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Abstract. We define an m paraLindelöf, countable paraLindelöf, m semipara- 

Lindelöf, countable semiparaLindelöf topological and study some properties  of  

these concepts and give the relation between these concepts. And we give the 

relationship between the paraLindelöf space and regular (normal) space. 
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1. Introduction .The concept of paracompactness is due to Dieudonne [7] . The 

concept of para- Lindelöf is due to Fleissner [4]. A collection of subsets of X is 

locally finite ( resp. locally countable ) [3,6,7]if every Xx  has a neighborhood 

meeting finitely many ( resp. countable many ) elements of  the collection. A 

collection has the   property [7]if it is the union of countabley many collection 

with the property. A cover (or covering ) of a space  ,X  [3,6,7] is a collection of 

subset of X  whose union is all of X . An open cover of X  is a cover consisting of  

open sets , and other adjective applying to subsets apply similarly to cover . If  and 

are covers of X  , we say  refines [3,6,7]if each number of   is contained in 

some member of  . Then we say    refines ( or refinement of )  . A subset of a 

topological  space  ,X  is an F  ( G )[3,6,7]if it is  a countable union ( intersection) 

of closed (open) sets . A topological space is said to be a P space [1] if every G  is 

open. A topological space  ,X  is said to be (countable) compact space [3,6,7]if 

each (countable) open cover of X  has a finite open subcover, and is said to be 

m compact [5] if each open cover of X  with cardinality m  has a finite open 

subcover. .A topological space  ,X  is said to be(countable)  paracompact space 

[6,7] if each (countable)  open cover of X  has a locally finite  open refinement, and 

is said to be m paracompact[5] if each open cover with cardinality m  has a locally 

finite open refinement .  A topological space is said to be a paracompact[1] if every 

open cover has a locally finite refinement ( not necessarily open or closed). A 

topological space  ,X  is said to be(countable)  Lindelof space [3,6,7]if each 

(countable) open cover of X  has a countable open subcover, and is said to be 

m compact [5] if each open cover of X  with cardinality m  has a countable  open 

subcover. The function ),(),(:  YXf  is called  )(  closed  if the image of each 
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 closed set  is  closed set. And is called  )(  continuous if the  inverse 

image  of each  open set   is  open set  [3,6,7]. 

 

2- Main results  

       We shall state below some new concepts such as m  paraLindelöf (where m  is 

an infinite cardinal number), countable paraLindelöf, semiparaLindelöf and a para- 

Lindelöf spaces. Also we give some properties of these spaces and the relation 

among them. 

  

Definition 2.1.[ 4] A topological space is said to be ( m ) paraLindelöf if every open 

cover of the space has a locally countable open refinement (with cardinality m ). 

 

Definition 2.2. A topological space is said to be countable paraLindelöf if every 

countable open cover of the space has a locally countable open refinement . 

 

Definition2.3[3,7] A topological space ),( X is said to be  semiparacompact  , if 

each open cover of X has a  locally finite  open  refinement  

 

Definition 2.4.A topological space ),( X is said to be semiparaLindelöf, if each 

open cover of X has a  locally countable open  refinement . 

 

Definition 2.5.A topological space is said to be a paraLindelöf if every open cover 

has a locally countable refinement ( not necessarily open or closed).  

            

  Cleary that every ( m ,countable) compact, ( m countable) Lindelöf, and 

( m countable) paracompact space is ( m countable) paraLindelöf.  

 

Theorem 2.6.A topological space is paraLindelöf if and only if it is countable 

paraLindelöf and semiparaLindelöf. 

 

Proof. Let    :U  be an open covering of X . By hypothesis, has a 

 locally countable open refinement,   say. Then 





1n

n , where each n  is 

locally countable ,say    :Vn  and let     :VV . Since   covers X , 

therefore  NV  :  is a countable open covering of X . Since X  is countable 

paraLindelöf, then  the collection  NV  :  has a locally countable open 

refinement  NW  :  such that  VW   for each N . The collection 

                                               NWV   ,:  

form a locally countable open refinement of  . Thus X  is paraLindelöf. The 

converse is obvious.■ 

 

         Now, every paracompact is semiparacompact [3,6,7]Since every locally 

countable collection is  locally countable, then we can conclude that  every                      
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semiparacompact is semiparaLindelöf. Consequently, every paracompact space is 

semiparaLindelöf. 

 

Theorem 2.7. Every semiparaLindelöf  space is a  paraLindelöf. 

 

Proof. Let    :U  be an open cover of X . By hypothesis   has 

 locally countable open refinement 





1n

n
, where each where each n  is 

locally countable ,say    :nn V  and let     :nn VW . Then  NnWn :  

covers X . Define 
ni

inn WWA


 . Then  NnAn :  is locally countable refinement 

of  NnWn : . Now consider    ,: NnVA nn
. This is a locally countable 

refinement of   and hence of  .■ 

 

Corollary 2.8. Every paraLindelöf space is a  paraLindelöf. 

 

Theorem 2.9. [7].A regular topological space is paracompact if and only if it is 

a paracompact. 

 

Since every paracompact space is paraLindelöf, then we have the following : 

 

Corollary 2.10.A regular topological space is paraLindelöf if it is a paracompact. 

 

Theorem 2.11. Every Hausdorff paraLindelöf P space is regular. 

 

Proof. Suppose that X  is Hausdorff and paraLindelöf P space. Let A  be a closed 

set, and AXx  . Since X  is Hausdorff, then for each Ay , we can find two 

disjoint open sets yU  and yV  such that yUx  and yVy . The collection  

                                                  AXAyVy  :  

form an open cover of X . By paraLindelöfness of X the collection    admit 

locally countable open refinement 
                                                       :W  

Set  

                                                  





 AWWV :  

Then V  is an open set containing A . Now, since   is locally countable, then x  

admit an open neighborhood N which meet countable many
n

W , ,...2,1n .  

If   AW
n

, ,...2,1n , then AXW
n

  is impossible. Thus there exists 
nyV  such 

that 
nn yVW  . Set  

                                                    














1n

yn
UNU . 
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Since X  is P space ,then the G set  


1n

yn
U  is open. Hence U  is an open set and 

Ux . Finally, we have VU , which implies that X  is regular. ■ 

 

Theorem 2.12. Every Hausdorff paraLindelöf P space is normal.      

 

Proof. Suppose that X  is Hausdorff and paraLindelöf P space. Let A  and B  are 

disjoint closed subsets of X . Since X  is Hausdorff, then for each Ax  and By , 

we can find two disjoint open sets 
xU  and 

xV  such that 
xUx  and 

xVy . The 

collection  
                                        AXAxU x  :  

form an open cover of X . By paraLindelöfness of X the collection   has  locally 

countable open refinement 
                                             :W  

Set  

                                





 AWWU :  

Then U  is an open set containing A . For each By  we can find an open 

neighborhood yN  which meet countable many W ,say ,...),( )()( 21 yy WyW  .( the value 

of n  also depending on y ) 

If   AW
n

, ,...2,1n , then AXW
n

  is impossible. Thus there exists 
nyV  such 

that 
nn yy VW )( . Set  

                                    














1n

xyy n
VNG . 

Since X  is P space ,then the G set  


1n

xn
V  is open. Hence yG  is an open set 

which contains y  but does not meet U . Let 
By

yGV


 ,then V  is an open set 

containing B  and disjoint from U . Therefore  X  is normal. ■ 

        

Theorem 2.13. Let ),( X  be a regular space and Xx  having a fundamental system 

of open neighborhoods )(x  with property that NX    is m paraLindelöf for each 

)(xN  . Then the topological space ),( X  is m paraLindelöf.  

 

Proof. Let    :U  be an open cover of X with cardinality m . The some 

member of  contains x , say )(xU . Since X  is regular space, therefore there exists 

an )(xN   such that )()( xUNClNx  . Then    :)( UNX    is an open 

cover of NX  with cardinality m . By hypothesis   has a locally countable open 

refinement    :V . Set 

                                                       :)()( VNXU x  .  

Then  is a locally countable open refinement of  . Hence X  is m paraLindelöf. ■ 
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 Corollary 2.14. Let ),( X  be a regular space and Xx  having a fundamental 

system of open neighborhoods )(x  with property that NX    is paraLindelöf for 

each )(xN  . Then the topological space ),( X  is paraLindelöf.  

 

Corollary 2.15. Let ),( X  be a regular space and Xx  having a fundamental 

system of open neighborhoods )(x  with property that NX    is countable 

paraLindelöf for each )(xN  . Then the topological space ),( X  is countable 

paraLindelöf.  

 

       In [ 1 ] P.T. Daniel Thanapalan state and proof the following theorem 

 

Theorem 2.16.Let YXf :  be a continuous closed surjection with the point 

inverse being Lindelöf subsets of X , where X and Y  are P spaces. Then if  Y  is 

paraLindelöf, so is X . 

 

Theorem 2.17.Let YXf :  be a continuous closed surjection with the point 

inverse being m Lindelöf subsets of X . Then if  Y  is m paraLindelöf, so is X . 

 

  Proof. Let    :U  , m be an open covering of X . And let   be the 

family of all countable subsets   of  then m . Since  )(1 yf   is m Lindelöf 

for every  y  of  Y , there exists a countable subset   of   such that 








  Uyf )(1 . Let  

                                            )( 






 UXfYV , 

then V  is open by the closedness of f and Vy  and 






  UVf )(1 . Therefore  

                                                :V  

is an open covering of Y with cardinality m . If Y is m paraLindelöf, then there 

exists a locally countable open refinement   :W  of  . Since, for each   

there exists a   such that 










  UVfWf )()( 11 , and 

                                               ,:)(1 UWf   

is locally countable open refinement of  . Thus we get the theorem. ■ 

 

Corollary 2.18. Let YXf :  be a continuous closed surjection with the point 

inverse being Lindelöf subsets of X . Then if  Y  is paraLindelöf, so is X . 

 

Corollary 2.19. Let YXf :  be a continuous closed surjection with the point 

inverse being countable Lindelöf subsets of X . Then if Y  is countable paraLindelöf, 

so is X . 
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Theorem 2.20. Let YXf :  be a continuous closed surjection with the point 

inverse being m Lindelöf subsets of X .Then if Y  is m semiparaLindelöf, so is 
X . 

 

 

  Proof. Let    :U  , m be an open covering of X . And let   be the 

family of all countable subsets   of  then m . Since  )(1 yf   is m Lindelöf 

for every  y  of  Y , there exists a countable subset   of   such that 








  Uyf )(1 . Let  

                                       )( 






 UXfYV , 

then V  is open by the closedness of f and Vy  and 






  UVf )(1 . Therefore  

                                     :V  

is an open covering of Y with cardinality m . If Y is m semiparaLindelöf, then 

there exists a refinement 





1n

n  where every n  is locally countable. Set  

   :nn W . Thus   





1

:
n

nW  . Set 





1n

n , where 

                                                   ,:)(1 UWf nn  . 

Then  is  locally countable open refinement of  .Thus we get the theorem. ■  

 

Corollary 2.21. Let YXf :  be a continuous closed surjection with the point 

inverse being Lindelöf subsets of X . Then if  Y  is semiparaLindelöf, so is X . 

 

Corollary 2.22. Let YXf :  be a continuous closed surjection with the point 

inverse being countable Lindelöf subsets of X . Then if  Y  is countable 

semiparaLindelöf, so is X . 

 

 

It illustrates the relation among some of the spaces given in this paper:  

 

compact              paracompact             semiparacompact             a paracompact  

 

          

 

Lindelöf                 paraLindelöf             semi paraLindelöf             a  paraLindelöf 
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