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Abstract 

 

In this study, to minimize a function of two cost criteria for scheduling  n jobs 

on a single machine , the  problem  is discussed : 

“ Minimizing a function of total square completion time and maximum 

Earliness simultaneously”. 

For this problem we proposed some algorithms to find exact(optimal) solution 

for hierarchical case  and efficient (pareto optimal) solutions for simultaneous case.  

Also we proposed branch and bound algorithm to find exact solution for sum of  

total square completion time and maximum Earliness ,and present algorithm  D to 

find exact solution in a fast way with respect to (BAB) method.  We present 

computational experience for the (BAB) method and algorithm(D)  on a large set 

of test problems.  

 

 

 المستخلص

 

 مه الاعمال عهى ماكنت واحذة nفي هذه انذراست ونخصغيز دانت انكهفت نمعياريه وانحاصهت مه جذونت 

: درسج انمسأنت

F( ∑Ci تصغير الدالة  
2
 , Emax)   حيث انEmax هي irregular measure  

وانحهول  ( hierarchical) انـ اقخزحنا بعض انخوارسمياث لايجاد انحم الامثم في حانتهذه انمسأنت  في

لايجاد  انحم الامثم  (BAB)وكذنك اقخزحنا خوارسميت نهـ  . ( simultaneous)انكفوءة في حانت انـ 

ونكه بطزيقت اسزع مه    (P4)   لايجاد  انحم الامثم نهمسأنت Dوارسميت خوقذمنا ايضاً   . (P4)نهمسأنت 

   وانخي حم حنفيذها عهى D و BABوقذمنا حساباث الاخخباراث نخوارسمياث  .  (BAB)خوارسميت

. مجموعت كبيزة مه انمسائم

 

 

Introduction: 



 It is well known that the optimal solution of single objective models can be quite 

different if the objective is different (for instance, for the simplest model of one machine, 

without any additional constraint, the rule SPT is optimal to minimize flow time but the rule 

MST is optimal to minimize the maximal earliness Emax). 

           In fact, often each particular decision maker wants to minimize a given criterion. 

 Recently, research on more than one criterion scheduling has increased. Since real 

life scheduling problems may require the decision maker to consider a number of criteria before 

arriving at any decision. Nagar et al. [24] in their detailed literature survey of multiple and bi-

criteria problems in scheduling point out the importance of this subject. 

Because, the one-machine problem provides a useful laboratory for the development of 

ideas for heuristics and interactive procedure that may prove to be useful in more general 

models. We consider the one-machine case in this study. 

 

Multi-Criteria Scheduling Problem and approaches  

  In general, multiple-criteria scheduling refers to the scheduling problem in which 

the advantages of a particular schedule are evaluated using more than one performance criterion. 

The managerial relevance of considering multiple criteria for scheduling has been cited in the 

production and operations management literature since the 1950‟s. Smith (1956)[26] shows that 

the choice of a criterion will affect the characteristics of a “best schedule”; different optimizing 

criteria will result in very different schedules. Van Wassenhove and Gelders (1980)[29] and  

provide evidence that a schedule that performs well using a certain criterion might yield a poor 

result using other criteria. Hence, lack of consideration of various criteria may lead to solutions 

that are very difficult to implement in practice. Although the importance of multi-criteria 

scheduling has been recognized for many years ( French, 1982[7]; Nelson et al., 1986[25]; 

George S., and Paul S. 2007[8] ), little attention has been given in the literature to this topic. 

From the problem complexity perspective, the multiple-criteria problem becomes much more 

complex than related single-criteria counterparts ( Lenstra et al., 1975[22] ) Nagar et al. 

(1995)[24] reviews the problem in its general form whereas Lee and Vairaktarakis (1993)[21] 

review a special version of the problem, where one criterion is set to its best possible value and 

the other criterion is tried to be optimized under this restriction. Hoogeveen (2005)[11] studies a 

number of bi-criteria scheduling problems.  

Also, there are some papers about this object (Cheng et al. 2008[5], and Azizoglu et al. 2003 

[1]).  In literature there are two approaches for the bi-criteria problems: the hierarchical 



approach and the simultaneous approach. In the hierarchical approach, one of the two criteria is 

considered as the primary criterion and the other one is considered as the secondary criterion. 

The problem is to minimize the primary criterion while breaking ties in favor of the schedule that 

has the  minimum secondary criterion value. The studies by Chang P. and Su L.(2001)[3] and 

Chen W., et al.(1997)[4] are examples of hierarchical minimization problems with earliness and 

tardiness costs. The computational complexity results in hierarchical minimization are reviewed 

in Lee and Vairaktarakis (1993)[21]. In the simultaneous approach there are two types ,the first 

one typically generates all efficient schedules and selects the one that yields the best composite 

objective function value of the two criteria .The second is to find sum of these objectives 

.Several scheduling problems considering the simultaneous minimization of various forms of 

earliness and tardiness costs have been studied in the literature  (see, e.g.   Hoogeveen, 

(1995)[13];   Moslehi, et al. (2005)[23]; Emmons(1975)[6] ) . 

 

Basic definitions: 

   Definition(1):[16] The term ”optimize” in a multi-objective decision making problem 

refers to a solution around which there is no way of improving any objective without worsening 

at least one other objective. 

        Definition(2):[16] Suppose we have a problem P ,any schedule      S  δ (where δ is the set 

of all schedules ) is said to be feasible if it satisfies the constraints of the problem P. 

 Definition(3):[11]. A schedule S is said to be efficient if there does not exist another 

schedule S
/
satisfying fi( S

/
 )≤ fi(S) , i=1,…,k  with at least one of the above holding as a strict 

inequality. Otherwise S is said to be dominated by S
/
.  

 Definition(4):[24] A measure of performance is said to be regular if it is a non-

decreasing function of job completion times and the scheduling objective is to minimize the 

performance measure. Examples of regular measures are job flowtime (
_

F ), schedule makespan 

(Cmax) and tardiness based performance  measures. 

 Definition(5):[24] A non-regular performance measure  is usually not a monotone 

function of the job completion times. An example of such a measure is job earliness. 

 Definition (6):[11] The function F(f,g) is said to be non-decreasing in both argument ,if for 

any pair of outcome value (x,y) of the functions f and g ,we have F(x,y)≤ F(x+A,y+B) for each 

pair of non-negative value A and B. 



 

 Theorem (1):[11] If the composite objective function F(f,g) is non-decreasing in both 

argument ,then there exists a pareto optimal schedule that minimize F.■ 

 

  

Basic Scheduling Concepts 

      We start with introducing some important notation where we concentrate on the performance 

criteria with out elaborating on the machine environment etc.  We assume that there are n jobs, 

which we denoted by j1,…,jn these jobs are to be scheduled on  a set of machines that are 

continuously available from time zero on words and that can handle only one job at a time . 

    In this paper, we only state here the notation that is used for single machine , jobs Ji(i=1,…,n) 

has: 

 N: set of jobs. 

 n: The number of jobs in a known sequence. 

 Pj : which means that it has to processed for a period of length pj . 

 dj: a due date ,the date when the jobs should ideally be completed , the completion of job after 

its due date is allowed ,but a penalty is incurred .  When due date is constant for all jobs ,then 

called common due date.   

rj: a release date of job j ,i.e. the earliness time at which the processing of job can begin. 

 The completion time  Cj  

  The lateness Lj=Cj -dj 

 The earliness Ej=max{ 0, dj-Cj} 

For a given schedule σ we compute. 

 Cmax(σ) =maxj(Cj) 

 Lmax(σ)=maxj(Lj) 

 Emax(σ)=maxj(Ej) 

 

 

 

 Fundamental Results and Algorithms: 



Theorem (2)(Smith 1956)[26]. The  1/ / ΣCi problem is minimized by sequencing the 

jobs according to the shortest –processing-time (SPT) rule,  that is, in order of non-

decreasing pi.■ 

Theorem(3)(Jackson 1955)[15]. The 1/ / Lmax problem is minimized by sequencing the 

jobs according to the earliest-due- date (EDD) rule, that is, in order of non-decreasing 

di.■ 

Theorem(4)(Lawler 1973)[20].The 1//fmax problem, fmax is minimized as follows: while 

there are unassigned jobs, assign the job that has minimum cost when scheduled in the 

last unassigned position in that position.■ 

Hoogeveen and Van de Velde [13] provide a generalization to the case that the two 

criteria are  ∑Cj  and fmax where fmax is regular cost function. 

Theorem(5)[12]. The 1/ /Emax problem is solved by sequencing the jobs according to the 

minimum slack time (MST) rule ,that is ,in order of non-decreasing di-pi .■ 

 

Van Wassenhove and Gelder [29]propose a pseudo-polynomial algorithm for finding all 

efficient schedules with respect to ∑Cj and Lmax .Their algorithm searches all possible 

Lmax values .Since a given Lmax value imposes job dead line d j


 ,the algorithm of Smith 

[26] is used to solve the corresponding  1/ d j


/ ∑Cj  problem. 

 

 The Problem Classification: 

In this study , we adopt the terminology of Graham ,Lawler ,and Rinnooy Kan   (1979) 

[9] to classify scheduling problems.   

  Suppose that m machines Mi (i=1,…,m) have to process n jobs Jj (j=1,…,n) . A schedule 

problem type can be specified using a three-field classification α/β/γ composed of the machine 

environment, the job characteristics, and the optimality criterion . 

  

 

 

 

 

Minimizing Total Square Completion Time   



This section  deals with the Quadratic problem of scheduling jobs on a single machine 

such that the  sum of the square of the weighted  completion times of jobs is minimized(i.e.        

1 //


n

i

ii
Cw

1

2  problem) . Relatively little work has been done on problems involving a quadratic 

measure of performance for scheduling a single machine. The single machine scheduling 

problem with the objective of minimizing the sum of squares of the job completion times has 

been studied by Townsend (1978)[28], Bagga and Kalra (1980)[2], Gupta and Sen (1984)[10], 

and Szwarc, Posner, and Liu (1988)[27]). Townsend [28] first formulated the problem and 

presented a branch-and-bound search method to solve it. Bagga and Kalra [2] improved the 

method by providing conditions for precedence among set of jobs.  If wi =1 for every i , then the 

resulting problem 1 //


n

i

iC
1

2 is solved by the following proposition. 

 

   Proposition(1):[17] The SPT rule gives an optimal value for 1//


n

i

iC
1

2  problem. 

     Minimizing Total  Square Completion Time and Maximum Cost 

Now, we will consider the bi-criteria  single machine problem concerns the simultaneous 

minimization of the performance measure total square completion time  


n

i

iC
1

2  and maximum 

cost fmax (i.e. 1//F(


n

i

iC
1

2 ,fmax) problem).Maximum cost is defined as  max
1 ni

{fi(Ci)}, where each 

fi denotes an arbitrary regular or   irregular cost function for job i; regular means that fi(Ci) does 

not decrease when Ci is increased . 

 The 1/ / F (


n

i

iC
1

2 ,fmax)problem  is described as follows. A set of n independent jobs has 

to be scheduled on a single machine that is continuously available from time zero on wards and 

that can process at most one job at a time. Each job Jj ( j =1, ...., n) requires an uninterrupted 

positive processing time p
j
 and has a due date dj. Without loss of generality, we assume that 

the processing times and due dates are integral. A schedule σ specifies for each job when it is 

executed while observing the machine availability constraints. Hence, a schedule σ defines for 

each job Jj its square of completion time 
 
C j

2
 (σ), which we sometimes simply write as  C j

2
 . 



The bi-criteria problem that we consider concerns the simultaneous minimization of the 

performance measures total square completion time  and maximum cost fmax.   

   Hoogeveen and Van de Valde [14] find all efficient solution for  1//F(∑Ci,Emax) problem 

on the range [Emax(MST), Emax(SPT)], Kokasalan and Ahmet [18],Kurz and Canterbury[19] used 

genetic algorithm (GA) to find all efficient solution for  1//F(∑Ci,Emax) problem. Let fmax =Emax 

in our study ,since criterion Emax is a particular case of the function  fmax .    

Note that the minimum slack time (MST) rule ,if  no idle time is allowed , Emax is 

minimized by sequencing the jobs in order of non decreasing values of  si=di-pi .Since Emax is 

irregular function then we choose only the value of Emax in the range [Emax(MST),Emax(SPT)]. 

 Now , consider the following two problems:  

1//Lex(


n

i

iC
1

2 ,Emax) problem ,and 1//Lex(Emax,


n

i

iC
1

2  ) problem. 

 

   The first problem 1//Lex(


n

i

iC
1

2 ,Emax) 

This problem can be written as: 

 Min  Emax 

 s.t.                    …(P1)  




n

i

iC
1

2 =C
*
   ,where C

*
=∑C i

2
(SPT) 

 

Algorithm for problem(P1): 

Step(0): Order the jobs by SPT rule and calculate  


n

i

iC
1

2  and Emax. 

Step(1): If there exist a tie(jobs with the same processing times) order these jobs by MST rule to 

minimize Emax . 

The problem (P1) can be written as:  1/  


n

i

iC
1

2 =C
*
   /Emax . 

Example(1 ): Consider the problem (P1) with the following data: 

i 1 2 3 4 5 

Pi 1 1 7 2 9 

di 18 8 7 6 9 

  s1=17, s2=7, s3=0 ,s4=4 ,s5=0  . 



It is clear that the SPT1 gives schedule (1,2,4,3,5) ,and the point (542,17). 

But SPT2(break a tie of job 1 and 2) gives schedule (2,1,4,3,5), and optimal point (542,16).  

  The second problem 1//Lex(Emax , 


n

i

iC
1

2 ) 

This problem can be written as: 

 Min 


n

i

iC
1

2  

 s.t.           …(P2)  

  Emax=E
*
 , where E

*
=Emax(MST). 

 The problem (P2) can be written as: 1/ Emax=E
*
  /



n

i

iC
1

2 , 

which is equivalent to the problem  1/ri/


n

i

iC
1

2  where  ri= max{0, si-E*}. 

Algorithm (C)for problem (P2): 

Step(0): Order the jobs by MST rule  and calculate Emax(MST)= E
*
. 

Step(1):Let k=1 ,and calculate  rj=max{sj –E
*
 , 0}for every job j  N={1,..,n} of 

unscheduled jobs, σ =(φ), σ be the schedule jobs. 

Step(2): Find a job j* N with minimum rj such that rj* ≤ Ck-1( if there exist a tie choose the 

job j
*
 with smallest pj*,if a tie is still choose the job with smallest indexing),C0=0 when k=1. 

Step(3):N=N-{ j
*
}, σ =( σ , σ(k)). If N= φ go to step(4),else k=k+1 ,go to step(2). 

Step(4): Calculate  


n

i

iC
1

2 (σ) and Emax(σ). 

 

  Theorem(6):Algorithm (C) gives best possible schedule for problem(P2). 

Proof :  Since the problem 1//Lex(Emax , 


n

i

iC
1

2 ) can be written as:  

Min 


n

i

iC
1

2                                                                          …(1) 

  S.t      

)(max MSTECdE jjj              ,      j=1,…,n               …(2) 

Equation (2) means that  



)(max1 MSTECpd jjj     

1max )(  jjj CMSTEPd            ,        j=2,…,n                                   

Where 
1jC  is the completion time for job j-1 . 

First notice that any job j
*
 that chooses in step(2) of algorithm C it must satisfies(2) (i.e. 

)(max* MSTEE j  ) . This makes the earliness of the chosen job j
*
 can not violate the 

maximum earliness of MST schedule ( )(max MSTE ). Second if there exists a tie (more than one 

job j
*
) then we choose the job j

*
 with smallest processing time Pj

*
 which minimize (1) also. 

Hence any schedule constructed by the algorithm C is optimal. 

Example(2): consider the data for problem (P2)  

i 1     2 3 4 

Pi 3 4 8 7 

di 12 4 10 7 

 Since the sj=dj-pj    hence s1=9, s2=0, s3=2 ,s4=0    . 

Hence the MST rule gives the schedule (2,4,3,1) with (Emax,


n

i

iC
1

2 )=(0,982)  . 

Now , r1=9, r2=0 ,r3=2 , r4=0 

j rj Ck-1 j* 

1 9 0 2 

2 0 4 4 

3 2 11 1 

4 0 14 3 

Hence the schedule (2,4,1,3) gives the optimal point (Emax,


n

i

iC
1

2 )=(0,817)  

  Total Square Completion Time and Maximum Earliness  (i.e. F(


n

i

iC
1

2 ,Emax)  ). 

 In this section we will try  to find (pareto optimal) efficient solutions for     

 1/ /F(


n

i

iC
1

2 ,Emax) problem. 

  

This problem can be define as: 



Min 


n

i

iC
1

2  

s.t.          …(P3) 

Emax ≤ E   ,  where E [ Emax (MST), Emax (SPT)] 

 

Proposition(2):[17]   There exists an efficient sequence in the bi-criterion problem (P3) that 

satisfies the SPT rule. 

 Note that an analogous proposition for the MST rule does not hold in general as shown by the 

following example  :  

 

 

 

SPT*  sequence (1,2,4,3), 


n

i

iC
1

2  (SPT*) = 738, Emax(SPT*) = 9 

MST  sequence( 2,4,3,1), 


n

i

iC
1

2 (MST)= 982, Emax(MST) = 0 

SPT* is efficient by Proposition (2.4). 

MST is not efficient since it is dominated by sequence (2,4,1,3) 

with 


n

i

iC
1

2  = 817 and Emax=0 . 

The next algorithm ,which is similar to algorithm for  1//F(∑Ci ,Emax) problem , is given by 

Hoogeveen and Van de Valde[13]  . 

 

Algorithm(D) for problem(P3): 

Step(0): Compute Emax(MST) ,and Emax (SPT) ;let k=1 ,  

Emax (SPT)=E**. 

Step(1): Solve 1/ Emax≤E
**

  /


n

i

iC
1

2  by algorithm(C) for problem (P2)  ; this produces the k  pareto 

optimal schedule σ
(k)

 , and the k  pareto optimal point (


n

i

iC
1

2
(σ

(k)
), Emax(σ

(k)
)). 

Step(2): E**=E** -1, k=k+1. 

Step(3): If E**< Emax(MST) stop, else ,go to step (1). 

  

i 1 2 3 4 

Pi 3 4 8 7 

di 12 4 10 7 

si 9 0 2 0 



Example(4): Consider the problem (P3) with the following data: 

i 1 2 3 4 5 

Pi 3 1 7 7 10 

di 4 12 14 8 10 

  s1=1, s2=11, s3=7 ,s4=1 ,s5=0  . 

Emax(MST)=0 ,Emax(SPT)=11=E**. 

Now, by proposition (2) ,SPT gives efficient schedule(2,1,3,4,5) then the first efficient point   

(1246,11). 

E**=11-1=10 

Now we will solve 1/ Emax≤10  /



n

i

iC
1

2
by algorithm(C) for (P3) 

Now , r1=0, r2=1 ,r3=0 , r4=0 ,r5=0 
j rj Ck-1 j* 

1 0 0 1 

2 1 3 2 

3 0 4 4 

4 0 11 3 

5 0 18 5 

Hence the schedule (1,2,4,3,5) gives ( 


n

i

iC
1

2 ,Emax)=(1254,8) 

E**=8-1=7 

Now ,  r1=0, r2=4 ,r3=0 , r4=0 ,r5=0 

j rj Ck-1 j* 

1 0 0 1 

2 4 3 4 

3 0 11 2 

4 0 12 3 

5 0 18 5 

Hence the schedule (1,4,2,3,5) gives ( 


n

i

iC
1

2 ,Emax)=(1338,1) 

E**=1-1=0 

r1=1, r2=11 ,r3=7, r4=1 ,r5=0 

j rj Ck-1 j* 

1 1 0 5 

2 11 10 1 

3 7 13 2 



4 1 14 4 

5 0 21 3 

Hence the schedule (5,1,2,4,3) gives ( 


n

i

iC
1

2 ,Emax)=(1690,0). 

E**=0-1=-1<Emax(MST).Stop  

Now consider the following problem: 

   The 1//


n

i

iC
1

2 +Emax problem: 

 In this section we decompose the 1//


n

i

iC
1

2 +Emax problem into two subproblems with a 

simpler structure , and state some results which help us in solving it. 

This problem can be written as: 

 

 

 

 

M2=min
s

{


n

i

iC
1

2 +Emax(σ)}   

 s.t. 

 c i)(
≥ p

i)(
   i=1,…,n 

 c i)(
=Cσ(i-1)+Pσ(i)   i=2,…,n    ...(P4)  

 Eσ(i) ≥ d σ(i)  - Cσ(i)  i=1,…,n     

 Eσ(i) ≥ 0                 i=1,…,n       

 

This problem can be decomposed into two subproblems (SP3) and (SP4)  

V3=min
s

 


n

i

iC
1

2

)(  

s.t. 

     c i)(
≥ p

i)(
    ,          i=1,…,n               …(SP3)  

    c i)(
=Cσ(i-1)+Pσ(i)  , i=2,…,n  



 

V4=min
s

{max{Eσ(i)}} 

s.t.                …(SP4) 

 Eσ(i) ≥ d σ(i)  - Cσ(i)      i=1,…,n 

  Eσ(i) ≥ 0      i=1,…,n  

 

Theorem(7)[24] : 

 V1+V2≤ M1 where V1 ,V2 ,and M1 are the minimum objective function values of 

(SP3),(SP4), and (P4) respectively .■ 

   Some Special Cases for the Problem (P4). 

          Case (1): If for every schedule Ci ≥ di  iN then SPT rule gives an optimal value for (P4). 

    Proof: Since Ci ≥  di then   Ei=0  iN          Emax=0. 

Hence the problem (P4) reduce to 1//


n

i

iC
1

2 problem .Then by proposition ( 1) SPT rule gives 

optimal value .■ 

  Case(2): If pi=p   iN then MST rule gives an optimal value for (P4). 

    Proof: If pi=p   iN then 


n

i

iC
1

2  is constant for every sequence ,since MST rule gives 

minimum value for Emax , then MST rule gives optimal value for (P4).■ 

 

  Heuristic method to Calculate Upper Bound (UB) for the Problem  (P4). 

To calculate upper bound (UBE)order the jobs by SPT rule and then calculate 


n

i

iC
1

2  and Emax . 

       Derivation of lower bound (LB) 

To calculate  a lower bound (LB) apply theorem (7).The lower bound of each node in the 

solution search tree are written against the nodes of the tree. To find the optimal solution for 

(P4), we applied the methods for lower and upper bounds that will be used in BAB algorithm     

Example(5): Consider the problem (P4) with the following data: 

i 1 2 3 4 5 

Pi 3 1 7 7 10 

di 4 12 14 8 10 



UBE=


n

i

iC
1

2 (SPT)+ Emax(SPT)=1246+11=1257 

ILB=


n

i

iC
1

2 (SPT)+ Emax(MST)=1246+0=1246 

The optimal schedule is (2,1,4,3,5) with 


n

i

iC
1

2 +Emax=1257 is obtaind by (BAB)method. 

  The lower bound of each node in the solution search tree are written against the nodes of 

the tree. To find the optimal solution for (P4), we applied the methods for lower and upper 

bounds that will be used in BAB algorithm. Where (BAB) Branch and bound methods can be 

used for solving many combinatorial optimization problems. These procedures can be 

conveniently represented as a search (scheduling, branching) tree whose nodes correspond to 

subsets of a feasible solution. To minimize an objective function of a particular scheduling 

problem, first an upper bound UB of the minimum of this objective function is needed. A 

branching rule is used to partition feasible solutions at a node into subsets and a bounding rule 

calculates a lower bound LB on the value of each solution in a subset.  

 

Computational experience  

 An intensive work of numerical experimentations has been performed. We first present 

how instances (tests problem) can be randomly generated . 

 There exists in the literature a classical way to randomly generate tests problem of 

scheduling problems. 

 The processing time Pi are uniformly distributed in the interval [1,10]. 

 The due dates di  are uniformly distributed in the interval [p(1- TF- RDD/2), 

p(1+ TF+ RDD/2)] ; where p=


n

i
i

p
1

 , depending on the relative range of due 

date (RDD) and on the average tardiness factor (TF). 

 For both parameters, the values 0.2,0.4,0.6,0.8and 1.0, are considered .   For each selected value 

of n, one problem was generated for each of five values of parameters producing five problems 

for each value of n .  

 The BAB and D algorithms were tested by coding them in matlab7 and running on 

Pentium IV at 2800MHz with Ram 512MB computer. The BAB algorithm  that described is 

tested on problems with size   (25,50,75)  for problem P(4)   . 

 For problems that are not solved to optimally because the execution time exceed 30 

minutes, the optimal solution for these unsolved problems found by our algorithm  D . 

 Table(1) shows the results for problem  (P4) obtained by BAB algorithm. The first 

column “n” refers to the number of jobs, the second column “EX” refers to the number of 

example for each instance n, the third column “optimal” refers to the optimal value obtained by 

BAB algorithm for problem  (P4), the fourth column “UB” refers to the upper bound , the fifth 

column “ILB” refers to the initial lower bound , the sixth column “nodes” refers to the  number 

of nodes , the seventh column “time” refers to the time cost „by seconds‟ to solve the problem, 

the last column “status” refers to the problem solved „0‟ or not „1‟. The symbol “*” refers to the 

optimal=UB, we stopped when the sum of status‟ column ≥3. 

 Table(2) , show the results for problem  (P4)   obtained by algorithm  (D). The first two 

columns as the same columns in table(1), the third column “value” refers to the minimum value 



that we get by algorithms B, and the last column “time” refers to the time cost „by seconds‟ to 

solve the problem . 

  Table (3)compare between BAB and algorithm (D) to solve a problem(P4)(time by 

seconds). It is clear from table (3) that the BAB method can not solved problems with n75. 

 

Table(1): The performance of initial lower bound, upper bound and computational time of BAB 

algorithm for (P4).  

n EX optimal UB ILB nodes time status 

 

 

25 
 

 

1 111967 111969 111965 324 0.095103 0 

2 104115 104116 104095 623 0.052337 0 

3 139657 139657* 139630 632 0.056231 0 

4 92083 92085 91980 2288 0.177016 0 

5 183234 183235 183173 646 0.05464 0 

 

 

50 
 

 

1 798166 798170 798150 12995 1.10369 0 

2 983380 983380* 983186 22740736 1800.008 1 

3 809433 809433* 809260 96331 7.641318 0 

4 1208294 1208298 1208029 40797 3.169203 0 

5 964878 964878* 964633 385790 30.44505 0 

 

 

75 
 

 

1 2994568 2994569 2994535 20945 1 0 

2 2419151 2419151* 2418829 21254609 1800 1 

3 2422335 2422344 2422236 4660939 410 0 

4 2270098 2270102 2269810 22453697 1800 1 

5 3305425 3305435 3305242 21554412 1800 1 

 

 

Table(2):Results of algorithm (D) for (P4).     

n ex value time 

 

 

25 

 

 

1 111967 0.05163197 

2 104115 0.046552197 

3 139657 0.053125805 

4 92083 0.169790367 

5 183234 0.115045191 

 

 

50 

 

 

1 798166 0.226852784 

2 983380 1.134018331 

3 809433 1.069051694 

4 1208294 1.620483505 

5 964878 1.631177439 

 

 

75 

 

 

1 2994568 0.663017256 

2 2419149 4.178856421 

3 2422335 1.853932184 

4 2270098 4.138179355 

5 3305425 2.829241991 

 

 

100 

 

 

1 5563309 5.920008116 

2 7155468 8.233671951 

3 5906704 10.7733986 

4 5826135 8.979650719 

5 7526972 13.31796964 

Table (3):BAB Vs  algorithm (D) to solve a 

problem(P4)(time by seconds). 

n BAB D 

2255 00..0099 00..0077 

5500  1100 00..99 

7755 11880000 22..88 

110000 11880000 88..55 

220000 11880000 6600 

330000 11880000 116600 

440000 11880000 447755 

550000 11880000 11226633 

 



 

 

200 

 

 

1 46373589 76.42389982 

2 55521422 59.2898395 

3 52408910 71.99848927 

4 43624815 38.55980683 

5 45304972 49.51272606 

 

 

300 

 

 

1 180480504 43.04842239 

2 189082887 203.9020447 

3 183436529 103.2003436 

4 157887962 186.3504953 

5 164143083 266.5680996 

 

 

400 

 

 

1 421800114 257.5486245 

2 423348548 740.1145268 

3 430916378 743.7059773 

4 394604568 336.3430679 

5 413687818 402.8218975 

 

 

500 

 

 

1 712946453 1045 

2 763797716 1378.468031 

3 755495456 1208.093472 

4 782833408 1443.172362 

5 750245272 1240.52467 
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