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A B S T R A C T 

ECG signals are essential for monitoring and diagnosing cardiovascular conditions, 
particularly arrhythmias, which can lead to severe complications if undetected. This study 
introduces an AI-based approach for arrhythmia classification using the MIT-BIH arrhythmia 
dataset, addressing challenges like class imbalance, class overlap, and intra-patient bias. To 
enhance data quality, the dataset was balanced using the Synthetic Minority Oversampling 
Technique (SMOTE) and augmented with Gaussian noise for minority class samples. A 
Conv1D-Attention network was employed during preprocessing to extract local ECG features 
and focus on key waveforms. Among the evaluated classifiers, decision tree, random forest, 
and support vector machine (SVM), the random forest achieved the highest accuracy of 91%. 
Although preprocessing reduced class imbalance and variance, a drop in performance was 
observed. This reflects a realistic evaluation scenario by preventing data leakage from similar 
ECG segments of the same patient in both training and test sets. Enforcing patient-
independent segmentation compelled the model to generalize beyond individual patterns, a 
critical step for real-world applications. This study highlights the importance of rigorous 
evaluation protocols in biomedical machine learning. Combining data augmentation with 
attention-based feature extraction significantly enhances model generalizability, particularly 
in handling overlapping and imbalanced classes. This approach shows promise for developing 
reliable, patient-independent diagnostic tools for early arrhythmia detection in clinical 
settings. 

 

MSC.. 

https://doi.org/10.29304/jqcsm.2025.17.22175 

1. Introduction 

Irregular heartbeat occurring due to malfunctioning of the electrical impulses that regulate the heartbeats is one of 
the leading causes of death globally from cardiovascular disease (Ferreir, Kumar, Soni, Acharya, & Acharya, 2023). 
Very early and very accurate detection of arrhythmias is of utmost importance for timely medical intervention to 
prevent severe complications like sudden cardiac arrest (Nagpal, Pundkar, Singh, & Gadkari, 2024). 
Electrocardiogram (ECG) signals play a pivotal role in monitoring and diagnosing many cardiovascular conditions, 
therefore, accurate interpretation and classification of ECG signals are very important for making the right medical 
decision at the right time (Zeng, Shan, Yuan, & Du, 2024). Manual analysis of an ECG is time-consuming, prone to 
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human error, and requires interpretation by cardiologists only (Maturi et al., 2025). With the great technological 
developments that have occurred in the modern era, machine learning models have emerged that have shown great 
potential in capturing patterns and relationships between big data, as these models learn from labeled data sets, 
thus the capabilities of these models can be leveraged to classify ECG signals into different types, as machine 
learning algorithms can recognize patterns and anomalies that may not be easily detected by traditional methods 
(Ansari, Mourad, Qaraqe, & Serpedin, 2023; Guo & Li, 2023). Traditional methods for ECG analysis, such as rule-
based and statistical methods, often suffer from limitations in handling complex and high-dimensional data 
(Sengupta & Das, 2024). 

To clear out some artifacts brought about by muscle movements during scanning or positioning of the electrodes, 
raw ECG signals are prone to noise and thus in need of filtering techniques (Dias, Probst, Silva, & Gamboa, 2024). 
Another hurdle is the quality of the dataset, which largely affects the performance of a model since inadequate or 
imbalanced data would lead to a biased model and subsequently biased predictions (Owusu, Quainoo, Mensah, & 
Appati, 2023). They may also suffer from overfitting problems, where the model learns some features unique to the 
training dataset and does not generalize well to new data (Gygi, Kleinstein, & Guan, 2023). These require integration 
of efficient feature selection and data augmentation techniques for improved model performance. 

Following previous studies (M. A. Assaad & Shakah, 2024; M. Assaad, Boné, & Cardot, 2008; Baker, Mohammed, & 
Jihad, 2022; Baker, Taher, & Jihad, 2023; Hameed, 2023; H Khalid, 2024; Hind Khalid, 2024; Rashid et al., 2021; 
Umar, Rashid, Ahmed, Hassan, & Baker, 2024), this study investigates AI models' effectiveness in detecting and 
classifying ECG arrhythmias. In particular, the role of this research in the reliable development of automatic 
diagnostic systems would be to help earlier identification of arrhythmias to make better decisions, thus reducing the 
complications and risks associated with cardiovascular diseases. 

Unlike many previous works that report high classification accuracy but do not address critical challenges such as 
patient-specific data leakage, segment-level class overlap, and limited generalizability, this study introduces a more 
robust evaluation pipeline by combining SMOTE-based balancing, Gaussian noise augmentation, and a 1D 
convolutional attention-based model architecture. The resulting model shows slightly lower performance than some 
existing methods, but reflects a more realistic and generalizable classification performance, offering meaningful 
contributions to the development of clinically applicable arrhythmia detection systems. 

 

2. Related Works 

Several prior studies have explored the detection of cardiovascular diseases, with a particular emphasis on 
arrhythmias. The study (Singh & Singh, 2019) proposed a learning-based approach that integrated three distinct 
machine learning algorithms alongside three filter-based feature selection techniques. The model identified the 
most relevant features from an arrhythmia dataset, with the highest performance achieved by a random forest 
classifier using a gain-percentage feature selection method and a selected subset of 30 features, yielding an accuracy 
of 85.58%. However, despite these promising results, there remains a notable gap in enhancing the generalizability 
and precision of arrhythmia detection models, particularly when dealing with imbalanced datasets or real-world 
noisy signals. 

Numerous studies have employed deep learning frameworks to design innovative approaches for the automatic 
detection of myocardial infarction (MI) using electrocardiogram (ECG) signals, both in their raw form and after 
noise reduction. One notable method utilized a convolutional neural network (CNN) to distinguish between normal 
and MI-affected ECG pulses, achieving average accuracy of 93.53% (Acharya et al., 2017). Many existing approaches 
lack robustness when confronted with real-world ECG data that may be affected by noise, artifacts, or irregular 
patterns. This highlights the need for more adaptable and noise-tolerant deep learning models capable of 
generalizing effectively. 

In (S.-F. Li, Huang, & Wu, 2023), a CNN was employed to analyze ECG data directly, without the need for signal 
transformation or manual feature extraction. The study aimed to classify individual heartbeat ECG images using 
CNNs combined with the Taguchi method for optimization. It considered all fifteen arrhythmia types, grouped into 
five classes, from the MIT-BIH arrhythmia dataset. The proposed model achieved a classification accuracy of 
96.79%. The reliance on image-based ECG representations may limit the model's adaptability to raw time-series 
data often encountered in real-world clinical settings. This study did not address the problem of overlapping class 
samples in the MIT-BIH dataset. 
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In (Khan, Yu, Yuan, & Rehman, 2023), the proposed method leverages a CNN to directly extract features from input 
heartbeat signals, eliminating the need for manual preprocessing. To address the issue of class imbalance within the 
training dataset, the SMOTE was applied. This approach resulted in an average classification accuracy of 98.63%, 
with a specific class accuracy reaching 92.86%. A notable gap remains in evaluating the model's performance on 
real-world clinical data, where signal noise and patient variability may differ significantly from the training 
conditions. 

Another study (Ramkumar, Babu, Priyanka, & Kumar, 2021) proposed a hybrid approach for classifying ECG 
arrhythmia signals from the MIT-BIH Arrhythmia database, utilizing SVM optimized through Particle Swarm 
Optimization (PSO) and a Genetic Algorithm (GA), in conjunction with Independent Component Analysis (ICA) for 
feature extraction. The optimization techniques enhanced the performance of the SVM classifier, resulting in a 
classification accuracy of 96%. This study did not address the problem of overlapping class samples in the MIT-BIH 
dataset. 

 

3. Methodology 

The given methodology employs machine learning algorithms in the production of a decision support system for 

ECG signal classification. The proposed system, therefore, aids medical decision-making processes and accelerates 
the processing and interpretation of ECG data that would help save time for the doctors, particularly in emergencies. 
The same system assists the physicians in determining which cases require immediate attention. Figure 1 shows the 
overall framework of the proposed methodology. 

Fig. 1- The general structure of the proposed methodology 

3.1 Dataset Description 

This research relies on a dataset of heartbeat signals obtained from Kaggle (Kaggle, 2023). This dataset consists of 
two sets of heartbeat signals derived from two popular datasets in heartbeat classification, the MIT-BIH arrhythmia 
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dataset and the PTB diagnostic ECG database. This dataset was used to explore the heartbeat. The signals 
correspond to ECG patterns of heartbeats of normal cases, cases affected by various heart rhythm disorders, and 
myocardial infarction. The dataset includes 5 categories (Oleiwi, AlShemmary, & Al-Augby, 2024): 

 0: "Normal". 
 1: "Atrial Premature". 
 2: "Premature Ventricular Contraction". 
 3: "Fusion of Ventricular and Normal". 
 4: "Fusion of Paced and Normal". 

The dataset contains 87,554 data samples, where each sample corresponds to an ECG signal characterized by 188 
features. Features 1-187 represent the heartbeat signal, while feature 188 denotes the class label for that signal. The 
number of samples per class is summarized in Table 1. 

Table 1- The number of samples for each class within the data set 

Category Samples Number 

Normal 57977 

Fusion of Paced and Normal 5145 

Premature Ventricular Contraction 4630 

Atrial Premature 1778 

Fusion of Ventricular and Normal 513 

  

Figures 2, 3, 4, 5, and 6 show the ECG signal for each of the classes in the data set. 

 Fig. 2- ECG signal for `Normal` label 

  

Fig. 3- ECG signal for `Atrial Premature` label 
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 Fig. 4- ECG signal for `Premature Ventricular Contraction` label 

  

 

 

 

 

 

 

Fig. 5- ECG signal for `Fusion of Ventricular and Normal` label 

 Fig. 6- ECG signal for `Fusion of Paced and Normal` label 

3.2. Data Preprocessing 

Data preprocessing is the crucial step that turns raw data into a clean, formatted version before it is fed into any 
machine learning model (Jansen, Aldous, Salminen, Almerekhi, & Jung, 2023). Intensive preprocessing is the 
foundation of maximizing accuracy and performance in any machine learning model. In practice, proper data 
preprocessing means that the quality of the input data is improved, further assisting the model during its 
performance in terms of faster convergence with better generalization capabilities (Tariq, Palade, Ma, & Altahhan, 
2023). Besides, preprocessing prevents the learning process from becoming prejudiced or overfitted and thus 
allows different features to contribute uniformly during learning, thereby increasing accuracy and robustness 
(Habib & Okayli, 2024). Proper data preprocessing methods for ECG arrhythmia detection give the machine learning 
model advantages in detecting subtle patterns in ECG signals, which increase the reliability of diagnosis and 
promote timely medical intervention. 

3.2.1. Handling Imbalanced Datasets: 
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In AI, the issue of imbalanced datasets is a significant challenge. A dataset is considered imbalanced when one class 
contains substantially more samples than the others (Balla, Habaebi, Elsheikh, Islam, & Suliman, 2023). This 
imbalance can lead to several challenges (Hasanin, Khoshgoftaar, Leevy, & Seliya, 2019), including: 

 Biased models: In this case, the model is biased towards the majority class; in other words, the model 
prioritizes the majority class and learns poorly from the minority classes, resulting in poor model 
performance. 

 Unreliable performance metrics: Performance metrics such as accuracy can be unreliable if the data is 
unbalanced, as they can give high results, but these results do not represent the true performance of the 
model. The reason for this is that most of the predictions for the majority class will be correct. 

 Overfitting: The model may focus on memorizing the characteristics and patterns of the majority class, 
resulting in poor generalization of the model to the minority class. 

Therefore, at this stage, the crucial step involves correcting the defect in the data set. Figure 7 shows the number of 
samples for each class. 

Fig. 7- Number of samples for each class 

One way to solve this problem is to under sample the majority class, which means that a set of rows are excluded 
from the majority class so that the number of rows for both the majority and minority classes becomes equal, but 
doing this process leads to the loss of a lot of data that can be very important and useful in the process of training 
the model. Another option is to oversample the minority class, which means that a random iteration of the rows of 
the minority class is performed until the number of samples for the majority and minority classes becomes equal, 
but the problem with this method is that it leads to the problem of overfitting because the model learns from the 
same examples. 

To solve these problems, this research will rely on the SMOTE, which is an oversampling technique that produces 
synthetic samples for the minority class (Wongvorachan, He, & Bulut, 2023). SMOTE is a preprocessing technique 
used to address imbalance in a dataset. Figure 8 shows the number of samples for each class after applying the 
oversampling process using the SMOTE method. 
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Fig. 8- Number of samples for each class after applying the SMOTE method 

3.2.2. Data Augmentation: 

Various sources can introduce noise into ECG signals, which can interfere with accurate heart rhythm analysis: 

1.Power line interference: This is caused by electromagnetic interference from electrical devices, power lines, or 
poor grounding, resulting in periodic high-frequency noise appearing in the ECG (Mir & Singh, 2024). 

2.Muscle distortions: These are caused by muscle contractions or patient movement, resulting in noise that affects 
the ECG signals (Atanasoski et al., 2024). 

3.Baseline drift: Low-frequency deviation in the ECG signal caused by patient breathing, poor electrode contact, or 
movement (H. Li, Ditzler, Roveda, & Li, 2024). 

4.Electrode contact noise: Poor electrode placement, dry electrodes, or loose connections can cause sudden changes 
in the signal amplitude, resulting in temporary spikes in the signal shape (Atanasov, 2023). 

5.Motion distortions: Body movements such as twitching, coughing, or changing position can create irregular signal 
distortions that affect the interpretation of the ECG waveform (Khalili, GholamHosseini, Lowe, & Kuo, 2024). 

Therefore, at this stage, noise will be introduced into the ECG signals, so that samples containing noise are added to 
the existing samples, so that the samples simulate the actual and real application of ECG signals, and so that the 
model is able to classify the signal even if there is noise in it. 

Adding Gaussian noise is a popular data preprocessing technique used to improve the power and generalization of 
machine learning models, where Gaussian noise is introduced into the dataset to simulate real-world variations and 
boost the performance of the model (Dou et al., 2023). The model is highly prone to adapt based on memorizing 
specific patterns in the training data. Therefore, by adding Gaussian noise, the model could better cope with unseen 
or slightly modified data, thus accommodating changes in real-life ECG signals. This data augmentation would help 
enhance classification accuracy in arrhythmia detection while lowering the model's sensitivity to slight variations in 
the heart signal recordings. Thus, strengthens the development of robust and flexible machine learning models.  
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Mathematically, Gaussian noise is defined as a random variable with a probability density function (PDF) that 
follows a normal distribution, as described by the following equation (Camuto, Willetts, Simsekli, Roberts, & Holmes, 
2020; Wodecki, Michalak, Wyłomańska, & Zimroz, 2021): 
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Where: 
P(x): Probability density function. 
x: The random variable 
µ: The mean of the distribution. 
σ: the standard deviation of the distribution. 
Adding Gaussian noise to an ECG signal involves introducing random noise that follows a Gaussian distribution to 
the original signal. This technique serves as a form of data augmentation, enhancing the diversity of the training 
data by generating slightly altered versions of the original ECG signals. These variations simulate real-world 
conditions where signals are exposed to different noise sources (Lee, Zaheer, Astrid, & Lee, 2020). By doing so, the 
model is better equipped to generalize to unseen and real-world data, reducing the risk of overfitting. Figure 9 
illustrates ECG signals before and after the addition of Gaussian noise. 
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Fig. 9- ECG signals before and after adding Gaussian noise 
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3.2.3. Address Class Samples Overlapping 

The dataset comprises ECG readings from 48 individuals, and each individual segmented their ECG into beats. The 
length of each beat varies depending on the window used for segmentation (Oleiwi, AlShemmary, & Al-augby, 2023). 
For this study, segments of length 187 were used, representing only a segment rather than a complete ECG signal for 
a single patient. Consequently, the training samples may include ECG segments (beats) from the same patient, which 
is known as the intra-patient scheme. 

To address this problem, we will rely on a set of DL layers to extract subtle patterns within these signals. First, a 
one-dimensional convolution layer is used to capture local temporal features from the ECG pulse. This layer helps 
extract morphological patterns and is very useful in reducing subtle artifacts by creating more robust low-level 
representations (Lekkas, Vrochidou, & Papakostas, 2025). 

The convolution layer is followed by the attention layer, which is considered the most important layer for handling 
interference between samples. It allows focusing on the most important parts of the ECG signal and weighting the 
informative parts more, thus reducing the influence of irrelevant overlapping regions (Huang et al., 2024). This 
helps reduce class confusion due to similar features or sample overlap. 

This architecture addresses the problem of overlapping between class samples. The Conv1D layer extracts localized 
temporal patterns to identify unique features in ECG waveforms. The attention mechanism also allows focusing on 
informative regions within each pulse, mitigating the effect of overlapping segments. This selective focus helps 
distinguish between arrhythmias with overlapping morphologies. 

The Convolution1D layer is designed to process sequential data by applying convolutional operations along a single 
dimension where a convolutional filter (or kernel) slides over the input sequence, performing element-wise 
multiplications with the input values within its receptive field (Muralidharan et al., 2021). These weighted values 
are then summed to produce a single output point. This process is repeated across the entire sequence, generating a 
transformed output sequence (Muralidharan et al., 2021). Figure 10 illustrates an example of a Convolution1D 

operation. 

Fig. 10- An example of a Convolution1D operation 
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Attention mechanisms enhance the models by dynamically focusing on the most relevant input elements by 
prioritizing essential information, thereby improving both prediction accuracy and computational efficiency. The 
architecture of an attention mechanism consists of three key components: the encoder, the attention module, and 
the decoder (Niu, Zhong, & Yu, 2021). Figure 11 illustrates the structure of the attention mechanism: 

 

Fig. 11- The structure of the attention mechanism 

The encoder processes the input data step-by-step, producing hidden states that capture both current and past 
information. The attention module, made up of a feed-forward network, softmax function, and context vector 
generation, helps the decoder predict the next output symbol using these context vectors and its current state. This 
iterative process continues until the full output is generated. By focusing on relevant parts of the input, the attention 
mechanism improves the model’s ability to handle long sequences and generate accurate predictions. 

3.2.4. Model Selection: 

3.2.4.1. Decision Tree 

A decision tree (Ahmed, Ahmed, & Jwmaa, 2023) algorithm is a predictive modeling technique used in machine 
learning and data analysis. It recursively partitions a dataset into subsets based on the most significant features, 
creating a tree-like structure. Each inner node represents a decision based on a feature, and each leaf node 
represents the expected score or classification. The feature that will split the most impurity will be chosen at each 
node in the algorithm, and the splitting procedure will continue until a given stopping criterion applies, for example, 
a set depth of the tree and a set minimum number of samples per leaf. Decision trees are susceptible to overfitting 
and usually pick up noise; thus, many strategies are put in place to counteract this, including pruning and 
specification of minimum sample sizes. Decision trees are used in different applications like classification and 
regression tasks mainly due to their simplicity, flexibility, and ease of implementation. 

3.2.4.2. Random Forest:  

The random forest (Schlenger, 2024) algorithm is a type of ensemble learning that builds a collection of decision 
trees, which work together to predict the target value. During the training phase, a 'forest' of decision trees is 
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created, with each tree generated from a random subset of the training data and a limited number of features. This 
randomization is achieved through bootstrapping, where subsets of the dataset are drawn with replacement. 
Additionally, at each split within a tree, a random selection of features is used to ensure no single feature dominates 
the model. For predictions, the algorithm aggregates the outputs of all individual trees, averaging their predictions 
for regression tasks or using majority voting for classification tasks. Random forests are widely used for applications 
such as classification, regression, and feature importance estimation due to their versatility and robust 
performance. 

3.2.4.3. SVM Algorithm: 

The SVM (Valkenborg, Rousseau, Geubbelmans, & Burzykowski, 2023) is a widely recognized and powerful 
algorithm commonly used for classification and regression tasks. In classification, SVM identifies the optimal 
decision boundary that separates different categories as distinctly as possible. The data points closest to this 
boundary are referred to as 'support vectors.' SVM is particularly effective for high-dimensional problems and 
incorporates kernel functions to handle non-linear decision boundaries. These kernel functions transform input 
features into a higher-dimensional space, with common types including polynomial functions, radial basis functions 
(RBF), and sigmoid functions. The core principle of SVM is to maximize the margin between the support vectors and 
the decision boundary, which enhances the model's robustness and generalization ability. SVM has been 
successfully applied across various domains, from complex tasks like image analysis to text classification, 
demonstrating its effectiveness in both linear and non-linear classification problems, especially with high-
dimensional data. 

3.2.5. Evaluation Metrics: 

To evaluate the model, the dataset was split into 80% for training and 20% for testing. A confusion matrix (CM) is 
commonly used to assess the performance of models, particularly in supervised learning tasks (Haghighi, Jasemi, 
Hessabi, & Zolanvari, 2018; Markoulidakis, Kopsiaftis, Rallis, & Georgoulas, 2021). The structure of the CM is 

illustrated in Figure 12. 

Fig. 12- The CM structure 

• TP (True Positive): The model correctly predicts a positive observation. 
• TN (True Negative): The model correctly predicts a negative observation. 
• FP (False Positive): The model incorrectly predicts a positive observation. 
• FN (False Negative): The model incorrectly predicts a negative observation.  
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Given these parameters, they could calculate some of the significant performance metrics, which include recall, 
precision, and accuracy. 

 

       
  

     
   (2)

 

The above equation can be discovered as “Measures the proportion of actual positives that are correctly identified 
by the model [38] 

          
  

     
   (3)

 

The above equation can be interpreted as: "It measures the proportion of positive predictions that are truly correct 
(Oleiwi, AlShemmary, & Al-Augby, 2023). 

Accuracy represents the overall performance of the model by calculating the proportion of correct predictions (both 
positive and negative) to the total number of predictions (Roth et al., 2022). The equation is as follows: 

         
     

           
  (4)

 

The F1 Score is a metric that combines precision and recall, providing a balanced evaluation of a model's overall 
performance (Wodecki et al., 2021). The formula is as follows: 

                    
callecision

callecision
ScoreF

RePr

RePr
2_1




            (5) 

4. Results and Discussions 

Figure 13 illustrates the CM of the decision tree (DT) algorithm before applying the preprocessing steps... 

 

Fig. 13- The CM of the DT algorithm before the preprocessing steps 
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The CM provides a summary of the performance of the DT algorithm in classifying ECG signals. The diagonal 
elements represent correct predictions for each class. For instance, the top-left element (14,365) indicates 14,365 
correct predictions for the Normal class. In contrast, the off-diagonal elements represent misclassifications. For 
example, the element in the second row, first column (448) shows that 448 instances of the Atrial Premature class 
were misclassified as the Normal class. Figures 14 and 15 display the CM for the random forest (RF) and SVM 
algorithms, respectively, before preprocessing. Table 2 presents the evaluation metrics for each algorithm before 
preprocessing. 

Fig. 14- The CM of the RF algorithm before the preprocessing steps 

Fig. 15- The CM of the SVM algorithm before the preprocessing steps 

Table 2. The evaluation metrics results of each algorithm before the preprocessing steps 

Class Precision Recall F1_Score Accuracy 

DT 

Normal 0.90 0.99 0.95 89.161 89% 

Atrial Premature 0.00 0.00 0.00 

Premature Ventricular Contraction 0.58 0.27 0.36 

Fusion of Ventricular and Normal 0.00 0.00 0.00 

Fusion of Paced and Normal 0.85 0.75 0.80 

RF 

Normal 0.88 1.00 0.94 88.63 89% 

Atrial Premature 0.00 0.00 0.00 

Premature Ventricular Contraction 0.99 0.17 0.29 

Fusion of Ventricular and Normal 0.00 0.00 0.00 

Fusion of Paced and Normal 0.95 0.66 0.78 

SVM 
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Normal 0.31 0.16 0.21 72.938 73% 

Atrial Premature 0.61 0.77 0.68 

Premature Ventricular Contraction 0.86 0.77 0.81 

Fusion of Ventricular and Normal 0.73 0.95 0.83 

Fusion of Paced and Normal 0.96 0.99 0.97 

 

From Table 2, we observe the following: 

1. Normal Class: All three models demonstrate strong performance in detecting normal ECG signals, achieving 

high precision, recall, and F1-scores. However, the DT and RF models slightly outperform SVM in recal. 

2. Atrial Premature: Both the DT and RF models fail to detect this class, as indicated by precision, recall, and 

F1-scores of 0.00. In contrast, SVM achieves an F1-score of 0.68. 

3. Premature Ventricular Contraction: The DT and RF models struggle to detect this class, while SVM performs 

significantly better with an F1-score of 0.81. 

4. Fusion of Ventricular and Normal: The DT and RF models completely fail to detect this class, whereas SVM 

achieves strong performance with an F1-score of 0.83. 

5. Fusion of Paced and Normal: All models perform well in detecting this class, but SVM achieves the highest 

performance with an F1-score of 0.97. 

Figures 16, 17, and 18 illustrate the confusion matrices for the DT, RF, and SVM algorithms, respectively, after 

preprocessing. Table 3 presents the evaluation metrics for each algorithm following preprocessing. 

 

 

Fig. 16- The CM of the DT algorithm after the preprocessing steps 
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Fig. 17- The CM of the RF algorithm after the preprocessing st 

Fig. 18- The CM of the SVM algorithm after the preprocessing steps 

Table 3. The evaluation metrics results of each algorithm after the preprocessing steps 

Class Precision Recall F1_Score Accuracy 

DT 

Normal 0.66 0.64 0.65 83.973 84% 

Atrial Premature 0.91 0.92 0.91 

Premature Ventricular Contraction 0.84 0.84 0.84 

Fusion of Ventricular and Normal 0.97 0.98 0.97 

Fusion of Paced and Normal 0.83 0.83 0.83 

RF 

Normal 0.80 0.81 0.81 91.376 91% 

Atrial Premature 0.95 0.96 0.96 

Premature Ventricular Contraction 0.92 0.91 0.91 

Fusion of Ventricular and Normal 0.98 0.99 0.99 

Fusion of Paced and Normal 0.91 0.90 0.91 

SVM 

Normal 0.29 0.76 0.42 52.677 53% 

Atrial Premature 0.89 0.46 0.61 

Premature Ventricular Contraction 0.81 0.21 0.33 

Fusion of Ventricular and Normal 0.91 0.95 0.93 

Fusion of Paced and Normal 0.52 0.24 0.33 

 

Comparing the results before and after preprocessing, we note that before preprocessing, the normal pulse class 

dominated the other classes because it was the majority class, which led to bias in the model's decisions. After 

preprocessing, we note that all classes exhibited effective precision and recall values, particularly those generated 

by the DT and RF. The RF achieved the highest overall accuracy (91%) and strong overall performance for all 

classes. The SVM algorithm struggled to achieve good metrics due to its sensitivity to noisy data. 

The comparison of results before and after preprocessing highlights critical challenges related to class imbalance 

and patient data overlap in ECG signal classification. Before preprocessing, all classifiers, particularly the DT and RF, 
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exhibited strong performance in detecting the majority class (normal). However, they struggled to accurately 

identify minority classes due to the following reasons: 

 Class imbalance: The majority classes dominate the model's learning.  

 Patient overlap: Due to the method of obtaining data samples in windows of length 187, multiple 

samples of the same patient were scattered across the dataset. This resulted in similar segments of the 

same individual in both the training and test sets, leading to overfitting and overly optimistic 

performance metrics.  

After applying SMOTE for class equalization and augmenting the data with Gaussian noise to enhance diversity, all 

models demonstrated improved generalization across all classes, with the RF achieving the best performance post-

preprocessing. 

It is crucial not to interpret the overall decline in performance metrics after preprocessing as a failure of the models. 

Instead, this decline reflects a more realistic and reliable generalization capability, achieved by minimizing data 

leakage between the training and test sets and improving class representation and diversity. These findings 

highlight the importance of careful data segmentation and preprocessing, particularly in healthcare applications, 

where patient-specific patterns can inadvertently lead to overfitting and overly optimistic results. 

Table 4 provides a comparison between this study and previous as well as recent research. 

 

Table 4. A comparison with previous and recent studies 

Ref Dataset Preprocessing Steps Performance 

(Ren et al., 2025) MIT-BIH 

bi-directional long and 

short-term memory 

networks (BiLSTM) and 

autoencoder 

96% 

(Ketu & Mishra, 

2022) 
MIT-BIH 

Balance the dataset 

using SMOTE 
92%–99% 

(Rai & Chatterjee, 

2022) 
MIT-BIH 

Balance the dataset 

using SMOTE 
99.89% 

(Darmawahyuni et 

al., 2022) 
MIT-BIH 

Undesirable noise using 

DWT 
98% 

Proposed Model MIT-BIH 

Balance the dataset 

using SMOTE, Data 

augmentation, Address 

Class Samples 

Overlapping 

 

91% 

 

The proposed model achieves an accuracy of 91%, which is lower than the 99.89% reported in some previous 

studies. However, many of these studies overlooked the issue of class overlap within the dataset, leading to potential 

data leakage when patient segments appear in both the training and test sets. This study directly addresses this 

challenge by implementing a robust data pipeline that includes data balancing, the injection of Gaussian noise to 

enhance data diversity, and the application of a one-dimensional convolutional network with an attention 

mechanism to mitigate class overlap. This approach ensures a more realistic evaluation of the model. Consequently, 
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the high accuracy reported in previous works is likely misleading, as it stems from data leakage or unbalanced 

evaluation practices, resulting in biased models. 

5. Conclusions and Future Works 

Cardiovascular disease is a leading global cause of death, often due to arrhythmias caused by malfunctioning 

electrical impulses that regulate the heartbeat. Early and accurate arrhythmia detection is vital to prevent severe 

complications like sudden cardiac arrest. This study used machine learning models to classify ECG signals, with 

preprocessing steps such as SMOTE for data equalization and Gaussian noise augmentation, improving performance 

across classes. Addressing class overlap further enhanced model generalizability. Although preprocessing reduced 

class imbalance and increased data diversity, a decline in model performance was observed. However, this reflects a 

more realistic evaluation by preventing data leakage from similar ECG segments appearing in both training and test 

sets. Patient-independent segmentation forced the model to generalize beyond individual patterns, a key 

requirement for real-world applications. The observed accuracy drop highlights the importance of robust evaluation 

protocols, especially in biomedical machine learning. Among the evaluated classifiers, DT, RF, and SVM, the RF 

achieved the highest accuracy of 91%. 

A limitation of this study is that the evaluation was conducted only on the MIT-BIH dataset. Although this is a widely 

used criterion, its generalizability to other datasets has not been validated. Furthermore, although Gaussian noise 

augmentation was used to simulate variability and improve robustness, this type of noise may not accurately 

represent common types of noise in clinical ECG data (e.g., baseline drift, power line interference, or muscle 

abnormalities). 

Future work should explore advanced data augmentation techniques, such as wavelet transformations or synthetic 

ECG generation using GANs, and investigate deep learning methods for a broader evaluation of AI models. While the 

MIT-BIH dataset is widely used for benchmarking, it may not fully capture ECG variability across clinical 

populations. We plan to validate the proposed approach on additional datasets, such as PTB-XL or real clinical 

recordings, to assess its real-world accuracy. Likewise, in this study, we chose SMOTE as a widely adopted 

oversampling method to address class imbalance. However, alternative undersampling strategies such as Tomek 

Links, NearMiss, One-Sided Selection (OSS), and Edited Nearest Neighbors (ENN) should be explored. In our future 

work, we intend to combine and compare these undersampling methods to determine their impact on model 

performance and generalizability. This will help determine the most appropriate balancing strategy for the 

characteristics of ECG data and medical diagnostic needs. Finally, deploying these models in clinical settings will be 

crucial to ensure their reliability and effectiveness. 
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