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A B S T R A C T 

Schizophrenia (SZ) is a chronic and severe mental disorder characterized by impairments in 
cognitive skills, perceptions, emotions, and social interactions. A timely and accurate 
diagnosis is crucial for improving prognosis and developing effective treatment strategies. 
Recently, researchers have utilized computational models to enhance the effectiveness and 
speed of schizophrenia diagnosis using electroencephalogram (EEG), consequently reducing 
clinical workload. This research investigates the integration of traditional signal processing 
techniques, feature extraction methods, and artificial intelligence (AI), including machine 
learning (ML) and deep learning (DL), for the categorization of schizophrenia (SZ) utilizing 
EEG data. The electroencephalogram, a crucial tool for assessing cerebral activity, has 
demonstrated importance in mental health research. Upon acquiring brain data, various 
signal-processing techniques are employed to extract pertinent information from the 
temporal, frequency, and spatial domains. The gathered properties, encompassing mean, 
variance, and band power, are the basis for recognizing EEG signals. Traditional machine 
learning techniques, such as Decision Trees and Support Vector Machines (SVMs), provide 
interpretability and effectiveness with constrained datasets. In contrast, deep learning 
techniques, such as convolutional neural networks (CNNs) and extended short-term memory 
networks (LSTMs), excel in analyzing complex EEG patterns; however, they require extensive 
data and significant computational resources. The study examines the challenges associated 
with implementing AI in the diagnosis of schizophrenia, including ethical concerns and issues 
with data quality. These difficulties require collaborative and ethically sound approaches to 
ensure reliable advancement in the area. The research highlights the importance of 
employing many approaches to improve diagnosis accuracy, showcasing the potential of AI-
driven solutions in the classification of schizophrenia. This review offers a comprehensive 
examination of contemporary literature, encompassing themes, approaches, and conclusions. 
The aim is to identify significant advancements and provide insights that help researchers 
and clinicians understand and tackle schizophrenia through innovative AI-driven approaches.  

 

MSC.. 

https://doi.org/10.29304/jqcsm.2025.17.22173 

1. Introduction 

Schizophrenia (SZ) is a devastating mental illness and a degenerative neurological ailment that profoundly 
influences social situations, healthcare systems, and the quality of life for affected individuals and their families [1]. 
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It affects cognitive functions, social interactions, and perception of reality, leading to symptoms such as delusions, 
hallucinations (e.g., auditory or visual distortions), and cognitive deficits that obstruct thought processes.   
Furthermore, SZ patients often exhibit reduced emotional expression, less motivation, difficulties in social 
interaction, motor deficits, and impaired daily functioning [2]. The precise etiology of schizophrenia remains 
unknown; nonetheless, it is unequivocally influenced by a confluence of biological, environmental, and genetic 
variables, impacting around 21 million individuals worldwide [3]. The illness is a major contributor to disability and 
imposes considerable economic and societal burdens due to increased healthcare costs and increasing morbidity 
and mortality rates. An expedient and accurate diagnosis is essential for enhancing patient outcomes and improving 
their quality of life. The increasing demand has led to the development of automated and efficient diagnostic 
methods to differentiate individuals with schizophrenia from healthy individuals. The diagnosis of schizophrenia 
has traditionally relied on clinical interviews and behavioral assessments conducted by professionals.    
Nevertheless, these methods are subjective, laborious, and prone to human error [4]. Neuroimaging techniques, 
such as electroencephalography (EEG), computed tomography (CT), magnetic resonance imaging (MRI), and 
positron emission tomography (PET), have been assessed to improve diagnostic accuracy  [5]. EEG has become a 
favored instrument owing to its remarkable temporal resolution, non-invasive nature, and cost efficiency. 
Electroencephalogram (EEG) signals obtained from scalp electrodes represent the brain's electrical activity, 
producing extensive data that necessitates advanced analytical methods for interpretation  [6].  

Recently, artificial intelligence (AI) has exhibited considerable potential in various fields, including cybersecurity, 
virtual reality therapy, medical diagnostics, disease management, and healthcare optimization. In medical research, 
artificial intelligence, particularly machine learning and deep learning, has revolutionized the analysis of complex 
biomedical data.   The advanced computational power of graphics processing units (GPUs) has accelerated the 
processing and analysis of EEG signals, hence improving diagnostic accuracy for schizophrenia and other 
neurological disorders  [7]. Fig. 1 illustrates a block diagram for classifying schizophrenia using AI. AI-based SZ 
classification consists of several stages, including preprocessing, feature extraction, feature selection, and 
classification. In traditional machine learning (ML) approaches, features are extracted from EEG signals using 
various methods, such as time, frequency, time-frequency, and nonlinear techniques[8]. While ML methods yield 
reliable results, deep learning (DL) models are particularly effective with large datasets as they can automatically 
learn hierarchical feature representations. However, DL models typically require significant computational 
resources and longer training times [9]. This review offers a thorough examination of AI-based methods for 
classifying EEG signals associated with schizophrenia.  

The key contributions of this work are as follows: 

 A systematic comparison of machine learning (ML) and deep learning (DL) techniques, to evaluate their 
effectiveness in schizophrenia detection. 

 The paper explores different feature extraction methods (time, frequency, and time-frequency domains) and 
their impact on classification performance, helping researchers select optimal feature sets. 

 This study evaluates the most efficient EEG preprocessing methods, encompassing filtering, normalization, and 
artifact elimination, to enhance model efficacy. 

 Identification of principal obstacles, including dataset variability and interpretability, along with suggestions for 
future study, such as hybrid models and multimodal data fusion. 
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Fig. 1- Block diagram for classifying schizophrenia using AI. 

2.    Related Work  

Multiple studies have examined the classification of schizophrenia via EEG patterns, employing both machine 
learning and deep learning techniques.  This section summarizes the most pertinent studies, organized by their use 
of diverse methodologies. (Jahmunah et al., 2019) examined EEG classification employing Support Vector Machines 
(SVM) with Radial Basis Function (RBF) and polynomial kernels, attaining a maximum accuracy of 92.91%. Support 
Vector Machine models necessitate meticulous kernel selection, and their efficacy is significantly influenced by the 
selected features [10]. (Siuly et al.,2020) employed Empirical Mode Decomposition (EMD) to analyze EEG data by 
decomposing it into intrinsic mode functions (IMFs). They subsequently conducted feature selection using the 
Kruskal-Wallis test. The Ensemble Bagged Tree (EBT) had the highest efficacy as a classifier, achieving an accuracy 
of 93.21%. The EMD-based decomposition method may produce extraneous or irrelevant features, potentially 
leading to increased computational complexity [11]. (Sunil Kumar Prabhakar et al., 2020) improved Isometric 
Mapping (Isomap) features with the Flower Pollination Algorithm and classified them with Real AdaBoost, achieving 
an accuracy of 98.77%. Feature optimization enhances accuracy while concurrently increasing computational 
complexity, hence challenging real-time applications [12]. 

Similarly, (Manish Sharma & U. Rajendra Acharya, 2021) developed a computer-aided diagnostic (CAD) system 
utilizing single-channel EEG. They derived normative features from wavelet-decomposed sub-bands and classified 
these features using the K-nearest neighbors (KNN) algorithm, with a remarkable accuracy of 99.21%.    
Nonetheless, dependence on single-channel EEG may constrain the depiction of spatial characteristics, thereby 
undermining classification efficacy in multi-channel configurations [13]. (Mehmet Baygin et al.,2021) proposed a 
three-stage framework employing the Collatz pattern, maximal absolute pooling (MAP) decomposition, iterative 
neighborhood component analysis (INCA), and K-nearest neighbors (KNN) for classification purposes. Their model 
achieved exceptional accuracies of 99.47% and 93.58% on two separate datasets. The iterative feature selection 
method escalates processing requirements, rendering it less practical for real-time applications [14]. (Keihani et al. , 
2022) extracted twenty microstate features, including occurrence, duration, and mean global field power (GFP).  
Using Chi-square tests for feature selection and a Bayesian-optimised SVM classifier, the study achieved an accuracy 
of 90.93% [15].  

In 2023, Megha Agarwal and Amit Singhal introduced a Fourier-based method for real-time detection of SZ. Their 
approach utilizes a boosted trees (BT) classifier combined with Look Ahead Pattern (LAP) features, achieving 
accuracy rates of 98.62% and 99.24% on two different datasets. However, the study relies entirely on the Fourier 
transform, which may not effectively capture the complex non-stationary characteristics of EEG signals when 
compared to wavelet-based techniques [16]. (Ruiz de Miras et al., 2023) proposed a pipeline that extracts both 
linear and non-linear features from sliding EEG windows. They identify the most discriminative attributes via 
principal component analysis (PCA) and subsequently classify these features using a support vector machine (SVM) 
classifier.   Their methods achieved an accuracy of 89%.   Nonetheless, a limitation of this technique is that the 
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feature selection process depends on PCA, which may not consistently identify the most pertinent EEG data. This 
constraint may impact the reliability of the classification [17]. (T. Sunil Kumar et al., 2023) discerned two feature 
categories from EEG signals: Histogram of Local Variance (HLV) and Symmetrical Weighted Local Binary Patterns 
(SLBP). They employed correlation-based techniques for feature selection and classified the data using AdaBoost, 
attaining accuracies of 92.85% and 99.36% on two distinct datasets. Nonetheless, the work relies on manually 
constructed features, which may lack robust generalizability to other EEG datasets [18]. 

(Bethany Gosala & colleagues 2023) investigated the use of Continuous Wavelet Transform (CWT) for feature 
extraction and the diagnosis of schizophrenia (SZ) employing Decision Trees (DT). Their model achieved an 
impressive accuracy of 97.98%.   However, the study is deficient in a comparative examination with alternative 
classifiers, which would augment the evaluation of the robustness of their approaches [19]. (Athar Alazzaw et al., 
2024) employed four machine learning algorithms: "ensemble classifier (EC), quadratic discriminant analysis 
(QDA), support vector machine (SVM), and K-nearest neighbor (KNN)" to classify individuals with schizophrenia 
(SZ) utilizing EEG data acquired from 19 channels at a frequency of 250 Hz.  The SVM attained a maximum accuracy 
of 99.9% when used with Log En features and a 1-second window size. However, the study was based on a small 
dataset consisting of only 14 SZ patients and 14 healthy controls, which raises concerns regarding overfitting and 
the generalizability of the results [20]. Finally, (Elfarsy et al., 2024) divided the data into five-second epochs with 
one-second overlap. They measured the minimum, maximum, mean, standard deviation, variance, mean square, 
root mean square, absolute signal difference, skewness, and peak-to-peak. Then, the performance of three machine 
learning classifiers was evaluated. "The Random Forest" classifier achieved the highest accuracy of 96% [21]. Table 
1 summarizes the methodologies and results of recent studies on schizophrenia classification using EEG signals with 
machine learning strategies. 

Table 1- Summary of related work on schizophrenia classification using Machine Learning. 

Study Method Signal Dataset Accuracy (%) 

Jahmunah et al. 
(2019) [01] . 

SVM-RBF EEG IPN (Olejarczyk and 
Jernajczyk, 2017) 

92.91 

Siuly Siuly et al. 
(2020) [11]. 

EMD -EBT EEG Laboratory for 
Neurophysiology 

and Neuro-
Computer 
Interfaces 

93.21 

Sunil Kumar 
Prabhakar et al. 
(2020) [12] 

Flower Pollination 
Algorithm 

EEG IPN (Olejarczyk and 
Jernajczyk, 2017) 

98.77 

M. Sharma et al. 
(2021) [13]. 

Wavelet and KNN EEG IPN (Olejarczyk and 
Jernajczyk, 2017) 

99.21 

Mehmet Baygin 
et al. (2021) 

[01] . 

Collatz pattern and 
MAP 

EEG Private 99.47 

Keihani et al. 
(2022)[15] 

Microstate features 
with SVM and 

Bayesian 
optimization 

EEG IPN (Olejarczyk and 

Jernajczyk, 2017) 

90.93 

Megha Agarwal 
et al. (2023) 
[16]. 

Look-ahead pattern 
(LAP) features and 
boosted trees (BT) 

 

EEG 

IPN (Olejarczyk and 
Jernajczyk, 2017) 

99.24 

Ruiz de Miras 
at el. (2023) 
[17]. 

SVM EEG SanAgustin 
(Linares, Jaen) 

89.00 

T. Sunil Kumar 
et al. (2023) 
[18]. 

HLV, SLBP, and 
AdaBoost 

EEG (Anon, 2021) And 
(Olejarczyk and 

Jernajczyk, 2017) 

99.36 

Bethany Gosala 
et al. (2023) 
[19]. 

CWT and DT EEG Laboratory for 
Neurophysiology 

and Neuro-
Computer 
Interfaces 

97.98 

http://brain.bio.msu.ru/
http://brain.bio.msu.ru/
http://brain.bio.msu.ru/
http://brain.bio.msu.ru/
http://brain.bio.msu.ru/
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Conversely, deep learning (DL) has been widely employed for various applications and consistently 
demonstrated positive results across numerous fields. In the classification of schizophrenia, deep learning systems 
have shown significant potential by autonomously extracting and learning features from complex datasets. This 
accomplishment has established deep learning as a preferred method in contemporary research focused on 
analyzing EEG signals to distinguish between schizophrenia patients and healthy individuals. (Shu Lih Oh & his 
associates, 2019) developed an eleven-layer Convolutional Neural Network (CNN) for the processing of EEG signals. 
The model independently extracted features by convolution, with the most prominent features acquired during the 
max-pooling phase. The fully connected layer was employed for classification, achieving an accuracy of 81.26% in 
subject-specific testing and 98.07% in non-subject-specific testing. The significant disparity between subject-based 
and non-subject-based accuracy indicates possible challenges in model generalization, potentially affecting its 
reliability in practical applications [22]. (Ahmad Shalbaf & his associates, 2020) advocated for the application of pre-
trained ResNet-18 convolutional neural networks (CNNs) in the interpretation of EEG signal images. They extracted 
significant attributes from the convolutional and pooling layers and employed these features as input for a Support 
Vector Machine (SVM) classifier. This approach achieved exceptional results, exhibiting an accuracy of 98.60% and a 
sensitivity of 99.65% [23].  

(Smith K. Khare & his associates, 2021) employed time-frequency analysis and Convolutional Neural Networks 
(CNNs) for categorizing EEG signals. They used the Smoothed Pseudo-Wigner-Ville Distribution (SPWVD) to 
generate spectrograms, scalograms, and SPWVD-based time-frequency representation (TFR) plots, therefore 
alleviating the limitations of traditional feature extraction methods. The proposed CNN model achieved an accuracy 
of 93.36% using the SPWVD-based time-frequency representation. The technique effectively gathers complex time-
frequency data; nonetheless, its subpar accuracy suggests that employing more advanced CNN architectures or 
exploring alternative preprocessing techniques could enhance performance [24].  (Hesam Akbari & his associates, 
2021) analyzed EEG data via phase space dynamics (PSD) and employed a Generalized Regression Neural Network 
(GRNN) in conjunction with a K-Nearest Neighbors (KNN) classifier. The KNN employing City-block distance 
demonstrated superior performance, achieving an average classification accuracy of 94.80% via a 10-fold cross-
validation technique. Although the methodology is clear and comprehensible, the middling accuracy suggests that 
more sophisticated procedures or feature extraction methods could improve performance [25]. (Jie Sun & his team, 
2021) derived fuzzy features from EEG time series to serve as input for a hybrid deep learning model that integrates 
Convolutional Neural Networks (CNN) and Long Short-Term Memory networks (LSTM).  This method analyzed RGB 
pictures of the signals to distinguish between schizophrenia patients, with a remarkable accuracy of 99.22% 
through Fuzzy Entropy (Fuzzy En). The technique demonstrated outstanding performance; nevertheless, integrating 
fuzzy features with intricate hybrid models may elevate computational complexity.  This may restrict its use in real-
time or resource-limited settings [26].  

(Bagherzadeh et al., 2022) employed a hybrid methodology that integrates a pre-trained convolutional neural 
network (CNN) with a long short-term memory (LSTM) model, leveraging Transfer Entropy (TE) for effective 
connection, to differentiate between schizophrenia (SZ) and healthy controls (HC). The EfficientNetB0-LSTM model 
attained a remarkable average accuracy of 99.90%. Nonetheless, the intricacy of this hybrid model may constrain its 
practical implementation in clinical environments [27]. (Rinku Supakar et al., 2022) developed a deep learning 
model utilizing a Recurrent Neural Network (RNN) with Long Short-Term Memory (LSTM) to categorize individuals 
with schizophrenia using their EEG data autonomously. The model consisted of a 100-dimensional LSTM layer 
followed by three thick layers, with an exceptional accuracy of 98%.  The dataset used for this research was sourced 
from the EEG recordings repository at the Laboratory for Neurophysiology and Neuro-Computer Interfaces at M.V. 

Athar Alazzaw 
et al. ( 2024) 
[20]. 

LogEn features and 
SVM 

EEG IPN (Olejarczyk and 
Jernajczyk, 2017) 

99.9 

Elfarsy et al. 
(2024) [21]. 

Statistical features 
and RF 

EEG IPN (Olejarczyk and 

Jernajczyk, 2017) 

96.00 
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Lomonosov Moscow State University [28]. (Zülfkar Aslan et al., 2022) introduced a technique for converting EEG 
signals into two-dimensional representations to extract time-frequency components.  They generated scalogram 
pictures to delineate essential characteristics and trained a Visual Geometry Group-16 (VGG16) network. The model 
attained accuracies of 99.5% and 98% on two distinct datasets. This strategy, albeit highly accurate, restricts the 
investigation of possibly superior models that could improve performance by depending exclusively on the VGG16 
model [29]. 

(Ko & Yang, 2022) employed the Gramian Angular Field (GAF) method to convert EEG signals into pictures, which 
were then examined using Convolutional Neural Networks (CNNs) employed on the VGGNet architecture.  This 
method attained an accuracy of 93.2% in the diagnosis of schizophrenia. The technique successfully captures 
temporal information; however, its middling accuracy suggests that more sophisticated CNN architectures or 
supplementary preprocessing techniques may enhance performance [30]. (Shen & his team, 2023) extracted EEG 
features in the alpha band (8–12 Hz) using cross-mutual information and time-frequency functional connectivity 
analysis. They employed a 3D convolutional neural network (3D-CNN) to classify patients with schizophrenia (SZ) 
and healthy controls (HC), achieving an impressive accuracy of 97.74%, with a sensitivity of 96.91% and specificity 
of 98.53%. However, focusing exclusively on the alpha band may overlook valuable information present in other 
frequency ranges [31]. Finally, (Bhadra et al., 2024) proposed a novel methodology in which complexity features 
were extracted using DWT and Multivariate Empirical Mode Decomposition (MEMD), followed by classification with 
Convolutional Neural Networks (CNNs). Features were fused and optimized using "Principal Component Analysis 
(PCA) and Canonical Correlation Analysis (CCA)", achieving an accuracy of 90.64% [32]. Table 2 summarizes the 
methodologies of recent studies on SZ classification using EEG signals with deep learning strategies.   

Table 2 - summarizes related work on schizophrenia classification using deep learning. 

Authors Method Signal Dataset Accuracy (%) 

Oh et al. (2019) 
[22]. 

CNN models EEG IPN(Olejarczyk and 
Jernajczyk, 2017) 

98.07 

Shalbaf et al. (2020) 
[23]. 

ResNet-18 and SVM 
classifier 

EEG IPN(Olejarczyk and 
Jernajczyk, 2017) 

98.60 

Khare et al. (2021) 
[24]. 

Traditional features 
with SPWVD-based 

TFR 

EEG Kaggle SZ 93.36 

Akbari et al. (2021) 
[25]. 

PSD with GRNN and 
KNN 

EEG IPN(Olejarczyk and 
Jernajczyk, 2017) 

94.80 

Sun et al. (2021) 
[26]. 

Fuzzy features with 
a hybrid deep 

learning model 
(CNN) and LSTM 

EEG IPN(Olejarczyk and 
Jernajczyk, 2017) 

99.22 

Bagherzadeh et al. 
(2022) [27]. 

Transfer Entropy 
with a hybrid deep 

learning model 
(CNN) and LSTM 

EEG IPN(Olejarczyk and 
Jernajczyk, 2017) 

99.90 

Supakar et al. 
(2022) [28]. 

RNN and LSTM EEG Laboratory for 
Neurophysiology and 

Neuro-Computer 
Interfaces 

98.00 

Aslan et al. (2022) 
[29]. 

scalogram images 
and VGG16 

EEG IPN (Olejarczyk and 
Jernajczyk, 2017) 

99.50 

Ko et al. (2022) 
[30]. 

GAF and VGG Net EEG Kaggle SZ 93.20 

Shen et al. (2023) 
[31] 

Time-frequency 
functional 

connectivity 
analysis by CWT 

with 3D-CNN 

EEG Laboratory for 

Neurophysiology and 

Neuro-Computer 
Interfaces 

(Shishkin et al., 2011) 

97.74 

Bhadra et al. (2024) 
[32]. 

DWT and MEMD 
combined 

EEG IPN (Olejarczyk and 

Jernajczyk, 2017 

90.64 
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3. Acquisition of brain and EEG signals 

The brain is comprised of the brainstem, cerebellum, and cerebrum. More specifically, the left and right hemispheres 
of the cerebrum are responsible for higher functions, including vision, touch, hearing, learning, and reasoning [33]. 
The cerebellum, located beneath the cerebrum, controls posture and balance. The brainstem serves as a link 
between the spinal cord and the brain, acting as a relay center. It regulates automatic processes, including breathing, 
digestion, and sleep cycles. A bundle of fibers known as the corpus callosum connects the two hemispheres, allowing 
communication between them [34]. Spatial orientation, nonverbal communication, emotions, creativity, intuition, 
and artistic expression are all associated with the right hemisphere. In contrast, the more complex left hemisphere 
is primarily associated with science, logic, abstract thinking, speech, verbal expression, and symbols [35]. As shown 
in Fig. 2, the frontal, parietal, temporal, and occipital lobes are the primary divisions of the hemispheres. Each lobe is 
further divided into regions responsible for specific functions. Numerous intricate connections exist between the 
lobes and between the left and right hemispheres, indicating that the brain does not function independently within 
this region. 

 

Fig. 2- Brain sub-regions and lobes. An image of the brain taken from [36]. 

The frontal lobe is located in the forward region of the brain. It affects intellect, emotion, language, and motor 
control. The prefrontal cortex, responsible for cognitive processes, the motor cortex, which is engaged in movement, 
and Broca's area, located in the left hemisphere and crucial for language creation, are all parts of the frontal lobe. 
Directly behind the frontal lobe lies the parietal lobe. It interprets information from the senses [36]. The tiny voltage 
waves and impulses that can be recorded and tracked using various methods enable brain control and monitoring, 
summarized in Table 1. Large volumes of pictures and signals are currently stored using a variety of invasive and 
noninvasive recording techniques. The patterns of the brain can be generally recorded and imaged using a variety of 
complementary methods, including brain stimulation recordings, magnetic resonance imaging (MRI), electrical, and 
neuroimaging [37]. (See Table 3). 
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Table 3- Recording technique Neuronal  

Recording technique Specific mechanism 

 
Electrical recordings 

(EEG) Electroencephalography 

(ECoG) Electrocorticography 

(LFP) Local field potential 

(spikes) Single-unit recordings 

 
Neuroimaging recordings 

(fNIR) Functional near-infrared recordings 

(fMRI) Functional magnetic resonance imaging 

(PET) Positron emission tomography 

 
Brain stimulations 

(TMS) Transcranial magnetic stimulation 

(tDCS) Transcranial direct current stimulation 

(DBS) Deep brain stimulation 

Magnetic recordings (MEG) Magnetoencephalography 

 

Measurements of electric fields (consequently related electric currents), electric recordings are based on the 
signals released by active populations of neurons that exist in the brain during activity. Local field potential (LFP) 
involves placing arrays of electrodes inside the brain. Electrocorticography (ECoG) involves placing implanted 
electrodes on the upper layers of the cerebral cortex, electroencephalography (EEG) involves placing electrodes on 
the scalp, and single-unit recordings or spikes involve inserting arrays of microelectrodes near neurons. The most 
common method for magnetic recordings is magnetoencephalography (MEG), which measures the magnetic field 
created by brain electrical activity [37].  

On the order of seconds, blood flow and oxygen uptake are comparatively slow. Functional near-infrared 
recordings (fNIR), which measure hemoglobin's near-infrared light absorbance, functional magnetic resonance 
imaging (fMRI), which identifies changes in blood hemoglobin levels, both oxygenated and deoxygenated, and 
positron emission tomography (PET), which detects radioactive substances because of the brain's metabolic 
activity, are examples of commonly used imaging techniques. Neurostimulation can be used in conjunction with 
previous neural recording methods [37]. To elicit the desired brain response, external electrical or magnetic 
stimulation is used to activate a specific area of the brain. It is essential to note that recording electrodes can also be 
used for stimulation. Brain stimulation techniques include deep brain stimulation (DBS), transcranial direct current 
stimulation (TDCS), and transcranial magnetic stimulation (TMS), which relies on variations in the magnetic field of 
a coil placed next to the skull and uses electrodes placed in specific brain regions to excite specific brain areas. 
Electroencephalography (EEG) and magnetoencephalography (MEG) have some of the best temporal resolution 
among non-invasive methods. However, when compared to EEG and MEG, functional magnetic resonance imaging 
(fMRI) has the highest spatial resolution but the lowest temporal resolution. Finally, positron emission tomography 
(PET) and functional near-infrared (fNIR) exhibit the lowest temporal and spatial resolution, respectively [38]. 

   EEG is one of the most frequently utilized technologies in practice for recording neural signals since it is 
inexpensive, easy to use, subject-motion-tolerant, and radiation-free. Hans Berger first introduced the EEG in 1927. 
He described it as a method for functional investigation of the central nervous system that records the brain's 
electrical activity in real-time. The individual is wearing an EEG hat on top of their head to record and store their 
brain's electrical activity. This requires the electrodes on their scalp to be positioned consistently in space to 
capture the electrical activity as waves. One globally accepted technique used for this is the 10-20 EEG positioning 
system [39]. Typically, EEG signals acquired during measurements are separated into frequency bands. Five primary 
brain waves can be identified primarily by the frequency band and signal amplitude. First, within the range of 0.5 to 
4 Hz, the delta band has the lowest frequency with a maximum amplitude of between 20 and 200 µV. It can manifest 
in a waking state and is associated with deep slumber. Theta waves, which have an amplitude more significant than 
20 µV and fall between 4 and 7.5 Hz, are primarily used to indicate arousal in adults or sleepiness in young children. 
Deep meditation and creative inspiration are also associated with these waves[40]. 

4. Common EEG Datasets for Schizophrenia Research 

Several publicly available EEG datasets have been used in schizophrenia research to investigate the neural 
correlates of the disorder, develop diagnostic models, and evaluate treatment responses. The datasets vary in 
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sample size, recording methodologies, and preprocessing procedures, influencing their appropriateness for 
different research aims.  We emphasize two significant EEG datasets that are commonly cited in schizophrenia 
research: 

4.1 The Warsaw SZ Dataset 

 Data were gathered at the Institute of Psychiatry and Neurology in Warsaw, Poland. The study comprised 14 
patients diagnosed with schizophrenia, consisting of seven men with a mean age of 27.9 ± 3.3 years and seven 
females with a mean age of 28.3 ± 4.1 years.  The study also had 14 healthy participants, consisting of seven males 
with a mean age of 26.8 ± 2.9 years and seven females with a mean age of 28.7 ± 3.4 years.  EEG signals were 
acquired during a 15-minute resting state with closed eyelids (EC) at a sample rate of 250 Hz, in accordance with the 
international 10-20 system standard. The FCz electrode served as the reference electrode, and the EEG recordings 
included all 19 channels: Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2, and T2. Patients 
who had consumed medicine within the seven days before data collection, pregnant women, those with organic or 
severe neurological disorders, and participants under the age of 18 were excluded.  Individuals in the first phases of 
schizophrenia or those undergoing their first episode were excluded from the study. This data set is a standard 
reference in studies related to the automatic diagnosis of schizophrenia [41]. 

4.2 The Kaggle SZ Dataset  

This open-source dataset comprises EEG data from 49 patients diagnosed with schizophrenia (8 females and 41 
males, average age of 40.02 ± 13.55 years) and 32 healthy control participants (6 females and 26 males, average age 
of 38.37 ± 13.69 years). The data were recorded using a Biosemi Active Two system, which captures signals from 64 
scalp electrodes and 8 external sites at a sampling rate of 1024 Hz. With multiple trials conducted under various 
conditions, this dataset provides detailed insights into temporal dynamics. However, it also requires extensive 
preprocessing to address artifacts and outliers [41]. 

       Overall, selecting the right EEG dataset is essential for obtaining reliable and generalizable results in 
schizophrenia research. However, the datasets reviewed provide valuable insights, several challenges, such as 
limited sample sizes, variability in recording protocols, and issues with data quality. Future efforts to combine 
multiple datasets and standardize preprocessing techniques could enhance the robustness of models and improve 
our understanding of schizophrenia through EEG analysis. 

5. Preprocessing and Feature Extraction 

 In medical studies focused on brain signal analysis, the key procedure involves feature extraction and 
preprocessing. Brain signals are obtained using several electrodes placed on the scalp. Once these signals are 
collected, they undergo preprocessing to address the inevitable presence of noise and external interference. Sources 
of this noise can include the electrical distribution network, nearby electronic devices, or even bodily processes. 
Effective filtering techniques are utilized to eliminate undesired noise components from the signals, hence 
enhancing data quality [42]. One type of filter commonly used in EEG analysis is the frequency filter. This filter 
processes the EEG signal by breaking it down and removing unnecessary frequency components. Specifically, the 
bandpass filter allows only selected frequency ranges to pass through, separating the data into different frequency 
sub-bands, such as delta, theta, gamma, alpha, and beta rhythms. This filtering process enables the exclusion of 
frequencies that are either too high or too low in frequency. Filtering is particularly beneficial when the original 
brain data contains a significant amount of high-frequency noise. It helps to isolate and clarify the detailed 
information within the EEG signals. The bandpass filter effectively removes high-frequency noise before 
categorizing the EEG data into various window widths [43]. Fig. 3 illustrates the results of the EEG signals both 
before and after applying the bandpass filter. 
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Fig. 3- A band-pass filter for decomposing EEG signals [20]. 

Additionally, another filtering method is the average filter (AF), which is used to eliminate noise and artifacts 
from EEG signals. This technique smooths the signals and reduces intensity variations, helping to remove unwanted 
details. It is also simple, easy to understand, and straightforward to implement [44]. Accurately extracting features 
from EEG signals is a challenging yet crucial step in the classification process, as it directly impacts classification 
accuracy. Both frequency-domain and time-domain feature extraction techniques can be employed to identify EEG 
signals linked to schizophrenia. Feature extraction is a method employed to diminish data volume by generating 
new features from the original dataset. These new features are non-redundant and preserve pertinent information 
from the original data, facilitating improved classification through the simplified representation rather than the 
complete initial dataset. This procedure is crucial for reducing data dimensionality, thereby converting it from a 
high-dimensional space to a low-dimensional space [45]. Numerous techniques exist for feature extraction, and we 
will elucidate a few of them. 

4.3 Time Domain 

EEG data are examined by time-domain feature extraction techniques that emphasize fluctuations in the signal time 
series.  The intricacy of EEG signifies the chaotic and unexpected characteristics of cerebral function.  Owing to the 
continuous advancement of nonlinear theory, numerous researchers are utilizing nonlinear analytical methods to 
examine EEG data.  A method for quantifying complexity is entropy.  Entropy is the most commonly utilized feature 
index among the numerous time-domain features, especially in disease diagnosis.  Fuzzy entropy (Fuzzy En), 
derived from several entropy metrics, is frequently employed.  In comparison to other forms of entropy, like 
information entropy, sample entropy, and Fuzzy En, these types exhibit superior noise resistance, enhanced 
resilience, and reduced computational complexity [46] . Fuzzy entropy is very effective for the analysis of chaotic 
signals due to its stable entropy value, which is less influenced by noise in EEG data.  Prior research has shown that 
FuzzyEn exhibits enhanced signal identification and recognition abilities compared to alternative entropy metrics, 
especially in the context of epilepsy and schizophrenia.  The temporal domain is advantageous for research focused 
on prompt seizure detection, such as real-time patient monitoring systems.  Nonetheless, utilizing the time domain 
presents constraints, such as the inability to discern frequency information or spectral components, as well as 
difficulties in studying unstable signals.  As a result, numerous researchers in this domain prefer more sophisticated 
analytical techniques, such as those grounded in the frequency domain or time-frequency domain[47]. 

4.4 Frequency Domain  

The frequency-domain feature extraction method is initiated by transforming the original time-domain EEG signal 
into a frequency-domain representation. This version facilitates a more profound examination of signal 
characteristics and demonstrates the correlation between frequency and amplitude [48]. The Fourier Transform 
(FT) is a commonly employed method for this conversion, noted for its straightforward implementation and 
comparatively low computational cost relative to other frequency-domain techniques. For the Fourier Transform to 
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be effective, it is crucial that the EEG data are obtained in the frequency domain. This method is particularly suitable 
for EEG signals. Despite the prevalence of continuous signals, they must be discretized for processing, as computers 
are incapable of directly handling continuous signals. The discrete variant of the Fourier Transform, applicable in 
both time and frequency domains, is known as the Discrete Fourier Transform (DFT). The Fast Fourier Transform 
(FFT) is an efficient method for computing the Discrete Fourier Transform (DFT) and has been favored by several 
researchers in previous studies for assessing EEG signals regarding frequency-domain characteristics [49]. Recent 
research in relevant fields indicates that fuzzy entropy (fuzzyEn) and FFT are critical methods for information 
extraction in both temporal and frequency domains. Both methodologies have demonstrated considerable 
effectiveness and are widely employed in various biological signal research initiatives. 

4.5 Time-Frequency Domain 

The time-frequency domain concurrently encompasses a signal's temporal and spectral attributes. The time-
frequency domain examines the temporal variations of a signal's frequency components in contrast to the 
conventional time or frequency domain analysis.    This offers a thorough examination of non-stationary signals, 
encompassing EEG data. Time-frequency analysis is essential for EEG signals because of the inherently dynamic and 
non-stationary characteristics of brain activity, which is marked by oscillating patterns that vary with time [50]. 
Techniques such as the Short-Time Fourier Transform (STFT), Wavelet Transform (WT), and Smoothed Pseudo-
Wigner-Ville Distribution (SPWVD) are commonly utilized to convert signals into the time-frequency domain.  These 
approaches produce a time-frequency representation (TFR), a two-dimensional graph with one axis representing 
time, the other representing frequency, and the intensity indicating amplitude. The time-frequency domain is crucial 
in EEG analysis for detecting transient events, analyzing brain rhythms over several frequency bands (e.g., delta, 
theta, alpha, beta, gamma), and understanding the dynamic properties of neural oscillations. This technique can 
reveal subtle anomalies associated with neurological illnesses, including schizophrenia, epilepsy, and Alzheimer's 
disease.  The time-frequency domain enables a more sophisticated and dynamic understanding of signals, making it 
an essential tool in biological signal processing and neurodiagnostics [51]. 

6. Machine Learning VS. Deep Learning for EEG 

A methodical two-phase approach is frequently utilized in conventional machine learning-based EEG analysis.     
Initially, attributes such as power spectral density (PSD), statistical metrics, or entropy values are manually 
extracted from EEG data. The effectiveness of machine learning models primarily relies on the quality of feature 
engineering. Common algorithms include Support Vector Machines (SVM), Decision Trees (DT), Random Forests 
(RF), Logistic Regression (LR), K-Nearest Neighbors (KNN), Naive Bayes (NB), Boosting Techniques (BT), and 
AdaBoost. A significant benefit of classical machine learning is its interpretability.  The well-defined, domain-specific 
extracted characteristics facilitate comprehension for researchers and physicians on the variables that influence the 
model's decisions.  Moreover, these models frequently exhibit strong performance with minimal datasets, rendering 
them advantageous in scenarios of data scarcity.  Nevertheless, dependence on manual feature extraction may be a 
constraint.  The necessity for subject expertise in crafting efficient feature extraction methodologies may induce 
biases and risk neglecting significant information inherent in raw EEG data.  Moreover, the efficacy of these models 
is limited by the quality and pertinence of the chosen features. [52]. The following are the principal machine 
learning techniques frequently employed in EEG analysis: 

Support Vector Machine (SVM) 

      Support Vector Machine (SVM) has been employed in several studies in recent years to classify diverse datasets.  
It is a robust supervised learning technique frequently used for classification and regression applications.  The 
primary goal of SVM is to identify the ideal dividing hyperplane that categorizes the data into separate classes.  It 
seeks to optimize the separation or margin between the hyperplane and the closest data points from each class.  The 
critical data points, referred to as support vectors, substantially affect the placement and alignment of the 
hyperplane. The term "kernel trick" refers to the diverse kernels utilized by Support Vector Machines (SVMs), such 
as Polynomial, Gaussian, Radial Basis Function (RBF), Laplace RBF, Sigmoid, and Anova RBF, among others [53]. 

K-Nearest Neighbours (KNN)  

The K-Nearest Neighbors (K-NN) algorithm is a widely used machine learning technique for classification and 
regression, which depends on closeness to ascertain the class of a new sample. This method calculates the distance 
between the unknown sample and each sample in the training set, typically using the Euclidean distance [58].  The 
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Euclidean distance between two points X = {x₁, x₂, …, xₙ} and Y = {y₁, y₂, …, yₙ}, each possessing n characteristics, is 
defined as follows: 

                                                                                         (   )  √∑ (       )  
                                                                             (1) 

After identifying the K nearest neighbors, the new sample is classified based on the majority class among those 
neighbors, mostly depending on the distribution of nearby data. K-NN is characterized by its simplicity and 
effectiveness in various applications, since it does not require complex training processes, but instead relies on the 
preservation of training data for categorization.  The careful selection of the K value is crucial for the algorithm's 
effectiveness, as small values may result in inaccurate classification due to reliance on an inadequate number of 
neighbors, while large values may obscure class distinctions by incorporating more distant points [54]. This 
technique is employed in multiple fields, including pattern recognition, image classification, and bioinformatics, 
particularly for categorizing of EEG data and the investigation of brain processes, making it a powerful tool in 
medical and scientific applications.               

Decision Trees (DT) Algorithm 
 

The decision tree model is a supervised classification technique that employs hierarchical decision rules 
articulated as IF-THEN-ELSE statements. The regulations are organized hierarchically, resulting in definitive 
classification outcomes. This approach involves breaking down a major problem into several minor issues and 
resolving them sequentially. The terminal nodes, or leaves, signify the possible output classes, whereas each internal 
node encompasses a condition that assesses a particular feature-value pair. The branches emanating from each 
node represent the diverse results of specific events. A decision tree is developed during the training phase by 
distinguishing potential output classes at each node. Node-splitting criteria generally depend on two metrics: 
information gain and the Gini index. At each node, the feature-value combination is selected to either limit 
information gain or enhance the Gini index  [55]. 

Quadratic Discriminant Analysis (QDA) 

Quadratic Discriminant Analysis (QDA) is a classification technique used to separate data into distinct classes 
based on their feature distributions. Unlike Linear Discriminant Analysis (LDA), which assumes that all classes share 
the same covariance matrix, QDA allows for different covariance matrices for each class. This flexibility enables QDA 
to model more complex class boundaries, making it suitable for non-linear problems. However, this adaptability can 
also result in overfitting, particularly when there is a limited amount of training data. In the context of EEG signal 
classification, QDA can be effective if there is enough data to accurately estimate the covariance matrices [56]. 

Random Forest (RF) 

The Random Forest classifier is a type of ensemble learning algorithm originally introduced by Breiman, and it 
combines multiple decision trees. Each decision tree functions as an independent classifier, and the final 
classification result is determined through a majority voting process across all the trees in the ensemble.  This non-
parametric machine learning algorithm typically builds its trees using the classification and regression tree method. 
Random Forest operates based on the concept of bagging, where multiple subsets of the original training data are 
generated through random sampling with replacement. Each subgroup is utilized to independently train a distinct 
decision tree. During the classification phase, each decision tree produces an independent prediction for the test 
data, and the final classification is determined by a majority vote among all trees [57].  

In contrast, deep learning eliminates the need for manual feature extraction by training artificial neural networks 
to automatically learn hierarchical features from raw EEG data. Commonly used models include Convolutional 
Neural Networks (CNNs) for capturing spatial patterns, Recurrent Neural Networks (RNNs), and Long Short-Term 
Memory (LSTM) networks for temporal dependencies. The primary advantage of deep learning lies in its ability to 
automatically learn features and effectively process complex, high-dimensional EEG data. These models often 
outperform traditional techniques, especially when dealing with large and diverse datasets.                                                                                                                              
However, deep learning also has its drawbacks. It typically requires large datasets for effective training, and data 
augmentation techniques may be necessary to address data scarcity. Training deep networks demands substantial 
computational power, usually requiring high-performance GPUs, which may not be accessible in all research 
settings. Furthermore, deep learning models are often considered "black boxes," making it challenging to 
comprehend their decision-making processes. This lack of transparency is a significant concern in medical 
applications where clarity is crucial [58]. The main difference between ML and DL approaches is shown in Fig. 4. 
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Fig. 4- The main difference between (a) conventional ML; (b) DL. 

 Recurrent Neural Networks (RNNs)  

RNNs are a kind of deep learning model used in biological signal processing, natural language processing, and 
speech recognition. CNN models fall into the Feed-Forward category. They are primarily employed in voice 
processing and natural language processing (NLP). Unlike traditional neural networks, RNNs process data 
sequentially. This structure allows RNNs to incorporate contextual information, which can be valuable in various 
applications. To understand the significance of a word within a phrase, it is essential to grasp the meaning of the 
entire statement. RNNs can be viewed as short-term memory units, with 'x' representing the input layer, 'y' denoting 
the output layer, and 's' standing for the hidden state layer [60]. 

Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) are among the most impactful and extensively utilized methodologies in 
deep learning for medical imaging. A standard CNN design comprises several essential components, including 
convolutional layers, pooling layers, batch normalization, fully connected layers, and a concluding SoftMax layer for 
classification. The convolutional layers are essential for obtaining feature maps.  Pooling layers are designed to 
down-sample feature maps using maximum or average procedures, emphasizing the most salient characteristics.  
The fully connected layers subsequently analyze the aggregated features, enabling the SoftMax layer to do the final 
classification. Especially the ReLU function, nonlinear activation functions enhance the network's capacity to 
address nonlinear challenges. After every convolutional and fully connected layer, a ReLU is the activation function. 
Additionally, methods used to reduce overfitting in the network include dropout and batch normalization methods 
[61].  

Ultimately, for organized, feature-rich data, conventional machine learning approaches are usually more 
interpretable and efficient, but deep learning approaches shine in handling raw, complex EEG data via automatic 
feature extraction.    Among these two approaches, data availability, computational resources, and the significance of 
model interpretability in clinical environments have to be among the choices. 

7. Evaluation Metrics in Machine Learning and Deep Learning 

Determining the efficacy, dependability, and suitability for therapeutic uses, such as the diagnosis of schizophrenia 
from machine learning and deep learning models, depends on their performance evaluation. Different evaluation 
techniques help clarify certain facets of model performance, allowing a more complete knowledge of the 
categorization outcomes [62].  



14 Abeer Saleh Alian, Firas Sabar Miften, Journal of Al-Qadisiyah  for Computer Science and Mathematics Vol.17.(2) 2025,pp.Comp 1–17

 

7.1 Confusion matrix 

A comprehensive technique for showing the link between expected and actual classes is the confusion matrix.    
"True Positive (TP)", which denotes events whereby the model correctly predicts the positive class; "True Negative 
(TN)", which refers to events whereby the model correctly identifies the negative class; "False Positive (FP)", which 
denotes events whereby the model mistakenly classifies the positive class; and "False Negative (FN)", which 
pertains to events whereby the model incorrectly classifies the negative class [62]. 

7.2  Accuracy 

Accuracy is the proportion of accurate model forecasts to the overall number of predictions—that is, both right and 
wrong outcomes.  As equation (2) [63].

 
                                                                                                        

     

(           )
                                                                       (2) 

7.3    Sensitivity (Recall)    

Recall, also known as sensitivity, is the percentage of precisely found positive cases to the total count of true positive 
cases. Equation (3) rates the model's accuracy in spotting affirmative cases [63]. 

                                                                                                                                   
  

       
                                                                                                        (3) 

7.4 Specificity 

Specificity measures the relative frequency of precisely expected negative cases to the overall count of real negative 
cases.   As shown in the next equation (4), it assesses the model's ability in consistently spotting bad circumstances 
[63]. 

                                                                                                                                (   )   
  

       
                                                                                       (4) 

7.5 Precision 

Precision gauges the proportion of actual positive forecasts to all the positive forecasts generated. As stated in the 
following equation (5), the computation is expressed as the ratio of true positive forecasts to the sum of true 
positive and false positive predictions [63]. 

                                                                                                       (    )   
  

       
                                                                         (5) 

7.6  F-Score (F1-Score)   

 Using a weighted average of sensitivity and accuracy, the F-score, also known as the F1-score, effectively balances 
recall and precision.    It is helpful for imbalanced class distributions since it takes false positives as well as real 
positive predictions.    The F-score is expressed by equation (6) [63].   

                                                                                                    
  (                     

(                     )
                                                                (6) 

7.7 Receiver Operating Characteristic (ROC) Curve and Area Under the Curve (AUC)                                                            

The ROC curve illustrates that the false positive rate relates to the actual positive rate. The area under the curve 
(AUC) measures the general capacity of the model to differentiate across multiple classes [64].  
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8. Challenge the Classification of Schizophrenia  

EEG wave diagnosis of schizophrenia presents numerous challenges. 
 Signal Variability: Due to natural variations and external factors, including noise and internal influences such as 

mood or medication, EEG readings exhibit significant variability and display considerable variation among 
individuals. These variances make it difficult to find consistent biomarkers for the disease.                                                         

  Complex and Non-linear Nature:  The complex and non-linear nature of EEG waves makes it challenging to 
identify key traits that distinguish individuals with schizophrenia from healthy.                                                                                               

  Low Signal-to-Noise Ratio (SNR):  Muscle artifacts and environmental disturbances are among the various forms 
of noise present in EEG readings that can obscure important information.                                                                                                                           

  Data Limitations: Ethical constraints and patient accessibility hinder the procurement of extensive, high-quality, 
accurately annotated datasets from individuals with schizophrenia.                                                                                                                                          

  Overlap with Other Disorders:  Accurate classification is complicated by the intersection of the symptoms and 
cerebral activity patterns linked with schizophrenia with those of several neurological and mental diseases.                                                                                                        

  Inter-Subject Variability: Cerebral activity among individuals exhibits significant variability, complicating the 
development of generalized models that can effectively assist every patient.                                                                                                                                  

 Feature Selection: Individual cerebral activity differs widely, making it challenging to create broad models that 
would benefit every patient.                                                  

  Computational Complexity: Advanced deep learning models for analyzing EEG data require substantial 
computational resources, which may not be readily available in all research or clinical environments. 

 Interpretability: Many deep learning models function as opaque systems, therefore impairing doctors' ability to 
evaluate data and use it in good decision-making. 

9. Directions and Recommendations 

Future studies on the diagnosis of schizophrenia using EEG signals could investigate several potential strategies to 
solve present difficulties and improve the therapeutic value of artificial intelligence models. 
  Formulating Hybrid Models: Combine the deep learning pattern recognition capability with the interpretability 

of conventional machine learning. To enhance clinical decisions, aim for a mix of accuracy and comprehensibility. 
  Enhancing Data Quality and Quantity: Utilize generative adversarial networks (GANs) or sophisticated data 

augmentation methods to handle limited datasets.  Use longitudinal studies to better understand the temporal 
dynamics of schizophrenia, thereby producing more complete datasets. 

  Feature Engineering:  Methods combining graph-theoretical metrics with time-frequency domain properties.   To 
further clinical application, also design more interpretable deep learning models, including explainable artificial 
intelligence (XAI) systems. 

  Integrating Clinical Applications: Install AI-based diagnostic tools in real-time monitoring systems to offer quick 
identification and tailored therapy options.    Moreover, it promotes multidisciplinary cooperation among 
doctors, neuroscientists, and computer scientists to offer therapeutically applicable treatments. 

  Addressing Ethical Considerations: Give data security first priority; cut artificial intelligence model biases; and 
apply appropriate AI in clinical settings.   Improve model decision-making transparency and validate artificial 
intelligence models by means of multi-center clinical trials, thereby promoting more general acceptability. 

  Following these guidelines will help future studies to generate more accurate, interpretable, clinically useful 
solutions using EEG data for the diagnosis and management of schizophrenia. 

10. Conclusion 

This work employs artificial intelligence techniques, particularly machine learning and deep learning, for the 
classification of schizophrenia (SZ) based on EEG signals. Several methods for processing EEG data, including signal 
capture, preprocessing, feature extraction, and classification, are evaluated in this work. While deep learning 
techniques such as "Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs)" excel at 
identifying complex, non-linear patterns in raw EEG signals, conventional machine learning models, including "SVM 
and DT," provide interpretability and perform well with limited datasets. The principal finding of the examined 
studies is that, despite high classification accuracy, deep learning techniques encounter challenges such as the 
necessity for extensive datasets, substantial computational resources, and difficulty with interpretability. While ML 
models offer greater openness, they may struggle to sufficiently evaluate the complexity of EEG data without the use 
of sophisticated feature extraction techniques. The paper emphasizes the need to employ a balanced strategy that 
leverages the advantages of both machine learning (ML) and deep learning (DL) to address the difficulties in 
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schizophrenia diagnosis. Future research paths could involve the creation of hybrid models that combine the 
excellent pattern recognition capacity of deep learning with the interpretability of machine learning.   Moreover, 
while examining more interpretable artificial intelligence models may help clinical applications, enhancing data 
augmentation techniques could help alleviate data restrictions. This study has implications for improved clinical 
decision-making in three ways: it enhances diagnosis accuracy, optimizes patient therapy, and helps to identify 
schizophrenia early on.              
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