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A B S T R A C T 

Otitis media (OM) is a common inflammatory condition, particularly in children, and poses 
significant diagnostic and treatment challenges. It also significantly affects adults, especially 
those with atopic conditions. OM can lead to complications such as hearing loss and speech 
delays. The advent of electronic health records, big data, and artificial intelligence (AI) offers 
transformative opportunities in OM diagnosis. AI plays a crucial role in enabling early 
detection and enhancing diagnostic precision through advanced image analysis and 
predictive modeling. This review paper explores modern techniques used for the diagnosis of 
OM, with an emphasis on both traditional and machine learning approaches. A wide range of 
studies has been evaluated, demonstrating the application of AI in improving diagnostic 
accuracy and treatment planning. Notably, AI approaches—particularly deep neural 
networks—have shown remarkable success in otoscopy image analysis. Additionally, recently 
developed hybrid models that combine multiple techniques have outperformed individual 
approaches. Despite these advancements, challenges remain, including limited dataset 
standardization and issues with image quality. 

https://doi.org/10.29304/jqcsm.2025.17.22174 

1. Introduction 

Otitis Media (OM) is one of the most common inflammatory diseases worldwide, particularly affecting children. 
Before the age of seven, nearly every child has at least one bout of an ear infection [1]. Nowadays, doctors usually 
prescribe antibiotics after performing a visual examination. In many cases, inappropriate treatment can lead to 
serious bacterial infections [2]. As a result, developing and investigating cutting-edge techniques is essential for 
accurate diagnosis. 

Unfortunately, physicians often misdiagnose OM due to subtle symptoms, the young age of patients, and limited 
knowledge about the patient and family history. A delayed diagnosis of OM can lead to hearing loss, speech 
difficulties, and serious complications [3]. Studies show that widespread antibiotic use for OM is concerning, as it 
offers limited improvement while contributing to antibiotic resistance [4].  AI involves developing systems that 
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replicate human intelligence, enabling automation of tasks that usually require human cognition. Contemporary 
technology is unable to equal or exceed general human intelligence. The AI has exhibited the capability to 
accomplish clearly defined subtasks independently, without requiring external (human) assistance. AI, combined 
with e-health records, has the potential to transform the care of OM patients. Using extensive long-term data, deep 
learning models can detect underlying diseases [5], classify disease types, forecast risks [6], analyze medical images 
[5], detect anatomical features [6], and assist in localization. These capabilities can improve disease management, 
support surgical planning, and personalize treatment strategies [7]. 

This review will concentrate on machine learning (ML) and deep learning (DL), which are among the most 
frequently utilized. ML includes a set of algorithms that require feature engineering and structured data to perform 
effectively. In contrast, DL relies on artificial neural networks to automatically extracts features from raw input, 
making it extremely successful for difficult applications like picture and speech recognition. This paper reviews the 
latest studies using AI techniques in diagnosing OM, outlining diagnostic methods and clinical trials using them. The 
review also summarizes key findings from recent studies, focusing on challenges such as image quality, clinical 
implementation, and dataset standardization. The structure of the paper is as follows: An introduction is given in 
Section 1, and Section 2 talks about otitis media, Section 3 presents recent reviews and explains the contributions, 
Section 4 lists the diagnostic methods used in otitis media, Section 5 discusses the topic, Section 6 discusses 
challenges and suggestions for future research, and Section 7 provides the conclusion of the review paper. 

2. Overview of Otitis Media 

As seen in Fig. 1, the human ear is made up of three parts: the inner ear, middle ear, and outer ear. The membrane of 
the tympanic (eardrum) defines the boundary between the middle and outer ears [8].  

 

Fig. 1 - Human ear anatomy and the causes of acute otitis media [8]. 

A viral or bacterial infection of the upper respiratory tract can inflame the nasopharynx and Eustachian tube, 
leading to fluid retention in the middle ear leading to fluid retention in the middle ear, which promotes bacterial 
adhesion and colonization. Negative pressure in the middle ear is another effect of eustachian tube dysfunction, 
allowing germs or viruses from the nasopharynx to enter and cause infection. For every Tympanic Membrane (TM) 
condition, representative photographs are displayed in Fig. 2. 
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Fig. 2 - Tympanic membrane (TM) conditions. (a) Normal (b) Chronic Otitis Media (c) Earwax plug (d) 
Myringoesclerosis. 

The three main forms of OM are acute otitis media (AOM) [9, 10], otitis media with effusion (OME) [11, 12], and 
chronic otitis media (COM) [13], each with unique pathological characteristics. AOM is caused by a bacterial 
infection leading to fluid accumulation and inflammation in the middle ear, often resulting in pain and fever. OME is 
more severe than AOM and involves persistent fluid accumulation in the middle ear caused by inflammation, even 
without an active infection. Both AOM and OME present with TM swelling, making clinical differentiation between 
them challenging. Chronic otitis media (COM) [14, 15] involves prolonged infection or inflammation in the middle 
ear, often accompanied by otorrhea (ear discharge) and a perforated tympanic membrane. Without treatment, COM 
can lead to worsening hearing loss, repeated infections, and severe complications like mastoiditis, cholesteatoma, or 
brain infections. Chronic suppurative otitis media (CSOM) is a severe, persistent form of COM associated with 
ongoing ear discharge and significant auditory impairment. CSOM is the leading cause of hearing loss among 
children in low-income regions worldwide [16, 17]. Accurate diagnosis and proper management of OM—especially 
distinguishing its subtypes—are crucial to prevent complications and ensure effective treatment. AI-based 
diagnostic models are being actively explored to enhance the accuracy and speed of differentiating AOM, OME, and 
COM. These tools support clinicians in early intervention and improved patient outcomes. 

Delayed or incorrect diagnosis of OM can lead to persistent inflammation, hearing loss, and damage to the eardrum. 
In children, it can negatively affect the development of speech and language [18, 19, 20]. The most severe 
complications include mastoiditis, meningitis, and brain abscesses. Misdiagnosis may also lead to unnecessary 
antibiotic use, contributing to hard-to-treat antibiotic resistance. Therefore, prompt and precise diagnosis is critical 
in avoiding complications and employing appropriate strategies. 

3. Literature Review 

Although there aren't many, some recent publications have examined the developments in the field of otitis media 
diagnosis using AI. In [21], the most common challenges limiting the accuracy of diagnosing acute otitis media are 
discussed. New methods and techniques are also introduced to improve detection. To decrease errors in the 
diagnosis of otitis media, pediatricians and otolaryngologists should actively promote teleotology and the use of 
artificial intelligence. In [22], artificial intelligence techniques used in medical imaging in otolaryngology were 
reviewed. Studies were extracted from five databases without date restrictions. The review found that 26 out of the 
32 studies classified data using tympanic membrane images, with an average diagnostic accuracy of 86%. Three 
additional studies reported an average diagnostic accuracy of 90.8% using a combination of segmentation and 
classification techniques. In [23], key ideas in artificial intelligence and machine learning are introduced, the ways in 
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which these methods are currently used to diagnose, treat, and manage otitis media are explained, and the 
difficulties in developing machine learning methods in the future with AI assistance are examined. 

In order to categorize middle ear diseases using TM images, the development of ML models was methodically 
assessed and their diagnostic accuracy was compared in [24]. There were 20,254 TM photos from 16 studies (7,025 
normal TM images and 13,229 TM images). Each study's sample size varied from 45 to 6,066. The machine learning 
techniques that were included have accuracy ranging from 76.00% to 98.26%. In [25], a historical review of the 
application of ML in medical research and clinical use, particularly in otology, was conducted. Applications of 
machine learning in this field were reviewed, including diagnosis, effective identification, and prediction of surgical 
outcomes. 

While previous work has often focused on a limited number of individual studies or techniques, this paper 
systematically classifies and evaluates a wide range of AI methods, including traditional machine learning, deep 
learning, and hybrid approaches. Previous reviews have focused primarily on image-based diagnosis, while this 
review will also include analysis of tympanogram and audio frequency data. It also identifies unexplored areas such 
as automated tympanogram analysis and the use of transfer learning in otoscopy. Furthermore, it highlights the 
benefits of ensemble learning and hybrid models, which have rarely been addressed in previous surveys. By 
structuring the findings based on diagnostic methods, data types, and model performance, this review provides a 
more comprehensive and updated synthesis of AI-based diagnostic methods for OM than previous reviews.  

4. Methodology 

A thorough literature search was carried out with the aid of internet databases such as PubMed, MEDLINE, EMBASE, 
Scopus, and ResearchGate, to identify relevant studies published between 2016 and 2024. The focus was on AI-
based approaches for diagnosing, treating, or managing otitis media (OM) patients. Only publications in English that 
involved human subjects were considered. To ensure broad coverage of recent advancements, the review includes 
articles, abstracts, and conference proceedings. To discover additional relevant studies, the references of the 
selected papers and key review articles were cross-referenced. Data extraction included methodology, sample size, 
AI models used, and key findings. The synthesis of these studies aimed to highlight trends, challenges, and future 
directions in AI applications for OM management.  

One of the most popular applications of AI and ML is the classification algorithm [21, 22]. It has been demonstrated 
in recent years that artificial intelligence significantly improves the ability to diagnose otitis media by utilizing 
patient data obtained with endoscopy, imaging, or various diagnostic devices [23, 24]. These advances are 
particularly exciting, as they offer the potential to improve diagnostic accuracy and guide more effective therapy. 

The majority of computer-assisted techniques in this sector rely on the analysis of two-dimensional pictures taken 
with otoendoscopes or conventional otoscopes [30]. The quality of the otoscope recordings and frames chosen from 
those videos has a significant impact on how well these image analysis applications function; as a result, image 
analysis apps may exhibit low reproducibility between and between readers. A tool that gives quantitative data on 
the presence of fluid in the middle ear and the function of TM and middle ear structures is the tympanometry. The 
tympanogram serves as the data's visual representation. The machine learning literature contains few research for 
the automated analysis of tympanometry, in contrast to the otoscope [31]. In this research, we will review the latest 
literature on the use of artificial intelligence in the diagnosis of otitis media. We categorize the literature according 
to the use of traditional ML, DL, or hybrid methods, while addressing the methodologies used in each study, as well 
as the most important findings and challenges. 

4.1. Machine Learning 

Machine learning algorithms have been used to diagnose diseases by analyzing large data sets to discover patterns 
and predict outcomes with high accuracy. Supervised models are used to classify diseases based on medical imaging, 
lab results, and patient history while unsupervised learning techniques help identify hidden patterns in patient data, 
aiding in early detection of disease. There are some machine learning experiments done for automated otoscopic 
image-based ear condition diagnosis. An auto-diagnosis of otitis media using a decision tree was performed in [32], 
which classified the tympanic membrane into five categories with an accuracy of 81·58%. But crucial diagnoses like 
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attic retraction are absent from the classification categories. The dataset includes 389 tympanic membrane images 
collected using various rigid endoscopes and video-otoscopes. Two independent experts confirmed the diagnoses. 
The image resolution varies across the dataset. There were 60 W/O, 51 AOM, 69 OME, 86 CSOM, and 123 normal in 
the dataset. 

In order to facilitate the automatic diagnosis of middle ear disorders, Wideband Absorbance Immittance (WAI) was 
characterized across several frequency pressure zones in both normal middle ear and ears with OME using machine 
learning techniques in [33]. The highlighted main areas offer direction to practitioners to enhance their 
comprehension and interpretation of WAI data, potentially leading to prompt and precise diagnostic choices. The 
data type of the dataset is wideband acoustic immittance with total of 672 records with lebels of Normal and OME. 

High quality preprocessed images of eardrums taken with digital video of otoscopes are used to train the algorithm 
in [34], which then uses predetermined indicators to categorize images that are not diagnosed into five OM groups. 
Images obtained with commercial video-otoscopes had an accuracy of 80.6%, whereas photos taken on-site with a 
cheap, custom-made video-otoscope had an accuracy of 78.7%. The dataset includes otoscopy images different cases 
of tympanic membrane where the authors removed 73 images due to insufficient image quality. 

In [35], the impact of middle-ear effusion volume on children's wideband acoustic immittance with effusion-
associated OM was examined. It was discovered that absorbance, a specific measure of acoustic immittance, 
decreased systematically as effusion volume increased, especially in the 1–5 kHz frequency range. A multivariate 
logistic regression technique revealed high accuracy when identifying OM based on effusion occurrence and volume. 

OME detection was developed and verified in [36] with the aid of in-ear microphones and a machine learning model. 
Two commercial microphones were inserted into each ear canal to record the sound produced by participants as 
they continuously uttered five three-vowel vowels. Table 1 shows a comparison of literature that uses machine 
learning in realm of diagnose method, dataset, diagnose categories, models, main results, and limitations.  

Table 1 - Comparison of literature in diagnosing otitis media that used machine learning. 

Ref. Diagnose 
Method 

Dataset Diagnose 
Categories 

Models Main 
Results 

Limitations 

[32] 

2018 

 

Smartphone 
Otoscopy 

Tympanic 
membrane 

dataset, Video-
Otoscope 
tympanic 

membrane 
dataset 

Normal, OME, 
CSOM, W/O, 

AOM 

Decision 
Tree, 

Neural 
Network 

Accuracy of 
Decision 

Tree: 
81.58%; 

Accuracy of 
Neural 

Network: 
86.84% 

Low-resolution 
images 

[33] 

2021 

2D Frequency-
Pressure WAI 

Images 

672 WAI records 
from 405 

participants 
across five 

hospitals in China 

Normal vs. OME Random 
Forest 

Accuracy: 
75%  

 

Exclusion of 
other middle ear 

conditions 

[34] 

2016 

Digital video-
otoscopes 

Using various 
commercially 

accessible video-
otoscopes, 562 

TM pictures were 
taken 

CSOM, O/W, n 
TM, OME, AOM 

Decision 
Tree 

Accuracy: 
78.7% 

If further 
training photos 
are added, the 
final decision 

tree will need to 
be modified 
because it is 

fixed 

[35] 

2021 

Tympanometry 49 children ages 
9 months to 11 
years had their 

wideband 
acoustic 

immittance 

OME, AOM, No 
Effusion 

Logistic 
Regression 

Improved 
diagnostic 
certainty 
from 57% 
(otoscopy 

only) to 77% 

Model 
explainability 
remains low; 

requires clinical 
validation 
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tested with WBT 
integration 

[36] 

2023 

Ear 
microphones 

The mean age of 
the 31 adults 

diagnosed with 
OME was 60 

years, with 20 
being male and 

11 being female. 

OME, Normal SVM, 
Gaussian 

Naive 
Bayes, 

AdaBoost, 
and 

Random 
Forest 

Accuracy: 
80.65% 

Variations in 
pronunciation 

among 
individuals, 

gender, and age 
cause great 

variation and 
variation in the 
vocal recording 

4.2. Deep Learning 

The rapid development of deep learning methods has transformed diagnostic prediction and electronic health 
records, particularly enhancing image-based disease recognition in fields like radiology and dermatology. Managing 
the heterogeneity included in varied datasets has proven to be extremely challenging for medical data analysis when 
employing traditional methodologies [37]. However, the introduction of deep learning has replaced traditional 
approaches in the administration of electronic health information, including medical imaging and their use for 
diagnostic prediction, indicating a paradigm change. Several medical domains have effectively incorporated DL or 
deep neural networks. Convolutional neural networks (CNNs) are supervised DL techniques used in the majority of 
these investigations. In [38], a CNN model based on the EfficientNet-B4 architecture was presented. It predicted 
both primary classes (OME, COM, and normal) and secondary conditions such as attic cholesteatoma, meningitis, 
ventilating tube insertion, and otomycosis. Furthermore, with a dice similarity coefficient (DSC) of 95.19%, the 
model correctly predicted the principal class; in secondary classes, the DSCs for the diagnosis of meningitis and 
cholesteatoma were 88.37% and 88.28%, respectively. 

In [39], a deep learning model was developed and validated to use multi-center otoscopic images to detect attic 
retraction pocket and atelectasis in OME patients. Threefold random cross-validation has been utilized with 6393 
OME otoscopic images. The model exhibited a detection accuracy of 79% for atelectasis and 89% for attic retraction 
pocket. A large-scale tympanic measurement-based automated diagnostic technique for otitis media detection was 
presented in [40]. CNNs for otitis media classification was developed using a wide-band tympanogram analysis and 
saliency maps were calculated to get knowledge about the decision-making process of the CNNs. The method shows 
high performance in comprehensive detection of OM with an accuracy of 92.6%. The dataset includes wideband 
tympanometry measurements for diagnosing OME and AOM with total of 1014 images. In [41], a DL methodology 
was used to autonomously separate tympanic membranes (TMs) from videoendoscopic pictures. A hybrid loss 
function that combines active contour loss with dice loss is described for a fully convolutional network, and the 
method is tested on a dataset of 1139 endoscopic pictures. In [42], the effectiveness of five loss functions was 
compared with an automated classification of otitis media. The findings demonstrate that deep metric loss functions 
sacrifice recall in order to gain high precision on the underrepresented class. Comparing the triplet loss to the class-
level weighted cross-entropy loss, the former produced the maximum precision in the AOM class without 
significantly lowering recall. In [43], a CNN-based method was introduced for automatic segmentation of video-
otoscopic images. The model uses residual blocks for decoding, attention gates for skip connections, and EfficientNet 
as the encoder. In order to help neural networks with segmentation tasks, the research also presents a new loss 
function term. 

In [44], a deep learning method was created to use computed tomography (CT) imaging of the middle ear to 
diagnose a variety of chronic middle ear conditions, including middle ear cholesteatoma and chronic suppurative 
OM. The final dataset was created using the labeling of a professional otolaryngologist and consisted of 973 ears 
divided into three conditions: normal, CSOM, and MEC. The foundation for diagnosis was made up of two DL 
networks that were used for different tasks: a classification network to finish the diagnosis and a "region of interest" 
area search network to extract the unique image of the middle ear anatomy. The effectiveness of a convolutional 
neural network in otitis media screening was examined in [45] utilizing digitized otoscopic images with total of 347 
tympanic membrane images that were labeled by a panel of experts. The CNN was trained then tested using the 
same photos that were divided into three screening groups. These samples had a majority expert diagnosis. DL is 
used in [46] to analyze eardrum and ear canal images in order to detect biomedical ear infections. The method uses 
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a noise removal procedure based on Wiener filtering (WF) to get rid of the noisy data. In [47], a neural network 
algorithm using a library of children's eardrum images brought to the surgical suite with the goal of executing 
myringotomy and possibly placing a recurring tube AOM or OME was compared to human physicians' capacity for 
diagnosis. 

Large datasets and processing power are needed to build deep neural networks from scratch, which is impractical in 
many application domains. Transfer learning, on the other hand, is the process of reusing and optimizing publicly 
available CNN models that have been pre-trained for natural pictures for a particular use. Those features are 
categorized into a new set of classes by a new fully-connected layer comes after the majority of the network layers 
in a public network model are moved to a new model in transfer learning. Research on medical imaging using 
transfer learning demonstrated great classification accuracy that was on par with or even superior to creating CNN 
from scratch [43, 44].  

In [50], nine convolution-based deep neural networks using transfer learning were trained. The models classify ear 
conditions into six diagnostic categories. The models were combined into an ensemble classifier, where their 
classification scores are aggregated to improve diagnostic accuracy. This approach mimics a multi-specialist opinion 
system to enhance reliability and accuracy for practical clinical use. Pre-trained CNNs were utilized for eardrum 
categorization in [51], whereas a new diagnostic model based on the Faster Regional Convolutional Neural Network 
(Faster R-CNN) was employed for eardrum detection. The model's performance was assessed when various noise 
effects were present. The data was set using simple image augmentation techniques like flip and rotate. By using 
two popular CNN networks, Xception and MobileNet-V2, an otoscopic image classifier for pediatric OM was 
developed in [52] based on the concepts of DL and transfer learning. AOM, OME, and normal ears were among the 
otoscopic images used with total of 12,203 images. Additionally, a prospective test set of 102 images taken with a 
smartphone and a WI-FI-connected otoscope was utilized to assess the paradigm for monitoring and screening at 
home. Table 2 shows a summary of the papers that uses deep learning in realm of diagnose method, dataset, 
diagnose categories, models, main results, and limitations.  

Table 2 - Comparison of literature in diagnosing otitis media that used deep learning. 

Ref. Diagnose 
Method 

Dataset Diagnose 
Categories 

Models Main 
Results 

Limitations 

[38] 

2022 

Otoscopy 
Images 

1,630 OME, 1,534 
COM, 3,466 none 

OME, COM, 
None 

EfficientNet-
B4 

Primary 
class DSC: 
95.19%; 

Secondary 
classes DSC: 

88.37% 

Requires 
broader dataset 

for 
generalization. 

[39] 

2023 

 

Otoscopy 
Images 

6,393 OME 
images 

Atelectasi, 
Retraction 

Pocket 

CNN with 
CAM 

AUC: 0.87  Limited multi-
center datasets 

and external 
validation 

[40] 

2022 

Tympanometry Include 1014 
WBT readings 

that were taken 
in the Kamide 

ENT clinic. 

OME, AOM  CNN with 
saliency map 
integration 

Accuracy: 
92.6% 

Incapable of 
differentiating 

between 
subtypes of 
otitis media 
(e.g., acute 

versus 
effusion). 

[41] 

2021 

Otoscopy 
Images 

1,139 images Normal, OM Fully 
Convolutional 

Network 
(FCN) 

DSC: 89.5%; 
HD: 19.189 

Segmentation 
needs further 

testing 

[42] Otoscopy 
Images 

1336 images 
assessed by a 

medical 

AOM, OME, and 
No Effusion 

Deep metric 
learning 

Accuracy: 
85% 

Lack of 
objective 
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2021 specialist measurements 

[43] 

2021 

Otoscopy 
Images 

1012 otoscopic 
pictures are 

included in the 
TM dataset. 

Normal, AOM, 
OME, COM  

Three 
primary 

paradigms: 
Attention gate 

for skip 
connection; 
EfficientNet 
for encoder; 
ResNet for 

decoder 

Average 
DSC: 92.9% 

Image artifacts 
include 

homogeneous 
intensity and 

weak borders. 

[44] 

2022 

Computed 
Tomography 

(CT) 

973 ears labeled 
by 

otolaryngologist 

MEC, CSOM, 
Normal 

VGG16 F1-score: 
87.2% 

Precision: 
90.1% 

Recall: 
85.4% 

Need to 
increase the 

speed of frame 
and reduce the 

size of the 
network 

[45] 

2022 

Otoscopy 
Images 

347 eardrum 
pictures taken 
with a digital 

otoscope 

Normal, 
Pathological, 

Wax 

CNN Accuracy: 
90% 

Using only one 
CNN model 

[46] 

2024 

Otoscopy 
Images 

Large labeled 
dataset of ear 

images 

Infected vs. not 
infected 

Fuzzy 
Restricted 
Boltzmann 

Machine 
(FRBM) 

Improved 
noise 

reduction 

Based on high-
quality input 

images 

[47] 

2023 

Otoscopy 
Images 

639 images of 
eardrum 

Normal, OME, 
AOM 

Neural 
network, 

Commercial 
Model 

(Google) 

Accuracy: 
80.8% 

Unusually high-
quality clinical 

photos were 
included in the 
training data. 

[50] 

2019 

Otoscopy 
Images 

10,544 
otoendoscopic 

images 

Tympanic 
perforation, 

Attic 
retraction, 

Otitis externa ± 
myringitis, 

Tumor, Normal 

Inception-V3 
and 

ResNet101, 
combined 

into an 
ensemble 
classifier 

Average 
accuracy: 
93.67% 

Dataset 
dependency 

may limit 
generalization 

[51] 

2020 

Otoscopy 
Images 

1692 augmented 
otoscope images 
(raw image 282) 

Normal vs. 
Abnormal 

Faster R-CNN 
for eardrum 

identification 
and pre-

trained CNNs 
for eardrum 

categorization 

Accuracy: 
90.48% 
VGG-16 

A few raw 
images 

[52] 

2021 

Otoscopy 
images from 
smartphone-

enabled 
wireless 
otoscope 

12,203 
otoendoscopic 

images 

102 images 
captured by 
smartphone 

AOM, OME, 
Normal 

Xception, 
MobileNet-V2 

Accuracy: 
95.72% 

Insufficient to 
assess the 

severity of OM 
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4.3. Hybrid Approaches 

Some studies have used a combination of several methods to improve diagnostic results. In [53], digital otoscopy 
images and tympanoplasty measurements were combined for accurate diagnosis of tympanic abnormalities. By 
using a decision fusion mechanism, predictions from both methods were combined, significantly improving the 
diagnostic accuracy to 84.9%, compared to the individual methods. This approach addresses the limitations of 
subjective visual examinations by incorporating complementary biophysical data. 
The CNN model, along with its deep characteristics and the images captured by the otoscope device, were utilized in 
[54]. In the initial step of the experiment, the VGG16 model was used effort to distinguish between these images as 
Normal and Abnormal. The second step included obtaining the activation maps. After that, it was fed into Support 
Vector Machines (SVM). In [55], a novel deep learning-based voting ensemble framework was proposed for 
diagnosing middle ear diseases using otoscopic images. By combining the strengths of multiple pre-trained CNN 
models, the soft voting ensemble achieved state-of-the-art performance with high accuracy, sensitivity, and 
specificity. The dataset includes 880 otoscopy pictures of 180 patients, ages 7 to 65, with a resolution of 420 × 380. 
Four categories—chronic otitis media, tympanosclerosis, earwax plug, and normal otoscopy—are used to group the 
images in the dataset. In [56], a method using the EfficientNet-B7 backbone to classify tympanic membrane diseases 
and hearing decline in children is presented. The model's ability to integrate classification and regression tasks 
makes it a versatile tool for tympanic membrane diagnosis and hearing assessment in children. The dataset used is 
named SCH Tympanic Membrane Dataset which includes 23,302 JPG image files with distinct training tasks for each 
of the two datasets—one for classification and one for regression. When a patient visits, they often have an 
otoendoscopy to take pictures of their eardrums. These images have a resolution of 1280 x 1350 pixels.  Table 3 
shows a summary of the papers that uses hybrid approaches in realm of diagnose method, dataset, diagnose 
categories, models, main results, and limitations.  

Table 3 - Comparison of literature in diagnosing otitis media that used hybrid approaches. 

Ref. Diagnose 
Method 

Dataset Diagnose 
Categories 

Models Main 
Results 

Limitations 

[53] 

2020 

Tympanometry 
and Otoscopy 

videos 

ImageNet Large 
Scale Visual 
Recognition 

Challenge 
database that has 
more than 1.2 M 

images from 
1,000 classes 

Normal vs. 
Abnormal 

Random forest 
for 

tympanometry, 
Inception-

ResNet-v2 for 
otoscopy, and 

majority voting 
for fusion 

Accuracy: 
84.9%  

Fusion accuracy 
depends on the 
quality of each 

individual 
modality 

[54] 

2022 

Tympanometry 956 middle ear 
images 

Normal vs. 
Abnormal 

VGG16 + SVM Accuracy: 
82.17% for 

specific 
feature 
layers 

Lack of multi-
center testing 

[55] 

2024 

Otoscopy Images Public Ear 
Imagery dataset 
(880 otoscopy 

images) 

Normal, Earwax 
plug, 

Myringosclerosis, 
Chronic otitis 

media 

Deep learning-
based ensemble 

method (Soft 
and hard voting 

ensembles of 
pre-trained 

CNNs) 

Accuracy: 
98.8%, 

Sensitivity 
97.5%, 

Specificity 
99.1%  

Depend on high-
quality otoscopic 

images 
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[56] 

2024 

Otoscopy Images Open-access 
eardrum dataset, 

SCH eardrum 
dataset  

Eardrum diseases 
(4–5 classes) and 
pediatric hearing 

(regression) 

EfficientNet-B7-
based 

convolutional 
neural network 

with drop 
connect for 

generalization 
and multi-layer 
perceptron in 
the decoder  

Accuracy: 
93.59% on 

open-access 
dataset, 

Accuracy: 
98.28% on 

SCH dataset 

Performance 
degradation 

caused by this 
data imbalance 

5. Discussion 

Deep learning approaches generally outperform traditional machine learning in terms of accuracy. For instance, 
ensemble methods like Inception-V3 and ResNet101 achieved 93.67% accuracy [50], while MobileNet-V2 and 
Xception reported 95.72% [52]. CNN-based models also performed well, such as one using tympanometry data with 
92.6% accuracy [40], and another ensemble model reaching 98.8% [55]. In contrast, traditional models like Decision 
Trees and Random Forests achieved 75–86% accuracy [32], [33], [34]. Hybrid models show promise, with an 
ensemble approach combining CNNs and majority voting reaching 84.9% [53], and VGG16+SVM scoring 82.17% 
[54]. The highest performance came from newer hybrid CNN models, like EfficientNet-B7, achieving up to 98.28% 
[56].   
Deep learning models also demonstrated strong performance across other evaluation metrics. For instance, VGG16 
applied to CT scans achieved a precision of 90.1%, recall of 85.4%, and an F1-score of 87.2% [44], indicating 
balanced classification capabilities. Ensemble models like those using EfficientNet-B7 and CNN-based soft/hard 
voting approaches reported high sensitivity (97.5%) and specificity (99.1%) [55], highlighting their effectiveness in 
minimizing false negatives and false positives. 
Using AI-based methods has shown better results in classification, image analysis, and decision-making. Research 
has demonstrated that CNNs are capable of distinguishing between OM subtypes, which improves the accuracy of 
otoscopic image evaluation. Furthermore, hybrid models that combine AI-driven image recognition and 
tympanometry have produced better diagnostic accuracy.  
 

6. Challenges and Future Considerations 

Despite considerable progress in AI-driven OM diagnosis, several key challenges persist. One major issue is the lack 
of lightweight and efficient AI models that can be seamlessly integrated into real-time clinical workflows. Many 
current algorithms are computationally intensive and not optimized for practical deployment in point-of-care 
settings. Additionally, there is a lack of standardized datasets, which hampers model generalizability and consistent 
performance across diverse clinical environments. Real-time monitoring remains a significant hurdle, especially in 
dynamic scenarios like surgeries, where speed and precision are critical. 
   The review also highlights considerable heterogeneity among existing studies in terms of data quality and sources. 
Many studies deliberately exclude difficult cases, such as blurred or defocused otoscopic images, which reduces the 
robustness of their models. This selective inclusion increases reported accuracy but undermines real-world 
applicability. To address these limitations, future research should prioritize data diversity and resilience. Solutions 
such as dataset augmentation, synthetic data generation, and Federated Learning can help mitigate bias and 
enhance model robustness. Future efforts should focus on the development of diverse datasets that incorporate 
multiple diagnostic features to improve AI models' accuracy and generalizability. Multimodal approaches that 
combine otoscopy images, tympanometry measurements, and acoustic analysis can provide a more comprehensive 
evaluation of middle ear inflammation. Otoscopy images offer visual insights into tympanic membrane 
abnormalities, while tympanometry assesses middle ear pressure and fluid presence. Acoustic analysis can detect 
subtle auditory changes associated with otitis media, improving early detection. Integrating these diagnostic 
modalities can enhance classification accuracy and reduce false positives and negatives.  
 

Conclusion 
This review highlights the efficacy of AI methodologies in automating and assisting with the diagnosis of OM. 
Despite being in the development and testing phases, AI can enhance the practices of otolaryngologists and primary 
care clinicians by augmenting the effectiveness and precision of diagnosis through inclusion of ML and deep 
learning techniques has further enhanced diagnostic accuracy, paving the way for automated and accessible 
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solutions. Diverse datasets and advanced analytics improve generalizability and early detection. Future research 
should prioritize data fusion and real-time clinical applicability for better outcomes.  
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