JORDAN *-DERIVATIONS ON PRIME AND SEMIPRIME *-RINGS

A.H.Majeed Department of mathematics, college of science, University of Baghdad Mail: ahmajeed6@yahoo.com A.A.ALTAY Department of mathematics, college of science, University of Baghdad Mail: ali_abd335@yahoo.com

مشتقات-* جوردن في الحلقات-* الاولية والشبه الاولية دعبد الرحمن حمي مجيدوعلي عبد عبيد الطائي كلية العلوم – جامعة بغداد – العراق

Abstract

Let R be a 2-torsion free *-ring, and d: $R \rightarrow R$ be a Jordan *-derivation. In this paper we prove the following results: (1) If R is a non-commutative prime *-ring, and d(*h*) *h* + *h* d(*h*) \in Z(R) for all *h* \in H(R), then d(*h*) =0 for all *h* \in H(R).(2) If R be a noncommutative prime *-ring, and d([*x*,*y*])= [*x*,*y*] for all *x*, *y* \in R, then R is normal *ring.(3) If R is a semiprime *-ring, then there is no d satisfies d(*xy*+*yx*)=*xy*+*yx* for all *x*, *y* R, where H(R)={*x*; *x* \in R s.t *x**=*x*}.

لتكن R حلقة-* طليقة الالتواء من النمط 2,و لتكنR(h) دالة مشتقة-* جوردان في هذا البحث سنبر هن النتائج التالية:(1) اذا كان R حلقة-* اولية (غير ابدالية) وان (h(h) h + h d(h) في Z(R) لكل h في H(R), فان d(h)=0 لكل h في (2).H(R) اذا كان R حلقة-* اولية (غير ابدالية) وان [x,y] = [x,y] = (z,y] لكل x,y في R, فان R تكون حلقة-* سوية .(3)اذا كان R حلقة-* شبه اولية فانه لا توجد دالة b تحقق x + yx = xy + yx لكل d(xy + yx) = xy + yx

1. Introduction

Throughout, R will represent an associative ring with center Z(R). A ring R is *n*-torsion free, if nx = 0, $x \in R$ implies x = 0, where *n* is a positive integer. Recall that R is prime if aRb = (0) implies a = 0 or b = 0, and semiprime if aRa = (0) implies a = 0. A mapping *: R \rightarrow R is called an involution if $(x+y)^*=x^*+y^*$ (additive), $(xy)^* = y^*x^*$ and $(x)^{**} = x$ for all $x, y \in R$. A ring equipped with an involution is called *-ring [1]. An element *x* in a *-ring R is said to be hermitian if $x^* = x$ and skew-hermitian if $x^* = -x$. The

sets of all hermitian and skew-hermitian elements of R will be denoted by H(R) and S(R), respectively. If R is 2-torsion free then every $x \in R$ can be uniquely represented in the form 2x = h + k where $h \in H(R)$ and $k \in S(R)$. An element $x \in R$ is called normal element if $xx^* = x^*x$, and if all the elements of R are normal then R is called a normal ring (see [2]). As usual the commutator xy - yx will be denoted by [x, y]. We shall use basic commutator identities [xy, z] = [x, z]y + x[y, z] and [x, yz] = [x, y]z + y[x, z] for all x,y,z $\in \mathbb{R}$. An additive mapping d: $\mathbb{R} \rightarrow \mathbb{R}$ is called a derivation if d(xy) = d(x)y + xd(y) holds for all pairs $x, y \in \mathbb{R}$, and is called a Jordan derivation in case $d(x^2) = d(x)x + xd(x)$ is fulfilled for all $x \in \mathbb{R}$. Every derivation is a Jordan derivation. The converse is in general not true. A classical result of Herstein [3] asserts that every Jordan derivation on a prime ring of characteristic different from 2 is a derivation. Cusack [4] generalized Herstein's theorem to 2-torsion free semiprime ring . An additive mapping d: $R \rightarrow R$ is called a *-derivation if $d(xy) = d(x)y^* + xd(y)$ holds for all pairs $x, y \in \mathbb{R}$ and is called a Jordan *-derivation in case $d(x^2) = d(x)x^* + xd(x)$ is fulfilled for all $x \in \mathbb{R}$, the concepts of *-derivation and Jordan*derivation were first mentioned in [5] for more details see also ([6] and [7]]). Every *derivation is a Jordan *-derivation but the converse in general not true, for example let R be a 2-torsion free semiprime *-ring and let $a \in \mathbb{R}$ such that $[a,x] \neq 0$, for some $x \in \mathbb{R}$, define a map d: $\mathbb{R} \rightarrow \mathbb{R}$ as follows, $d(x) = ax^* \cdot xa$ for all $x \in \mathbb{R}$, then d is a Jordan *-derivation but not a *-derivation.

2. The Main Results

In the present note, we explore more about Jordan *-derivations on prime and semiprime *-rings. We will provide some properties for Jordan *-derivations on semiprime *-ring. Also we will study a normalization of a non-commutative prime *-ring. We begin with the following known results.

Theorem 2.1. [5]. Let R be a non-commutative prime *-ring of characteristic different from 2, then R is normal ring if and only if there exists a nonzero commuting Jordan *- derivation.

Lemma 2.2. [8]. Let R be a prime*-ring such that $a \operatorname{H}(R) b = 0$, where either $a \in \operatorname{H}(R)$ or $b \in \operatorname{H}(R)$. Then either a=0 or b=0.

Lemma 2.3. [5]. Let R be a 2-torsion free non-commutative prime *-ring, and let d: $R \rightarrow R$ be a Jordan *-derivation, then d(c)=0 for all $c \in Z(R) \cap H(R)$.

In the following theorem we proved that, a Jordan *-derivation d on a noncommutative prime *-ring of characteristic different from 2, which satisfies d(h) h + h $d(h) \in Z(\mathbb{R})$ for all $h \in H(\mathbb{R})$, is finish on $H(\mathbb{R})$.

Theorem 2.4. Let R be a non-commutative prime *-ring of characteristic different from 2, and d: $R \rightarrow R$ be a Jordan *-derivation which satisfies $d(h) h + h d(h) \in Z(R)$ for all $h \in H(R)$, then d(h) = 0 for all $h \in H(R)$.

To prove above theorem we need the following lemmas

Lemma 2.5. Let R be a 2-torsion free non-commutative prime *-ring, and d: $R \rightarrow R$ be a Jordan *-derivation which satisfies $d(h) h + h d(h) \in Z(R)$ for all $h \in H(R)$, then $d(h^2) = 0$ for all $h \in H(R)$.

Proof: We have

$$d(h)h+hd(h) = d(h^2) \in Z(\mathbb{R}) \text{ for all } h \in H(\mathbb{R}),$$
(1)

Replace h by h^2 in (1) we get

$$d(h^{2})h^{2} + h^{2} d(h^{2}) = 2h^{2} d(h^{2}) \in \mathbb{Z}(\mathbb{R}) \text{ for all } h \in \mathbb{H}(\mathbb{R}),$$
(2)

Therefore,

$$[2h2 d(h2),y]=0 \text{ for all } h \in H(\mathbb{R}), y \in \mathbb{R},$$
(3)

From the relation (1), and since R is a 2-torsion free we get

$$[h^{2}, y] \operatorname{d}(h^{2}) = 0 \text{ for all } h \in \operatorname{H}(\mathbb{R}), y \in \mathbb{R},$$
(4)

Putting yz for y in (4) we obtain

$$[h^{2}, y] z d(h^{2})=0 \text{ for all } h \in H(\mathbb{R}), y, z \in \mathbb{R},$$
(5)

By primness of a *-ring R, we get either $d(h^2)=0$ for all $h \in H(R)$ or $h^2 \in Z(R)$ for all $h \in H(R)$, If $h^2 \in Z(R)$, then $h^2 \in Z(R) \cap H(R)$. Therefore by Lemma 2.3 we get $d(h^2) = 0$ for all $h \in H(R)$.

Proof of Theorem2.4: By using Lemma2.5

$$d(h^2) = 0 \quad \text{for all } h \in H(\mathbb{R}). \tag{6}$$

Linearization the relation (6) we get

$$d(hk+kh) = d(h)k + hd(k) + d(k)h + kd(h) = 0 \quad \text{for all } h, k \in H(\mathbb{R}).$$
(7)

If we replace k by $(hk+kh) \in H(\mathbb{R})$ in (7), and since is 2-torsion free we obtain

$$d(hkh) = d(h)k h + hd(k)h + hkd(h) = 0 \quad \text{for all } h, k \in H(\mathbb{R}),$$
(8)

Putting *h* for *k* and $(h_1 k h_1)$ for *h* in (8), we get

$$(h_1 kh_1) d(h) (h_1 kh_1) = 0$$
 for all $h, h_1, k \in H(\mathbb{R}).$ (9)

Now replace k by $(h_1k h_1)$ in (8) we obtain

$$d(h) (h_1k h_1) h + h (h_1k h_1) d(h) = 0 \text{ for all } h, h_1, k \in H(\mathbb{R}).$$
(10)

Left multiplication the relation (10) by $(h_1 k h_1)$, and using (9) we get

$$(h_1 k h_1) h (h_1 k h_1) d(h)=0$$
 for all $h, h_1, k \in H(\mathbb{R})$. (11)

Linearization the relation (11) on h we get

$$(h_1 k h_1) h (h_1 k h_1) d(l) + (h_1 k h_1) l (h_1 k h_1) d(h) = 0$$
 for all $h, h_1, l, k \in H(\mathbb{R})$. (12)

Replace l by (bab) in (12), we get

$$(h_1 k h_1) (bab) (h_1 k h_1) d(h)=0$$
 for all $h, h_1, a, b, k \in H(\mathbb{R})$, (13)

Left and right multiplication (13) by b we get

$$b(h_1 k h_1) bab (h_1 k h_1) d(h) b=0$$
 for all $h, h_1, a, b, k \in H(\mathbb{R})$, (14)

Setting $b=h=h_1$, then by using (6) we get $(h^2 k h^2) a (h^2 k h^2) d(h)=0$ for all $h,h_1,a,b,k \in H(\mathbb{R})$, (15)

Since $(h^2 k h^2) \in H(R)$, then by using Lemma2.2, we get, either $(h^2 k h^2) = 0$, or $(h^2 k h^2)$ d(*h*)=0 for all *h*, $k \in H(R)$. Therefore

$$(h^2 k h^2) d(h)=0 \qquad \text{for all } h,k \in H(\mathbb{R}). \tag{16}$$

Then also by using Lemma 2.2, we obtain

$$h^2 d(h)=0$$
 for all $k \in H(\mathbb{R})$, (17)

Linearization the above relation we get

$$(h k+kh) d(k)+(h k+kh)d(h)+h^2 d(k)+k^2 d(h)=0 \text{ for all } h,k \in H(\mathbb{R}).$$
 (18)

Replace k by - k in the above relation and comparing the relation so obtained with the relation (18) we get

$$(h k+kh)d(h)+h^2 d(k)=0$$
 for all $h,k \in H(\mathbb{R})$.

Putting (h k+k h) for k in the above relation we obtain

$$2 h k h d(h) + h^2 k d(h) = 0 \qquad \text{for all } h, k \in H(\mathbb{R}).$$
(19)

Right multiplication the above relation by h and using (6) we get

$$h^2 k d(h) h = 0$$
 for all $h, k \in H(R)$.

By using Lemma2.2, we get if $h^2=0$, then from relation (20), we get $h \ k \ d(h) \ h=0$ for all $k \in H(\mathbb{R})$, therefore we obtain $d(h) \ h=0$ for all $h \in H(\mathbb{R})$, let $h=h+h_1 \ k \ h_1$, then we get $d(h) \ h_1 \ k \ h_1=0$ for all $h, h_1, k \in H(\mathbb{R})$.

Then from above relation and Lemma2.2 we get d(h)=0 for all $h \in H(\mathbb{R})$. The proof of Theorem 2.4, is complete.

In the following proposition we will give a condition on a Theorem2.4 to get R is a normal *-ring.

Proposition 2.6. Let R be a non-commutative prime *-ring of characteristic different from 2, and d: R \rightarrow R be a Jordan *-derivation which satisfies d(*h*) *h* + *h* d(*h*) \in Z(R) for all *h* \in H(R), and [d(*s*),*h*] \in Z(R) for all *h* \in H(R), and s \in S(R), then R is normal *-ring.

Proof: we have, $[d(s),h] \in Z(\mathbb{R})$ for all $h \in H(\mathbb{R})$, and $s \in S(\mathbb{R})$, Since $h^2 \in H(\mathbb{R})$, for all $h \in H(\mathbb{R})$, $[d(s), h^2] \in Z(\mathbb{R})$, for all $s \in S(\mathbb{R})$, and $h \in H(\mathbb{R})$. By assumption $[d(h),s] \in Z(\mathbb{R})$ for all $h \in H(\mathbb{R})$, $s \in S(\mathbb{R})$, then we get

 $2h[d(s), h] \in Z(\mathbb{R})$, for all $s \in S(\mathbb{R})$, and $h \in H(\mathbb{R})$.

Hence,

$$2[d(s), h[d(s), h]]=0$$
 for all $s \in S(\mathbb{R})$, and $h \in H(\mathbb{R})$.

Since $[d(s),h] \in Z(\mathbb{R})$, and R is a 2-torsion free, then from above relation we get

 $[d(s),h]^2 = 0$ for all $s \in S(\mathbb{R})$, and $h \in H(\mathbb{R})$.

By the semiprimness of R, we get

[d(s),h] = 0 for all $s \in S(R)$, and $h \in H(R)$.

To prove [d(x),x]=0, Since R be a 2-torsion free we only show, 4[d(x),x]=0 for all $x \in \mathbb{R}$, we have for all $x \in \mathbb{R}$ then $(2x=s+h \text{ for } s \in S(\mathbb{R}), \text{ and } h \in H(\mathbb{R}))$, therefore

$$4[d(x),x]=[d(2x),2x]=[d(s+h), s+h]$$
 for $s \in S(\mathbb{R})$, and $h \in H(\mathbb{R})$.

Hence,

$$4[d(x),x] = [d(s),s] + [d(s),h] + [d(h),h] + [d(h),s]$$

From above relation and Theorem2.4, and characteristic of R not equal 2, we get

$$[d(x), x] = 0$$
 for all $x \in \mathbb{R}$.

Then from Theorem 2.1, we get R is normal *-ring. \Box

Daif and Bell[9] established that a semiprime ring R must be commutative if it admits a derivation d such that d([x,y])=[x,y] for all $x, y \in R$. In the following theorem we will prove if R be a 2-torsion free non-commutative prime *-ring, and d: R \rightarrow R be a Jordan *derivation which satisfies d([x,y])=[x,y] for all $x, y \in R$, then R is normal *-ring, but under some conditions on a *-ring R.

Theorem 2.7. Let R be a 2-torsion free non-commutative prime *-ring, and let d: $R \rightarrow R$ be a Jordan *-derivation which satisfies d([x,y]) = [x,y] for all $x, y \in R$, then R is normal *-ring.

Proof: we have

$$d([x,y]) = [x,y] \quad \text{for all } x, y \in \mathbb{R},$$
(20)

Since $[x^2,y] = [x,y]x + x[x,y]$ then from (20) we get

$$d([x,y]x+x[x,y]) = [x,y] x^{*}+[x,y]d(x)+d(x)[x,y]^{*}+x[x,y]$$

= [x,y]x+x[x,y] for all x, y \in R, (21)

Replace x by $[h,s] \in H(\mathbb{R})$, where $h \in H(\mathbb{R})$, and $s \in S(\mathbb{R})$, in (21) and using (20)we obtain, x[x,y]*+[x,y]x=0 for all $y \in \mathbb{R}$, Replace y by xy, we get, x[x,y]*x+x[x,y]x=0 for all $y \in \mathbb{R}$, hence we get

$$[[x,y],x] x = 0 \quad \text{for all } y \in \mathbb{R}, \tag{22}$$

Define an additive mapping, $f_x: R \rightarrow R$ by $f_x(y)=[x,y]$, then f_x is inner derivation and from (22) we get

$$f_x^{2}(y) x = 0 \quad \text{for all } y \in \mathbb{R}.$$
(23)

Therefore, one can show from relation (23) that

$$x f_x^2(y)=0$$
 for all $y \in \mathbb{R}$. (24)

Putting *yw* from *y* in (23) we get, $f_x^2(y)wx+2f_x(y)f_x(w)x=0$ for all *y*, $w \in \mathbb{R}$, left multiplication by *x* and using (24), therefore since R is a 2-torsion free we obtain

$$xf_x(y)f_x(w)x=0$$
 for all $y, w \in \mathbb{R}$, (25)

Putting *yv* for *y* in (25) we get, $xf_x(y)vf_x(w)x + xyf_x(v)f_x(w)x=0$ for all *y*, *w*, *v* \in R, replace *v* by *xv*, and using (25) we get, $xf_x(y)x v f_x(w)x = 0$ for all *y*, *w*, *v* \in R, Setting *y=w*, and putting *vx* for *v*, we obtain, $xf_x(y)x v x f_x(y)x = 0$ for all *y*, *v* \in R, By primness of a *-ring R, we get, *x* $f_x(y) x = 0$ for all *y* \in R, Putting *yw* from *y* we get, *x* $f_x(y) w x + x yf_x(w) x=0$ for all *y*, *w* \in R, since *x* $f_x(y) w x - xf_x(y)xw - yxf_x(w)x + x yf_x(w) x=0$ for all *y*, *w* \in R, therefore $f_x(y) f_x(w) x = xf_x(y)f_x(w)$ for all *y*, *w* \in R. Then from relation (25) we get, $x^2f_x(y)f_x(w)=0$ for all *y*, *w* \in R, replace *w* by rx^2y we obtain, $x^2f_x(y)rx^2 f_x(y)=0$ for all *y*, *w* \in R, Since R is a *-prime ring we get, $x^2f_x(y) = 0$ for all $y \in$ R, Putting *wy* from *y* in the above relation we get

$$x^{2} w f_{x}(y)=0 \quad \text{for all } y, w \in \mathbb{R},$$
(26)

Putting yw for w in the relation (26) we get

$$x^{2} y w f_{x}(y)=0 \quad \text{for all } y, w \in \mathbb{R},$$
(27)

Left multiplication the relation (27) by y we get

$$y \ x^2 \ w \ f_x(y) = 0 \quad \text{for all } y, \ w \in \mathbb{R},$$
(28)

Comparing the relations (27) and (28) we obtain

$$[x^{2}, y] w [x, y] = 0$$
 for all $y, w \in \mathbb{R}$, (29)

Replace w by wx in (29) we get

$$[x^{2}, y] w x [x, y] = 0$$
 for all $y, w \in \mathbb{R}$, (30)

Right multiplication the relation (29) by x we get

$$[x^{2}, y] w [x, y] x=0$$
 for all $y, w \in \mathbb{R}$, (31)

Comparing the relations (30) and (31) we obtain

$$[x^{2}, y] w [x^{2}, y] = 0$$
 for all $y, w \in \mathbb{R}$, (32)

By primness of a *-ring R, $x^2 \in Z(R)$, and hence $x^2 \in Z(R) \cap H(R)$. Therefore by Lemma 2.3 we get $d(x^2) = 0$, then we obtain $0 = d(x^2) = 2x^2$, therefore $x^2 = 0$, from relations (21) one can obtain

$$x [x,k] = 0$$
 for all $k \in H(\mathbb{R})$,

Therefore, x k x=0 for all for all $k \in H(\mathbb{R})$, then by using Lemma 2.2 we get[*s*,*h*]=0

for all $h \in H(R)$, $s \in S(R)$, hence we obtain R is a normal *-ring. \Box

M. Hongan In [10] proved that, if R is a 2-torsion free ring with an identity element. Then there is no a derivation d: $R \rightarrow R$ such that d(xy+yx)=xy+yx for all $x, y \in R$. In the following Proposition we will give a result similar to the result of M. Hongan [10], but in case Jordan*-derivation.

Proposition 2.8. Let R be a 2-torsion free semiprime *-ring, then there is no Jordan*derivation d: $R \rightarrow R$ which satisfies d(xy+yx)=xy+yx for all $x, y \in R$.

To prove above proposition we the following lemma

Lemma 2.9. Let R be a semiprime *-ring, if there exist an element $h \in H(R)$ which satisfied $h \times h=0$ for all $x \in H(R)$, then h=0.

Proof: We have, $h \ x \ h=0$ for all $x \in H(\mathbb{R})$, Since $(y+y^*) \in H(\mathbb{R})$, for all $y \in \mathbb{R}$, hence $h \ y$ $h=-h \ y^* h$ for all $y \in \mathbb{R}$. Also since $(yhy^*) \in H(\mathbb{R})$, therefore $h \ y \ h \ y^* \ h=-h \ y \ h \ y \ h=0$ for all $y \in \mathbb{R}$, linearization we get, $h \ y \ h \ z \ h+h \ zh \ y \ h=0$ for all $z,y \in \mathbb{R}$, left multiplication by $y \ h$ we get, $h \ y \ h \ z \ h \ y \ h=0$ for all $z,y \in \mathbb{R}$. By the semiprimness of \mathbb{R} , we get h=0.

Proof of Proposition 2.8: If d is a non-zero Jordan *-derivation, then we have

$$d(xy+yx)=d(x)y^*+xd(y)+d(y)x^*+yd(x)=xy+yx \quad \text{for all } x, y \in \mathbb{R}.$$
 (33)

Setting y=ab+ba, x=cd+dc where $a,b,c,d \in H(\mathbb{R})$, then from (33) we get

$$xy+yx=0$$
 for all $y=ab+ba$, $x=cd+dc$ where $a,b,c,d \in H(\mathbb{R})$, (34)

Now setting $x = (cd+dc)^2$, y = (ab+ba) in (33), we get

$$x^2y+yx^2=0$$
 for all $y=ab+ba$, $x=cd+dc$ where $a,b,c,d \in H(\mathbb{R})$, (35)

Left multiplication the relation (34) by *x* we get

$$x^2y+xyx=0$$
 for all $y=ab+ba$, $x=cd+dc$ where $a,b,c,d \in H(\mathbb{R})$, (36)

Right multiplication the relation (34) by *x* we get

$$y x^2 + xyx = 0$$
 for all $y = ab + ba$, $x = cd + dc$ where $a, b, c, d \in H(\mathbb{R})$, (37)

According to (35), (36) and (37) we get

$$x(ab+ba) x=0 \quad \text{for all } a,b \in H(\mathbb{R}), \tag{38}$$

Replace a by ab+ba in (49) we obtain

x a b a x=0 for all $a, b \in H(\mathbb{R})$,

Lift and right multiplying by *a*, we get

a x a b a x a=0 for all $a,b \in H(\mathbb{R})$,

By Lemma2.9 we get

a (cd+dc) a=0 for all $a,d,c \in H(\mathbb{R})$,

Replace *c* by cd+dc we get H(R) =0, therefore $x=-x^*$ for all $x \in R$, hence R=0, which is contradiction. Then assume d=0, therefore xy+yx=0 for all $x,y \in R$, then also we get contradiction. Therefore d(x)=0 for all $x \in R$.

References

- [1] I. N. Herstein: Topics in ring theory, University of Chicago Press, 1969.
- [2] F. J. Dyson, Quaternion determinants, Helvetica Physica Acta, 45 (1972), 289-302.
- [3] I. N. Herstein: Jordan derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104-1110.
- [4] J. Cusack: Jordan derivations on rings, Proc. Amer. Math. Soc. 53 (1975), 321-324.
- [5] M. BreŠar and J.Vukman, On some additive mappings in rings with involution, Aequationes Math. 38(1989), 178-185.
- [6]M. N. Daif and M. S. Tammam, On Jordan and Jordan*-Generalized derivations in Semiprime rings with Involution. Int. J. Contemp. Math. Sciences, Vol. 2, (2007), no. 30, 1487 – 1492.
- [7] J. Vukman: A note on Jordan*- derivations in semiprime rings with involution ,International Mathematical Forum, no. 13,1,(2006), 617-622.
- [8] T.K. Lee. On nilpotent derivations of semiprime ring with involution, Chinese J. Math. Vol. 23, No. 2, pp. 155-166, June (1995).
- [9] M. N. Daif and H. E. Bell, Remark on derivations on semiprime rings, Internat. J. Math. Sci. 15 (1992), no. 1, 205-206
- [10] M. Hongan, A note on semiprime rings with derivations, Internat. J. Math. & Math. Sci. VOL. 20 (1997), no. 2, 413-415.