
 1

Design and Implementation of ILP Based Selection Algorithm for Genetic

Programming system (ILPSAGP)
Dr .Rabah Nory Farhan

College of Computers, University Of Anbar

Email:rabahalobaidy@yahoo.com

1. Introduction
The term Genetic Programming1 (GP)

[2] has two possible meanings. First, it is

often used to subsume all evolutionary

algorithms that have tree data structures

as genotypes. Second, it can also be

defined as the set of all evolutionary

algorithms that breed programs,

algorithms, and similar constructs. In.

The conventional well-known input-

processing-output model from computer

science states that a running instance of

a program uses its input information to

compute and return output data. In

Genetic Programming, usually some

inputs or situations and corresponding

output data samples are known or can be

produced or simulated. The goal then is to

find a program that connects them or that

exhibits some kind of desired behavior

according to the specified situations. GP

uses the natural phenomena in the life in cell

level like Crossover, Mutation and natural

selection. In this paper we propose an

excellent algorithm called ILPSAGP which

emphases and extend the GP by Inductive

Logic Programming (ILP).

2) Genetic Programming Overview:

2.1) Introduction:
In genetic programming, populations of

hundreds or thousands of computer

programs are genetically bred. This breeding

is done using the Darwinian principle of

ABSTRACT

Genetic Programming is one of the evolutionary algorithms developed to solve wide

area of industrial and scientific problems. Rather than dealing with population of

string like Genetic Algorithm, Genetic Programming composes the first population

from programs tree derived from the function set of the problem. In this paper, we

extend the selection algorithm of the GP by using the Learning Classifier System,

which build and derive the Hypothesis set from the population. The selection

algorithm redesigned to enforce the selection been added from the Hypothesis

domain. The proposed system called ILPSAGP was built using C#.net 2008 and

tested with traditional problem like Line Regression problem. The obtained results

shows more accurate result than traditional Genetic Programming.

Keywords: Genetic Programming, Inductive Logic Programming, Selection

Algorithms, Crossover, Mutation, S-Expression.

 2

survival and reproduction of the fittest

along with a genetic recombination

(crossover) operation appropriate for

mating computer programs. As will be

seen, a computer program that solves (or

approximately solves) a given problem

may emerge from this combination of

Darwinian natural selection and genetic

operations. Genetic programming starts

with an initial population of randomly

generated computer programs composed

of functions and terminals appropriate to

the problem domain. The functions may

be standard arithmetic operations,

standard programming operations,

standard mathematical functions, logical

functions, or domain-specific functions.

In summary, the genetic programming

paradigm breeds computer programs to

solve problems by executing the

following three steps[2,5]:

(1) Generate an initial population of

random compositions of the functions

and terminals of the problem (computer

programs).

(2) Iteratively perform the following

substeps until the termination criterion

has been satisfied:

(a) Execute each program in the

population and assign it a fitness

value according to how well it

solves the problem.

(b) Create a new population of

computer programs by applying

the following two primary

operations. The operations are

applied to computer program(s)

in the population chosen with a

probability based on fitness.

 (i) Copy existing computer

programs to the new population.

 (ii) Create new computer

programs by genetically recombining

randomly chosen

 parts of two existing programs.

(3) The best computer program that

appeared in any generation (i.e., the best-so-

far individual) is designated as the result of

genetic programming. This result may be a

solution (or an approximate solution) to the

problem.

2.2) Initial Structure (Population):
 In every adaptive system or learning

system, at least one structure is undergoing

adaptation. For the conventional genetic

algorithm and genetic programming, the

structures undergoing adaptation are a

population of individual points from the

search space, rather than a single point.

Genetic methods differ from most other

search techniques in that they

simultaneously involve a parallel search

involving hundreds or thousands of points in

the search space[6].

The set of possible structures in genetic

programming is the set of all possible

compositions of functions that can be

composed recursively from the set of Nfunc

functions from F = {f1,f2,...,fNfunc} and the

set of Nterm terminals from T =

{a1,a2,...,aNterm}. Each particular function

fi in the function set F takes a specified

number z(fi) of arguments (z(f1), z(f2) ...,

z(fNfunc)). That is, function fi has arity

z(fi).

The functions in the function set may

include

 arithmetic operations (+, -, *, etc.),

 mathematical functions (such as

sin, cos, exp, and log),

 Boolean operations (such as AND,

OR, NOT),

 conditional operators (such as If-

Then-Else),

 functions causing iteration (such as

Do-Until),

 functions causing recursion, and

 any other domain-specific functions

that may be defined.

 As an example, consider the even-2-

 3

 parity function (i.e., the not-

exclusive-or function, the equivalence

function) with two arguments. This

function returns T (True) if an even

number of its arguments (i.e., D0 and

D1) are T; otherwise, this function

returns NIL (False). This Boolean

function can be expressed in

disjunctive normal form (DNF). See

figure (1).

2.3) GP Fitness Function:
Fitness is the driving force of

Darwinian natural selection and,

likewise, of both conventional genetic

algorithms and genetic programming.

In nature, the fitness of an individual

is the probability that it survives to the

age of reproduction and reproduces.

This measure may be weighted to

consider the number of offspring.

There are many fitness functions for

GP as most used is the Raw Fitness

which is shown as bellow[2,8]:

where S(i, j) is the value returned

by S-expression i for fitness case j

(of N cases) and where C(j) is the

correct value for fitness case j.

2.4) Reproduction:
The reproduction operation for genetic

programming is the basic engine of

Darwinian natural selection and survival of

the fittest. The reproduction operation is

asexual in that it operates on only one

parental S-expression and produces only one

offspring S-expression on each occasion

when it is performed. The operation of

reproduction consists of two steps. First, a

single S-expression is selected from the

population according to some selection

method based on fitness. Second, the

selected individual is copied, without

alteration, from the current population into

the new population (i. e., the new

generation).

When the reproduction operation is

performed by means of the fitness-

proportionate selection method, it is called

fitness-proportionate reproduction.

Among the alternative selection methods are

tournament selection and rank

selection[5,6]. In rank selection, selection is

based on the rank (not the numerical value)

of the fitness values of the individuals in the

population. Rank selection reduces the

potentially dominating effects of

comparatively high-fitness individuals in the

population by establishing a predictable,

limited amount of selection pressure in favor

of such individuals. At the same time, rank

selection exaggerates the difference between

closely clustered fitness values so that the

better ones can be sampled more In

tournament selection, a specified group of

individuals (typically two) are chosen at

random from the population and the one

with the better fitness (i.e., the lower

standardized fitness) is then selected. When

two bulls fight over the right to mate with a

given cow, tournament selection is

occurring.

2.5) Crossover Operation
The crossover (sexual recombination)

operation for genetic programming creates

Figure(1). Initial Population

1

(,) | (,) () |
N

J

R i t S i j C j


  ……….(1)

 4

variation in the population by producing

new offspring that consist of parts taken

from each parent. The crossover

operation starts with two parental S-

expressions and produces two offspring

S-expressions. The first parent is chosen

from the population by the same fitness-

based selection method used for

selection for the reproduction operation.

The operation begins by independently

selecting, using a uniform probability

distribution, one random point in each

parent to be the crossover point for that

parent. Note that the two parents

typically are of unequal size. The

crossover fragment for a particular

parent is the rooted subtree which has as

its root the crossover point for that

parent and which consists of the entire

subtree lying below the crossover point.

Figure (2) shows the Crossover

operation[2].

2.6) Mutation Operation

The mutation operation begins by selecting a

point at random within the S-expression.

This mutation point can be an internal (i.e.,

function) point or an external (i.e., terminal)

point of the tree. The mutation operation

then removes whatever is currently at the

selected point and whatever is below the

selected point and inserts a randomly

generated subtree at that point. This

operation is controlled by a parameter that

specifies the maximum size (measured by

depth) for the newly created subtree that is

to be inserted. This parameter typically has

the same value as the parameter for the

maximum initial size of S-expressions in the

initial random population.

A special case of the mutation operation

involves inserting a single terminal at a

randomly selected point of the tree. This

point mutation occurs occasionally in the

crossover operation when the two selected

crossover points are both terminals. See

figure (3) for details.

Before

After

Figure(2). Crossover Operation
Figure(3). Mutation Operation

 5

3.7) GP architecture
Figure (4) shows the detailed flowchart

for the genetic programming algorithm.

The index i refers to an individual in

the population of size M. The variable

GEN is the number of the current

generation. The box labeled "Evaluate

fitness of each individual in the

population" in this flowchart is

computed using Raw Fitness as

discussed earlier. This flow chart is often

embedded within an outer loop for

controlling multiple independent

runs[2,5,8].

3)Inductive Logic Programming(ILP):

Inductive Logic Programming is a

research area formed by the intersection of

machine learning and logic programming.

An ILP problem consists of a set of given

positive and negative examples (E
+

, E
-
), the

background knowledge (B) and the set of

possible programs(P) to learn. ILP aims to

learn new Hypothesis (H) that justify the

positive Examples. It is defined as[3,7] :

Fillset() procedure accomplished by

initiating the set S to be filled for each

example. the bottom clause (line 2)

generated. Then, using the bottom clause,

we generate all valid clauses4 (line 4),

normalize them (line 5), and insert them in

the set (line 6).The insertUpdateInSet()

procedure works as follows. If the example

class is positive, the clause is inserted into S

and the positive counter is updated. If the

example class is negative, the clause is not

added to S, only the negative counter of the

clause is updated. This means that the

clauses generated from the negative

examples that are not in S are discarded.

prune(), is invoked to remove useless

clauses from S (e.g., clauses with coverage

lower than some predefined minimum

number of examples). Next, all negative

examples are also processed and then the set

is pruned again.

Each individual in the population of the GP

can be regarded as an example for the ILP.

The fitness function used for achieving a

classification tool to split the Examples in

GP population into Positive Examples and

Negative Examples.

 The covering of the Hypothesis (H) occur if

(H) cover all the positive examples and none

of the negative examples. The details of the

ILP are shown in the algorithm below[4,11]:

i =Population

Size?

N

Select

Operator with

probability

Select One

Individual

Select Two

Individuals

Perform

Mutation

Perform

Crossover

Add Offspring

to Pool

Add Offspring

to Pool

i=i+1 i=i+2

Y

Next Generation

Start

i=0

i

Figure(4). Detailed GP architecture

Mutation Crossover

 6

4) the proposed system ILPSAGP
The proposed system developed in this

research extend the functionality of the

Selection algorithm to take into

consideration the Covering Test (CT) of

the individuals(Programs). Before we

can use the covering Test, the

Individuals must be transformed into

binary representation in the form of

Logic Rules. The transformation set

predefined template for each rule.

4.1) Individuals Transformation
 The main idea behind the scene is

accomplished via the process called

Individual Transformation, this process

take a program represents the individual

in the population, and convert is into the

norm of rule. the produced rule consists

of two sections, first the condition part and

the second the conclusion part.

 If (conditions) then (Conclusion)

the number of symbols and their properties

must be specified as well as the possible

actions. Each symbol identifies an integer

variable which is either read-only or read-

write. a program can be provided with some

general-purpose variables (a and b in the

example). Additional symbols with special

meanings can be introduced. an input

symbol IN where incoming messages will

occur and a variable OUT from which

outgoing messages can be transmitted from

could be added. An action set containing

mathematical operations like addition,

subtraction, value assignment, and an

equivalent to logical negation58 is sufficient

for many problems but may be extended

arbitrarily. Before transform the individual,

we must set the encoding table for the

Variable – Length Individual.

To transform an individual, we follow the

Encoding Table shown in table(2). For the

Program bellow:

 Program Factorial(a)

o p=1

o b=a

o while(b>0)

o {

o p=p*b

o b=b-1

o }

We should take into consideration that this

program may be constructed using ordinary

GP operation but for simplicity we omit the

Tree representation for it.

Table(1) shows the process of (IT) for this

program and the binary representation of the

rules obtained from this process.

ILP_Generate_H(B,E+,E−,C):

Given: background knowledge B, finite

training set E = E+ ∪ E−, constraints C.

Return: the best hypothesis that explains

some of the E+ and satisfies C.

1. S = ∅
2. foreach e ∈ E+ do

3. fillSet(S,B, e,C)

4. endforeach

5. S = prune(S,C)

6. foreach e ∈ E− do

7. fillSet(S,B, e,C)

8. endforeach

9. S = prune(S,C)

10. return bestClause (S,C)

fillSet(S, B, e, C):

Given: decorated set S, background

knowledge B, example e, constraints C.

1. class = getExampleClass(e)

2. bottom = saturate(e,B,C)

3. do

4. clause = findValidClause(bottom,C)

5. clause = normalise(clause)

6. insertUpdateInSet(clause,S, class)

7. while clause ! = ∅

8.end

 7

Program

(individual)

Transformed

Program

Binarizaion

b=a

IF (start=1) AND true

THEN

b= a

0010 010 0001 0 110 0110 01 1010

p=1

(start)=1 AND true

THEN

p=1

...

while(b>0)

{

p=p*b

IF (b>0) AND true

THEN

p=p*b

...

b=b-1

}

IF (b>0) OR false

THEN

b=b-1

...

1-Symbols Encoding

0

1

Start

id

IN

OUT

a

b

0000

0001

0010

0011

0101

0110

1001

1010

2-Comp.

>

>=

=

<=

<

!=

true

false

000

001

010

011

100

101

110

111

3-Concat.

AND

OR

0

1

4-ACTION

=X+Y

=X-Y

=X

=1-X

00

10

01

11

Table (1). The IT transformation of the Program.

T
ab

le(1
). E

n
co

d
in

g
 o

f th
e IT

 R
u
les

0010 010 0001 0 110 0110 01 1010
Start = 1 AND Tru

e

OUT =

X
b

This rule incoded using the IT table.

 8

The following algorithm represents the

overall design of the ILPSAGP system

ILPSAGP_Selection (POP[MAX])

 For i=1 to MAX do

o IT_transfrom(POP[i])

o Set_H(POP[i], B,E+,E−,C,

 Threshold)
o ILP_Generate_H(B,E+,E−,

C):

o

 Normalize_H(POP)

 SL=Set_Tournament(H,POP)

 Return (SL)

 END

This extended selection algorithm uses

Set_H() function to classify the

population into Positive examples and

negative examples depending on the

Threshold value with the constraint C.

Then the ILP_Generate_H() algorithm

described earlier, used for successive

covering for best Hypothesis explain the

set of { B,E+,E−,C,}. The Tournament

selection algorithm used for the best

individual cover the hypothesis.

5) Experiment results on

ILPSAGP system
 The proposed system called

ILPSAGP was written in C#.net 2008.

and has the Graphical User Interface

shown in figure(5). Figure (5) shows the

system initiated with ILPSAGP choice

with (Population size =100, Generation

=1000) for the Line Regression problem.

The Error shows the difference between

the optimal and the actual Fitness, it is

for ILPSAGP , Error=6.838. and for

ordinary GP with the same setting the

Error obtained is (Error=12.48). this

result shows that the ILPSAGP is more

accurate than the GP. The sample table

of line Coordinate points is shown in the

table (3).

Y-Cord. X-Cord.

0.8 1

1 1.5

2 2.5

2.8 3.5

14 5

6.3 8.5

8 12

12 8

The line regression try to do the curve fitting

for these points and returen the S-Expresion

that is for these X-points as Input give us the

Y-points as output with Error registered in

the system.

6) Conclusion and future Work

In this paper, a new paradigm in

Evolutionary algorithm was accomplished

by extended the Genetic Programming by

the fruitful technique called Inductive Logic

Programming that operate with Logic

Programming. The implemented system

called ILPSAGP was built and tested with

the Line Regression Problem. The

experimental results shows that the proposed

system has less Error than traditional GP

algorithm due to use of Hypothesis

discovery technique of ILP. The proposed

system could be developed and extended

with other selection algorithm rather than

Tournament algorithm and could be turned

from Binary rules into symbolic Rule-based

GP.

table (3). Line Points for experiment

 9

Figure (5). ILPGP initiated with Extended ILP.

Figure (6). ILPGP initiated with traditional GP setting.

 10

7) References:

1. Hendrik Blockeel Jan Ramon,

"Inductive Logic

Programming",17th

International Conference, ILP,

Corvallis, OR, USA, June 19-

21, 2007.

2. Jian Huang and Adrian R.

,"Toward Inductive Logic

Programming for Collaborative

Problem Solving", NICTA

Victoria Research Laboratory,

University of Melbourne,

Victoria, Australia, 2002.

3. John R. Koza. Hierarchical

genetic algorithms operating on

populations of computer

programs. In Proceedings of

the Eleventh International Joint

Conference on Artificial

Intelligence IJCAI-89, pages

768–774, 1989. In proceedings

[1953]. online available at

http://dli.iiit.ac.in/ijcai/IJCAI-

89-VOL1/PDF/123.pdf

4. John R. Koza, Forrest H.

Bennett III, David Andre, and

Martin A. Keane. Genetic

Programming III: Darwinian

Invention and Problem

Solving. Morgan Kaufmann,

first edition, May 1999. ISBN:

978-1-55860-543-5.

5. Katsumi Inoue,

"Circumscription Policies for

Induction", Inductive Logic

Programming,14
th

 International

Conf., Porto, Portugal,

September 6-8, 2004.

6. Kristian Kersting, "An

Inductive Logic Programming

Approach to Statistical

Relational Learning", IOS Press,

2006.

7.Nichael Lynn Cramer. A

representation for the adaptive

generation of simple sequential

programs. In Proceedings of the 1st

International Conference on

Genetic Algorithms and their

Applications, pages 183–187,

1985. In proceedings [855]. Online

available at

http://www.sover.net/~nichael/nlc-

publications/icga85/index.

8. StefanoFerilli,."Automatic

Induction of First-Order Logic

Descriptors Type Domains from

Observations", Inductive Logic

Programming,14th International

Conf., Porto, Portugal, September

6-8, 2004.

9. S. H. Muggleton. Stochastic logic

programs. In L. De Raedt, editor,

Advances in Inductive Logic

Programming, pages 254–264. IOS

Press, 1996.

10. S. H. Muggleton. “Learning

Structure and Parameters of

Stochastic Logic Programs”, In

Proceedings of the Twelfth

International Conference on

Inductive Logic Programming

(ILP-02), volume 2583 of LNCS,

Sydney, Australia, July 9–11 2002.

Springer.

11. Thomas Weise, "Global

Optimization Algorithms Theory

and Application",2end edition,

preprinted copy,2009.

http://dli.iiit.ac.in/ijcai/IJCAI-89-VOL1/PDF/123.pdf
http://dli.iiit.ac.in/ijcai/IJCAI-89-VOL1/PDF/123.pdf
http://www.sover.net/~nichael/nlc-

