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Abstract: We have introduced a new class H ),,,(   of 
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on H ),,,(   and integral operator.  
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1.Introduction :  

Let  denote the class of functions f)z) of the form:  

                               





1

,
1

)(
n

n

nza
z

zf                                            (1) 

which are analytic and meromorphic univalent in the punctured 

unit disk   U
*
={z:z    and 0< z  <1} = U\ {0}.  

The class  is closed  under the Hadamard product (or 

convolution).  
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where  
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Let M be a subclass of a class  consisting of functions of the 

form :  
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Here , we introduce the class H ),,,(  consisting of functions 

Mf  and satisfying :  
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for 10,10,10    and 





1

)(
1

)(
n

n

nn zDa
z

zfD           (4) 

(Ruscheweyh derivative of f of order   [5] , [6]), where 
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2.Main Results :  

We need the following result in our work (coefficient estimates). 

  

Theorem 1 : A function f(z) defined by (2) belongs to  the class 

),,,( H if and only if 
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The result is sharp.  

 

Proof : Assume that the inequality (6) holds true and let ,1z  

then from (3), we have  
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Hence by the principle of maximum modulus, ).,,,()( Hzf    

Conversely, suppose that )(zf  defined by (2) is in the class 

),,,( H  , then from (4) , we have  
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Since zz )Re( for all z, we have  
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Choose the value of z on the real axis so that 
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 is real. 

Upon clearing the denominator of (7) and letting 1z  through 

real values , we get  

 









1 1

,)()()1()()1(
n n

nnnn aDnaDn    

which implies the inequality (5). Sharpness of the result follows 

by setting :  
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Corollary 1: Let  .,,,)( Hzf   Then 
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where 0  <1, 0< 1 , 0 1   and  > -1 . 

Next, we obtain the region of univalency, in particular, 

starlikeness and convexity for the class  .,,, H  
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Theorem 2: Let  .,,,)( Hzf  Then  )(zf  is meromorphic 

univalent starlike of order  (0  <1) in z < ),,,,(11 rr  , 

where  
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The result (9) is sharp.  

 

Proof : Let  .,,,)( Hzf   Then by Theorem 1  
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It  is sufficient to show that  
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where  ),,,,,(1 r  is given by (9).  

Since 
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provided that  
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Now making use of (10). We observe that (12) holds true if  
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setting ),,,(1 rz  in (13), we get the radii of starlikeness , 

which completes the proof of Theorem2. The result is sharp for 

the function is given by  
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Theorem 3: Let f(z) ).,,,( H Then f(z)is meromorphic 

univalent convex of order  0( < )1 in z < ),,,,(22 rr  , 

where  
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Proof of Theorem 3 is similar to that of Theorem 2 and hence 

details are omitted .  

Theorem 4: Let the function f(z) defined by (2) and the function 
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and 1n  and   is given by:  
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Proof : We must find the largest   such that  
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Since f(z)and g(z) are in ),,,( H  , then  
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By Cauchy – Schwarz inequality , we get  
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We want only  to show that  
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3.  ,n - Neighborhoods on ),,,( H  

The next , we determine the inclusion relation involving  ,n - 

neighborhoods. Following the earlier works on neighborhoods of 

analytic functions by Goodman [2] and Ruscheweyh [4], but for 

meromorphic function studied by Liu and Srivastava [3] and 

Atshan [1], we define the  ,n - neighborhoods of a function 

f(z) M   by   
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Definition 1: A function gM is said to be in the class 

),,,( H if there exists a function ),,,( Hf   such that  
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Theorem 5: Let ),,,()( Hzf   and  
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Proof: Let ).(, fNg n  Then we have from (15) that  
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Also since ),,,,( Hf  we have from (6)  
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Thus, by definition 1, ),,,( Hg  for   is given by (17). 

This complete the proof.  

 

4. Integral Operator :  

Next , we consider integral transform of functions in the class 

),,,( H .  

Theorem 6: Let the function f(z) is given by (2) be in the class 

),,,( H . Then the integral operator 
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Proof : Let 
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It is sufficient to show that 
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Since ),,,,( Hf   we have  
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Note that (19) is satisfied if  
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 for all Nn / . Hence , we obtain the request 

result.  
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