-module, \forall P' = P / (N) R : M), $P \in \text{comp}(N)$ R : M). Since M is a finitely generated R-module, so $(M / N)_{P'}$ is a finitely generated \overline{R} = $(R / (N))$ R : M)) $_{P'}$ -module, \forall P' = P / (N:M), $P \in \text{comp}(N:M)$. Hence \overline{R} / ann $_{\overline{R}}(M/N)_{P'}$ is an Artinian ring by [7, Th. 2, p.180]. However by lemma 1.6, $ann_{\overline{R}} (M/N)_{P'} = (\overline{0})$. Thus \overline{R} is an Artinian ring, so the result is obtained.

The proof of the converse is similar.

The following corollaries follow directly by Th. 1.7:

Corollary 1.8 **:**

 Let M be a finitely generated R-module. Then M has finite submodulelengths iff for each submodule N of M, (N : M) has a finite ideal-length. R

Corollary 1.9 **:**

 Let M be a finitely generated R-module. If R has finite ideal-lengths, then M has finite submodule-lengths.

Remark 1.10 **:**

 The condition M is a finitely generated R-module cannot be dropped from theorem 1.7 and corollaries 1.8 and 1.9, as the following example shows:

Example **:**

Let M be the Z-module $Z \oplus Z \oplus \cdots$. For each submodule N of M, $(N : M)$ Z has a finite ideal length, since Z has finite ideal-lengths by [2]. However if $N = 4Z \oplus 4Z \oplus \cdots$, then it is easy to see that N has no finite submodule-length.

 Recall that an R-module M is called a multiplication R-module if for every submodule N of M, there exists an ideal I of R such that $N = I M$, [1].

Theorem 1.11 **:**

 Let M be a multiplication R-module and let N be a submodule of M. Then N has finite submodule-length iff (N : M) has finite ideal-length. R

Proof. If N has finite submodule-length, and let $I = (N)$ R : M), then I has FC and $(M / N)_{P'}$ is an Artinian and Noetherian $(R / I)_{P'}$ -module, $\forall P' = P / I$, $P \in \text{comp}(I)$. Since M is a multiplication R-module, $(M/N)_{P'}$ is a multiplication $(R / I)_{P'}$ -module, $\forall P' = P / I$, $P \in comp(I)$ and by lemma 1.6, $(M / N)_{P'}$ is a faithful $(R / I)_{P'}$ -module, $\forall P' = P / I$, $P \in comp(I)$. Hence $(R / I)_{P'}$ is an Artinian ring, $\forall P' = P / I$, $P \in comp(I)$. Thus I has finite ideal-length.

The proof of the converse is similar.

Corollary 1.12 **:**

 Let M be a multiplication R-module. Then M has finite submodule-lengths iff for each submodule N of M, (N:M) has finite ideal-length.

Remark 1.13 **:**

 The condition M being a multiplication R-module cannot be dropped from theorem 1.11 and corollary 1.12 as is seen by the example following remark 1.10.

For our next result, we prove the following lemma:

Lemma 1.14 **:**

 Let M be a multiplication R-module. If M has FC or R has FC, then M is finitely generated.

Proof. If M has FC or R has FC, then comp((0) R : M) = comp(ann_RM) is a finite set. Hence by [3, remark. following corollary. 2.11], M has a finite number of minimal submodules. Then by [3, Th. 3.7], M is finitely generated.

Proposition 1.15 **:**

 Let M be a faithful multiplication R-module. Then M has finite submodulelengths iff R has finite ideal-lengths.

Proof. It follows by lemma 1.14, corollary1.12, and [3, theorem 3.1].

To give the next result, we need the following lemmas:

Lemma 1.16 **:**

 Let P be a prime ideal of R, and let J, K be two P-primary ideals of R containing an ideal I of R such that $(J / I)_P \subset (K / I)_P$. Then $J \subset K$.

Proof. It is straightforward, so it is omitted.

Lemma 1.17 **:**

Let R be a ring. Then R has finite ideal-lengths iff R has FC and every primary ideal of R has finite ideal-length.

Proof. The if part is clear.

The proof of the converse follows by theorem 1.4 and lemma 1.16.

 Recall that a proper submodule N of an R-module M is called primary if whenever $r \in \mathbb{R}$, $x \in \mathbb{M}$, $r x \in \mathbb{N}$, implies either $x \in \mathbb{N}$ or $r^n \in (\mathbb{N}: \mathbb{M})$, for some $n \in \mathbb{Z}_+$ [4, P. 39].

Proposition 1.18 **:**

 Let M be a faithful multiplication R-module. Then M has FC and every primary submodule of M has finite submodule-lengths iff R has finite ideallengths.

Proof. Assume M has FC and every primary submodule of M has finite submodule-length. By lemma 1.14, M is finitely generated. Thus M is a finitely generated faithful multiplication R- module and so for any primary ideal I of R, $N = I$ M is a primary submodule of M and $I = (N:M)$. Since N has finite submodule-length, then by Th. 1.11, I has finite ideal-length. Moreover, for any ideal J of R, $W = J M$ is a submodule of M which has FC and hence $(W:M) = J$ has FC. Thus by Lemma 1.17, R has finite ideal-lengths.

The proof of the converse follows by Prop.1.15 and def. 1.1.

Corollary 1.19 **:**

 Let M be a faithful multiplication R-module. Then the following statements are equivalent :

1. M has finite submodule-lengths.

2. M has FC and every primary submodule of M has finite submodulelength.

3. R has finite ideal-lengths.

Proof. (1) \Rightarrow (2) : It is obvious.

 $(2) \Rightarrow (3)$: It follows by proposition 1.18.

 $(3) \Rightarrow (1)$: It follows by proposition 1.15.

Proposition 1.20 **:**

 Let M be an R-module which has finite submodule-lengths. Then any factor module of M has the same property

Proof. It follows easily, so it is omitted.

 The following result explains the behavior of modules with finite submodule – lengths under localization.

Theorem 1.21 **:**

 Let M be a finitely generated R-module and let S be a multiplicatively closed subset of R. If M has finite submodule-lengths, then M_s as R_s -module has finite submodule-lengths.

Proof. Let N be a submodule of M_s , hence $N = W_s$ for some submodule W of M. Since M has finite submodule-lengths, $I = (W)$ R : M) has FC, and since M is a finitely generated, $I_s = (W_s)$ R_S : M_s) by [7, prop. 8, p.152]. However it is easy to see that, $comp(I_S) \subseteq {P_S : P \in comp(I)},$ hence $comp(I_S)$ is finite. Thus M_S has FC. Moreover, by using [7, prop. 10, p. 156], [7, prop. 19, p.165], [7, prop. 20, p. 166] and $(M / I M)_{P'}$ is an Artinian and Noetherian $(R / I)_{P'}$ -module, $\forall P' = P / I, P \in comp(I),$ we have $(M_S / I_S M_S)_{P_S'}$ is an Artinian and Noetherian $(R_S / I_S)_{P'_S}$ -module, $\forall P'_S = P_S / I_S$, $P_S \in comp(I_S)$. Thus M_S as R_S -module has finite submodule-lengths.

§.2 Modules with Finite Submodule- Lengths and Related Concepts

10

 In this section, we give some relationships between modules with finite submodule-lengths and other known classes of modules, for examples: Noetherian modules, Artinian modules and Laskerian modules.

First we have:

Proposition 2.1 **:**

Let M be a Noetherian R-module. Then M has finite submodule-lengths.

Proof. Since M is a Noetherian R-module, $\overline{R} = R / \text{ann } M$ is a Noetherian ring and hence \overline{R} has finite ideal-lengths by [2]. Let N be any submodule of M, then I = (N:M) \supseteq ann M, so $\overline{I} = I / \text{ann M}$ has finite ideal-length and hence \overline{I} has FC. However it is easy to check that, for any $P \in \text{comp}(I)$, $\overline{P} = P / \text{ann } M \in \text{comp}(\overline{I})$ and conversely, hence I = (N:M) has FC. Thus M has FC. Now, since \overline{R} has finite ideal-lengths, $(\overline{R}/\overline{I})_{\overline{P}/\overline{I}}$ which is isomorphice to $(R / I)_{P/I}$ is an Artinian ring, $\forall P \in comp(I)$ see [7, th. 2, p. 16] and th. 0.4. On the other hand, M is a Noetherian R-module, so $(M / I M)_{P/I}$ is a finitely generated over $(R / I)_{P/I}$, $\forall P \in comp(I)$. Thus $(M / I M)_{P/I}$ is an Artinian and Noetherian $(R / I)_{P/I}$ -module, $\forall P \in comp(I)$. Thus M has finite submodulelengths.

The converse of prop. 2.1 is false by the following example:

Let R be the ring of all matrices of the form $\begin{bmatrix} 1 & 0 \\ 0 & k \end{bmatrix}$ \int \setminus $\overline{}$ \setminus ſ *x k k* 0 , where $k \in \mathbb{Z}$, $x \in Z_{2^{\infty}}$ with usual addition and multiplication of matrices. R is not Noetherian, but R has finite ideal-lengths. (see [2]).

Proposition 2.3 **:**

 Every finitely generated Artinian R-module M has finite submodulelengths.

Proof. Since M is a finitely generated R-module, $\overline{R} = R / \text{ann}_R M$ is an Artinian ring, and so it is Noetherian. Then by a similar argument of proof of proposition 2.1, M has finite submodule-lengths.

 Recall that if M be an R-module which contains prime submodule, then the height of P (denoted by ht P), is the greatest non-negative integer *n* such that there exists a chain of prime submodules of M, $P_0 \subset P_1 \subset ... \subset P_n = P$, and ht $P = \infty$ if no such *n* exists. The dimension of M is defined by:

 $D(M) = \sup \{ht P : P \text{ is a prime submodule of } M\}.[5]$

Proposition 2.4 **:**

Let M be a Noetherian R-module with $D(M) = 0$. Then M is Artinian.

Proof. Since M is Noetherian, and $D(M) = 0$, every prime submodule N of M is maximal and hence M / N is simple module, so N is virtually maximal. Thus by [6, Th. 3.5], M is Artinian.

The converse of prop. 2.4 is not true as the following example shows.

Example **:**

The Q-module $Q \oplus Q$, where Q is the set of rational numbers is Artinian, $D(M) = 1 \neq 0$.

 Recall that an R-module M is called Laskerian if every submodule of M can be written as a finite intersection of primary submodules.

Aring R is Laskerian iff the R-module R is Laskerian.

The following lemmas are needed for our next results.

Lemma 2.5 **:**

Every Laskerian module has FC.

Proof. It follows easily*.*

Lemma 2.6 **:**

 Let M be a faithful multiplication R-module. Then M is a Laskerian module iff R is a Laskerian ring.

Proof. Assume M is Laskerian. Then by lemma 2.5, M has FC. Thus M is a multiplication R-module with FC, so that M is finitely generated by lemma 1.14, and this implies that R is a Laskerian ring.

The proof of the converse is similar.

Proposition 2.7 **:**

 Let M be a faithful multiplication R-module. Then the following statements are equivalent:

1. M is Noetherian.

2. M is a Laskerian module and every primary submodule of M has finite submodule-length.

3. M is a Laskerian module with finite submodule-lengths.

4. R is Laskerian with finite ideal-lengths.

5. R is Noetherian.

Proof. (1) \Rightarrow (2). It follows by [7, th. 14, P.192] and prop 2.1.

 $(2) \implies$ (3). It follows by lemma 2.5 and cor. 1.19.

 $(3) \Rightarrow (4)$. It follows by cor. 1.19 and lemma 2.6.

- $(4) \Rightarrow (5)$. It follows by.[2 th.1.8].
- $(5) \Rightarrow (1)$. It follows by [3, §.3, p.765].

Theorem 2.8 **:**

 Let M be a Laskerian R-module. Then M has finite submodule-lengths iff every primary submodule of M has finite submodule-length.

Proof. If every primary submodule has finite submodule lengths. Let N be a submodule of M. Since M is Laskerian, N is a decomposable submodule and it has a minimal primary decomposition, so assume that $N = \bigcap^{k}$ *i Ni* be a minimal $=1$ primary decomposition of N. Then N_i is P_i-primary submodule in M. $1 \le i \le k$, such that $P_i = \sqrt(N_i : M)$, $P_1, P_2, ..., P_n$ are distinct and for all $j = 1, 2, ..., n$,

$$
N_j \nsupseteq \bigcap_{\substack{i=1 \ i \neq j}}^k N_i
$$
. It follows that $I = (N:M) = \bigcap_{i=1}^k (N_i : M)$ with $(N_i:M)$ is a P_i-primary

ideal of R, for $i = 1, 2, ..., k$. Therefore I is decomposable, so there are two cases:

- **(i)** The above decomposition of I is a minimal primary decomposition. Then by [9, prop. 4.24, p.72], for any $P \in spec(R)$, $P \in comp(I)$ iff P is a minimal member of $\{P_1, P_2, ..., P_n\}$. Without loss of generality, assume that $P_1 \in comp(I)$. Then $(N:M)_{P_1} = (N_1:M)_{P_1} \cap (N_2:M)_{P_1} \cap ... \cap (N_k:M)_{P_1}$. Then one can check that $(N:M)_{P_1} = (N_1:M)_{P_1}$. Moreover, R / (N:M)) $_{P_1/(N:M)} \cong R_{P_1}/(N:M)_{P_1}$ by [7, th. 10, p. 156] and hence R_{P_1} / $(N:M)_{P_1} \approx R_{P_1}$ / $(N_1:M)_{P_1}$. Also, one can see that $(M / N)_{P_1/(N:M)} \cong M_{P_1} / (N_1)_{P_1}$, $(N)_{P_1} = (N_1)_{P_1}$, thus $(M / N)_{P_1/(N:M)} \cong$ $M_{P_1} / (N_1)_{P_1} \cong (M / N_1)_{P_1 / (N_1:M)}$. On the other hand, $(M / N_1)_{P_1 / (N_1:M)}$ is an Artinian and Noetherian $(R / (N_1:M))_{P_1/(N_1:M)}$. Hence $(M/N)_{P_1/(N:M)}$ is an Artinian and Notherian $(R / (N:M))_{P_1/(N:M)}$. Furthermore M is a Laskerian so by lemma 2.4, M has F.C. Thus M has finite submodulelengths.
- (ii) If the decomposition of $I = (N:M)$, where $I = \bigcap$ k $i = 1$ $(N_i : M)$ $=$ is not a minimal primary decomposition. Assume that $(N_1:M) \supseteq \bigcap$ k $i = 2$ $(N_i : M)$ $=$. Hence $I = \bigcap$ k $i = 2$ $(N_i : M)$ = . Without loss of generality suppose that $I = \bigcap$ k $i = 2$ $(N_i : M)$ $=$ is a minimal primary decomposition. Assume $P_2 \in \text{comp}(I)$, then by the same process of case (i), $(M / N)_{P_2/(N:M)}$ is an Artinian and Noetherian $(R / (N:M)_{P_2/(N:M)}$ -module and M has FC. Thus M has finite submodulelengths.

*Note***:**

We remark that the equivalence $((2) \Leftrightarrow (3))$ of prop.2.7 can be obtained directly by th.2.8.

14

References

- [1] A. Barnard, "Multiplication Modules", J. Algebra, 71(1981), 174-178.
- [2] J. A. Beachy and W. D. Weakley, "Piecewise Noetherian Rings", Comm. In Algebra, 12(21), (1984), 2679-2706.
- [3] Z. A. El-Bast and P. F. Smith, "Multiplication Modules", Comm. In Algebra, 16(4), (1988), 755-779.
- [4] M. D. Larsen and P. J. McCarthy, "Multiplicative Theory of Ideals", Academic Press, London, New York, 1971.
- [5] S. H. Man and P. F. Smith, "On Chains of Prime Submodules", Israel J. of Math., 127 (2002), 131-155.
- [6] R. L. McCasland and P. F. Smith, "Prime Submodules of Noetherian Modules", Rocky Mountain J. of Math., 23(3), (1993), 1041-1061.
- [7] D. G. Northcott, "Lessons on Rings, Modules and Multiplicities", Cambridge University Press, London and New York, 1968.
- [8] J. Ohm and R. Pendleton, "Rings with Noetherian Spectrum", Duke Math. J., 35 (1968), 631-639.
- [9] R. Y. Sharp, "Steps in Commutative Algebra", Cambridge University Press, 1990.
- [10] D. P. Yilmaz and P. F. Smith, "Chain Conditions in Modules with Krull Dimension", Comm. In Algebra, 24 (13), (1996), 4123-4133.
- [11] O. Zariski and P. Samuel, "Commutative Algebra", Vol.I, Springer-Verlag, New York, Heidelberg, Berlin, 1960.