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1. Introduction 
The term Genetic Programming1 (GP) 

[2] has two possible meanings. First, it is 

often used to subsume all evolutionary 

algorithms that have tree data structures 

as genotypes. Second, it can also be 

defined as the set of all evolutionary 

algorithms that breed programs, 

algorithms, and similar constructs. In. 

The conventional well-known input-

processing-output model from computer 

science states that a running instance of 

a program uses its input information to 

compute and return output data. In 

Genetic Programming, usually some 

inputs or situations and corresponding 

output data samples are known or can be 

produced or simulated. The goal then is to 

find a program that connects them or that 

exhibits some kind of desired behavior 

according to the specified situations. GP 

uses the natural phenomena in the life in cell 

level like Crossover, Mutation and natural 

selection. In this paper we propose an 

excellent algorithm called ILPSAGP which 

emphases and extend the GP by Inductive 

Logic Programming (ILP). 
 

2) Genetic Programming Overview: 

2.1) Introduction: 
In genetic programming, populations of 

hundreds or thousands of computer 

programs are genetically bred. This breeding 

is done using the Darwinian principle of 
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survival and reproduction of the fittest 

along with a genetic recombination 

(crossover) operation appropriate for 

mating computer programs. As will be 

seen, a computer program that solves (or 

approximately solves) a given problem 

may emerge from this combination of 

Darwinian natural selection and genetic 

operations. Genetic programming starts 

with an initial population of randomly 

generated computer programs composed 

of functions and terminals appropriate to 

the problem domain. The functions may 

be standard arithmetic operations, 

standard programming operations, 

standard mathematical functions, logical 

functions, or domain-specific functions. 

In summary, the genetic programming 

paradigm breeds computer programs to 

solve problems by executing the 

following three steps[2,5]: 

 

(1) Generate an initial population of 

random compositions of the functions 

and terminals of the problem (computer 

programs). 

(2) Iteratively perform the following 

substeps until the termination criterion 

has been satisfied: 

(a) Execute each program in the 

population and assign it a fitness 

value according to how well it 

solves the problem. 

(b) Create a new population of 

computer programs by applying 

the following two primary 

operations. The operations are 

applied to computer program(s) 

in the population chosen with a 

probability based on fitness. 

              (i) Copy existing computer 

programs to the new population. 

             (ii) Create new computer 

programs by genetically recombining 

randomly chosen         

                   parts of two existing programs. 

(3) The best computer program that 

appeared in any generation (i.e., the best-so-

far individual) is designated as the result of 

genetic programming. This result may be a 

solution (or an approximate solution) to the 

problem. 

2.2) Initial Structure (Population): 
 In every adaptive system or learning 

system, at least one structure is undergoing 

adaptation. For the conventional genetic 

algorithm and genetic programming, the 

structures undergoing adaptation are a 

population of individual points from the 

search space, rather than a single point. 

Genetic methods differ from most other 

search techniques in that they 

simultaneously involve a parallel search 

involving hundreds or thousands of points in 

the search space[6]. 

The set of possible structures in genetic 

programming is the set of all possible 

compositions of functions that can be 

composed recursively from the set of Nfunc 

functions from F = {f1,f2,...,fNfunc} and the 

set of Nterm terminals from T = 

{a1,a2,...,aNterm}. Each particular function 

fi in the function set F takes a specified 

number z(fi) of arguments ( z(f1), z(f2) ..., 

z(fNfunc)). That is, function fi has arity 

z(fi). 

The functions in the function set may 

include 

 arithmetic operations (+, -, *, etc.), 

  mathematical functions (such as 

sin, cos, exp, and log), 

 Boolean operations (such as AND, 

OR, NOT), 

 conditional operators (such as If-

Then-Else), 

 functions causing iteration (such as 

Do-Until), 

 functions causing recursion, and 

 any other domain-specific functions 

that may be defined. 

 As an example, consider the even-2- 
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 parity function (i.e., the not-

exclusive-or function, the equivalence 

function) with two arguments. This 

function returns T (True) if an even 

number of its arguments (i.e., D0 and 

D1) are T; otherwise, this function 

returns NIL (False). This Boolean 

function can be expressed in 

disjunctive normal form (DNF). See 

figure (1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3) GP Fitness Function: 
Fitness is the driving force of 

Darwinian natural selection and, 

likewise, of both conventional genetic 

algorithms and genetic programming. 

In nature, the fitness of an individual 

is the probability that it survives to the 

age of reproduction and reproduces. 

This measure may be weighted to 

consider the number of offspring. 

There are many fitness functions for 

GP as most used is the Raw Fitness 

which is shown as bellow[2,8]: 

 

 

 

 

where S(i, j) is the value returned 

by S-expression i for fitness case j 

(of N cases) and where C(j) is the 

correct value for fitness case j. 

 

 

2.4) Reproduction: 
The reproduction operation for genetic 

programming is the basic engine of 

Darwinian natural selection and survival of 

the fittest. The reproduction operation is 

asexual in that it operates on only one 

parental S-expression and produces only one 

offspring S-expression on each occasion 

when it is performed. The operation of 

reproduction consists of two steps. First, a 

single S-expression is selected from the 

population according to some selection 

method based on fitness. Second, the 

selected individual is copied, without 

alteration, from the current population into 

the new population (i. e., the new 

generation).  

When the reproduction operation is 

performed by means of the fitness-

proportionate selection method, it is called 

fitness-proportionate reproduction. 

Among the alternative selection methods are 

tournament selection and rank 

selection[5,6]. In rank selection, selection is 

based on the rank (not the numerical value) 

of the fitness values of the individuals in the 

population. Rank selection reduces the 

potentially dominating effects of 

comparatively high-fitness individuals in the 

population by establishing a predictable, 

limited amount of selection pressure in favor 

of such individuals. At the same time, rank 

selection exaggerates the difference between 

closely clustered fitness values so that the 

better ones can be sampled more In 

tournament selection, a specified group of 

individuals (typically two) are chosen at 

random from the population and the one 

with the better fitness (i.e., the lower 

standardized fitness) is then selected. When 

two bulls fight over the right to mate with a 

given cow, tournament selection is 

occurring. 

2.5) Crossover Operation 
The crossover (sexual recombination) 

operation for genetic programming creates 

Figure(1). Initial Population  

1

( , ) | ( , ) ( ) |
N

J

R i t S i j C j


  ……….(1) 



 4 

variation in the population by producing 

new offspring that consist of parts taken 

from each parent. The crossover 

operation starts with two parental S-

expressions and produces two offspring 

S-expressions. The first parent is chosen 

from the population by the same fitness-

based selection method used for 

selection for the reproduction operation. 

The operation begins by independently 

selecting, using a uniform probability 

distribution, one random point in each 

parent to be the crossover point for that 

parent. Note that the two parents 

typically are of unequal size. The 

crossover fragment for a particular 

parent is the rooted subtree which has as 

its root the crossover point for that 

parent and which consists of the entire 

subtree lying below the crossover point. 

Figure (2) shows the Crossover 

operation[2]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.6) Mutation Operation 

The mutation operation begins by selecting a 

point at random within the S-expression. 

This mutation point can be an internal (i.e., 

function) point or an external (i.e., terminal) 

point of the tree. The mutation operation 

then removes whatever is currently at the 

selected point and whatever is below the 

selected point and inserts a randomly 

generated subtree at that point. This 

operation is controlled by a parameter that 

specifies the maximum size (measured by 

depth) for the newly created subtree that is 

to be inserted. This parameter typically has 

the same value as the parameter for the 

maximum initial size of S-expressions in the 

initial random population. 

A special case of the mutation operation 

involves inserting a single terminal at a 

randomly selected point of the tree. This 

point mutation occurs occasionally in the 

crossover operation when the two selected 

crossover points are both terminals. See 

figure (3) for details. 
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Figure( 2). Crossover Operation 
Figure(3). Mutation Operation 
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3.7) GP architecture  
Figure (4) shows the detailed  flowchart 

for the genetic programming algorithm. 

The index i refers to an individual in 

the population of size M. The variable 

GEN is the number of the current 

generation. The box labeled "Evaluate 

fitness of each individual in the 

population" in this flowchart is 

computed using Raw Fitness as 

discussed earlier. This flow chart is often 

embedded within an outer loop for 

controlling multiple independent 

runs[2,5,8]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3)Inductive Logic Programming(ILP): 
 

Inductive Logic Programming is a 

research area formed by the intersection of 

machine learning and logic programming. 

An ILP problem consists of  a set of given 

positive and negative examples (E
+ 

, E
-
 ), the 

background knowledge (B) and the set of 

possible programs(P) to learn. ILP aims to 

learn new Hypothesis (H) that justify the 

positive Examples. It is defined as[3,7] : 

Fillset() procedure accomplished by 

initiating the set S to be filled for each 

example. the bottom clause (line 2) 

generated. Then, using the bottom clause, 

we generate all valid clauses4 (line 4), 

normalize them (line 5), and insert them in 

the set (line 6).The insertUpdateInSet() 

procedure works as follows. If the example 

class is positive, the clause is inserted into S 

and the positive counter is updated. If the 

example class is negative, the clause is not 

added to S, only the negative counter of the 

clause is updated. This means that the 

clauses generated from the negative 

examples that are not in S are discarded. 

prune(), is invoked to remove useless 

clauses from S (e.g., clauses with coverage 

lower than some predefined minimum 

number of examples). Next, all negative 

examples are also processed and then the set 

is pruned again. 

Each individual in the population of the GP 

can be regarded as an example for the ILP. 

The fitness function used for achieving a 

classification tool  to split the Examples in 

GP population into Positive Examples and 

Negative Examples. 

 The covering of the Hypothesis (H) occur if 

(H) cover all the positive examples and none 

of the negative examples. The details of the 

ILP are shown in the algorithm below[4,11]: 

 

 

i =Population 

Size? 

 
N 

Select 

Operator with 

probability 

 
 

Select One 

Individual 

Select Two 

Individuals 

Perform 

Mutation 

Perform 

Crossover 

Add Offspring 

to Pool 

Add Offspring 

to Pool 

i=i+1 i=i+2 
 

Y 

Next Generation 

 

Start 

i=0 

 

i 

Figure(4). Detailed GP architecture 

Mutation Crossover 
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4) the proposed system ILPSAGP 
The proposed system developed in this 

research extend the functionality of the 

Selection algorithm to take into 

consideration the Covering Test (CT) of 

the individuals(Programs). Before we 

can use the covering Test, the 

Individuals must be transformed into 

binary representation in the form of 

Logic Rules. The transformation set 

predefined template for each rule.  

4.1) Individuals Transformation  
 The main idea behind the scene is 

accomplished via the process called 

Individual Transformation, this process 

take a program represents the individual 

in the population, and convert is into the 

norm of rule. the produced rule consists 

of two sections, first the condition part and 

the second the conclusion part.  

   If ( conditions ) then ( Conclusion) 

the number of symbols and their properties 

must be specified as well as the possible 

actions. Each symbol identifies an integer 

variable which is either read-only or read-

write. a program can be provided with some 

general-purpose variables (a and b in the 

example). Additional symbols with special 

meanings can be introduced. an input 

symbol IN where incoming messages will 

occur and a variable OUT from which 

outgoing messages can be transmitted from 

could be added. An action set containing 

mathematical operations like addition, 

subtraction, value assignment, and an 

equivalent to logical negation58 is sufficient 

for many problems but may be extended 

arbitrarily. Before transform the individual, 

we must set the encoding table for the 

Variable – Length Individual.  

 

To transform an individual, we follow the 

Encoding Table shown in table(2). For the 

Program bellow: 

 Program Factorial(a) 

o p=1 

o b=a 

o while(b>0) 

o { 

o p=p*b 

o b=b-1 

o } 

We should take into consideration that this 

program may be constructed using ordinary 

GP operation but for simplicity we omit the 

Tree representation for it. 

Table(1) shows the process of (IT) for this 

program and the binary representation of the 

rules obtained from this process.            

 

 

 

 

ILP_Generate_H(B,E+,E−,C): 

Given: background knowledge B, finite 

training set E = E+ ∪ E−, constraints C. 

Return: the best hypothesis that explains 

some of the E+ and satisfies C. 

1. S = ∅ 
2. foreach e ∈ E+ do 

3. fillSet(S,B, e,C) 

4. endforeach 

5. S = prune(S,C) 

6. foreach e ∈ E− do 

7. fillSet(S,B, e,C) 

8. endforeach 

9. S = prune(S,C) 

10. return bestClause (S,C) 

************************* 

fillSet(S, B, e, C): 

Given: decorated set S, background 

knowledge B, example e, constraints C. 

1. class = getExampleClass(e) 

2. bottom = saturate(e,B,C) 

3. do 

4. clause = findValidClause(bottom,C) 

5. clause = normalise(clause) 

6. insertUpdateInSet(clause,S, class) 

7. while clause ! = ∅ 

8.end 
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Program 

(individual) 

Transformed 

Program 

Binarizaion 

b=a 

 

 

IF (start=1) AND true 

THEN 

b= a 

 

0010  010 0001  0   110  0110 01 1010 

 

 

p=1 

 

 

 

(start)=1 AND true 

THEN 

p=1 

 

... 

while(b>0) 

{ 

p=p*b 

IF (b>0) AND true 

THEN 

p=p*b 

 

 

... 

b=b-1 

} 

IF (b>0) OR  false 

THEN 

b=b-1 

 

 

 

... 

1-Symbols Encoding 

0 

1 

Start 

id 

IN 

OUT 

a 

b 

 

0000 

0001 

0010 

0011 

0101 

0110 

1001 

1010 

2-Comp.  

> 

>= 

= 

<= 

< 

!= 

true 

false 

000 

001 

010 

011 

100 

101 

110 

111 

3-Concat.  

AND 

OR 

0 

1 

4-ACTION  

=X+Y 

=X-Y 

=X 

=1-X 

00 

10 

01 

11 

 

Table (1). The IT transformation of the Program. 

T
ab

le(1
). E

n
co

d
in

g
 o

f th
e IT

 R
u
les 

0010 010 0001 0 110 0110 01 1010 
Start = 1 AND Tru

e 

OUT =

X 
b 

This rule incoded using the IT table.  
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The following algorithm represents the 

overall design of the ILPSAGP system 

 

****************************** 

ILPSAGP_Selection (POP[MAX]) 

****************************** 

 For i=1 to MAX do 

o IT_transfrom(POP[i]) 

o Set_H(POP[i], B,E+,E−,C, 

      Threshold) 
o ILP_Generate_H(B,E+,E−,

C): 

o  

 Normalize_H(POP) 

 SL=Set_Tournament(H,POP) 

 Return (SL) 

 END 

This extended selection algorithm uses 

Set_H() function to classify the 

population into Positive examples and 

negative examples depending on the 

Threshold value with the constraint C.  

Then the ILP_Generate_H() algorithm 

described earlier, used for successive 

covering for best Hypothesis explain the 

set of { B,E+,E−,C,}. The Tournament 

selection algorithm used for the best 

individual cover the hypothesis. 

5) Experiment results on 

ILPSAGP system 
  The proposed system called 

ILPSAGP was written in C#.net 2008. 

and has the Graphical User Interface 

shown in figure( 5). Figure (5) shows the 

system initiated with ILPSAGP choice 

with (Population size =100, Generation 

=1000) for the Line Regression problem. 

The Error shows the difference between 

the optimal and the actual Fitness, it is 

for ILPSAGP , Error=6.838. and for 

ordinary GP with the same setting the 

Error obtained is (Error=12.48). this 

result shows that the ILPSAGP is more 

accurate than the GP. The sample table 

of line Coordinate points is shown in the 

table (3). 

 

 

Y-Cord. X-Cord. 

0.8 1 

1 1.5 

2 2.5 

2.8 3.5 

14 5 

6.3 8.5 

8 12 

12 8 
 

 

The line regression try to do the curve fitting 

for these points and returen the S-Expresion 

that is for these X-points as Input give us the 

Y-points as output with Error registered in 

the system.  

6) Conclusion and future Work 

 
In this paper, a new paradigm in 

Evolutionary algorithm was accomplished 

by extended the Genetic Programming by 

the fruitful technique called Inductive Logic 

Programming that operate with Logic 

Programming. The implemented system 

called ILPSAGP was built and tested with 

the Line Regression Problem. The 

experimental results shows that the proposed 

system has less Error than traditional GP 

algorithm due to use of Hypothesis 

discovery technique of ILP. The proposed 

system could be developed and extended 

with other selection algorithm rather than 

Tournament algorithm and could be turned 

from Binary rules into symbolic Rule-based 

GP.  

 

 

table (3). Line Points for experiment 
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Figure (5). ILPGP initiated with Extended ILP. 

Figure (6). ILPGP initiated with traditional GP setting. 
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