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A B S T R A C T 

Multimedia video applications significantly impact video quality prediction, widely regarded 
as one of the most challenging problems. The Quality of Experience (QoE) prediction of the 
video mimics the satisfaction of the content of the video as humans perceive it. Machine 
learning and deep learning models have applied numerous methods to obtain QoE 
predictions. Some of these methods are full reference or reduced reference (half reference); 
others are no reference. In this paper, we attempt to explore, evaluate, and analyze the 
different scenarios and models related to QoE predictions for videos using deep learning. We 
have conducted a comprehensive examination to address the limitations of the existing 
models. Moreover, we suggest a new framework to overcome the limitations of the existing 
models. 

MSC.. 

https://doi.org/10.29304/jqcsm.2025.17.22176 

1. Introduction 

Nowadays, with a high demand for multimedia, particularly video content, people are more likely to communicate 
via wireless channels. Universally, video content dominates Internet traffic data with about 92% of total data used 
across the Internet [1], as illustrated in figure 1.Wireless channels limited bandwidth necessitates the compression 
of videos for streaming. This leads to video degradation. In addition, videos always get distortion because of the 
noise. These reasons may lead the user to get a bad-quality video. As a result, the user will give up the provider's 
services or not continue watching the video. The providers of services have to check the quality of the videos. 
Multimedia streaming services (videos) use QoE as a metric to gauge user satisfaction. To improve video viewing, 
human involvement is needed to give a subjective assessment of video quality. However, human assessment is 
costly and time-consuming. Furthermore, people's psychological state and surroundings influence their judgement 
when evaluating the quality of videos. All these difficulties led to the objective prediction of the video.  

The quality of video experience has been widely investigated in multimedia communication studies, although video 
prediction is regarded as a difficult task. The quality of the video depends on many factors called influencer factors 
(IF). We can divide these factors into three groups: system factors, context factors, and human factors. Also, video 
quality prediction can be divided into three models. The first model, known as full reference (FR), compares the 
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original, distortion-free video with the distorted video for evaluation. The reduced reference (RR) is the second one. 
In RR, some features about the original videos are available for evaluation. The last one is no reference (NR). In this 
model, there is no information about original videos, so all features must be taken from the video that has to be 
qualified. 

Deep learning is an advanced machine learning technique that preserves the human mind while analyzing large 
amounts of data [2]. Many applications use deep learning techniques for different uses. Additionally, a number of 
deep learning networks, including VGG16 and VGG19, have been developed to extract features from both videos and 
images [3]. In [4] they Identify and recognise grouped mobile video streams based on a bitstream. It used CNN for 
the videos to recognise encrypted video streaming from other data streams in mobile applications. This can lead to 
improved QoE and a better customer experience. However, misclassification occurs due to the application's abilities. 
In [5], the model provides a higher level of accuracy and requires less computation. A hyper parameter is used in 
this model to effectively optimize it. Also, the feature extraction is done by using causal convolution. The adaptation 
model has been tested on two different devices: a mobile phone and a computer. The method in [6] is based on 
frequency domain depth perception and non-reference assessment. It extracts features in time-frequency domains 
using DCT. This work [7] uses LSTM ANN to predict the future network throughput. This throughput can be used to 
estimate the bitrate selection of the video in streaming video for or mobile environments. A transformation method 
is proposed that transforms the CNN model between domains that is, from spatial local binary mode to extract 
mathematical statistical features of frequency domain coefficients. Information might vary depending on the mix of 
features. The goal of selective feature fusion is to choose the image's most pertinent feature [8]. In [9], a model is 
proposed to evaluate video quality by analyzing the spatial and temporal features and trying to minimize the most 
of the video information to be used in online video assessment. Researchers conduct an experiment on six 
databases, employing various deep learning models; including ResNet50.They develop MGQA, an innovative online 
video assessment approach, by integrating graph networks with MobileNet. A model for predicting video QoE using 
Multi-Feature Fusion (MFF) was presented. Optimized Learning Models (OLMs) are the optimized neural network 
models designed for QoE prediction [10]. The inputs to our model are based on the MFF scheme, where the numbers 
of features that can be combined and provided are between five and six. These features provide a generalized 
solution to accurately predict perceptual video quality. Shakya et al. [2024] propose a method known as "deep video 
prior" that quantifies the video by restoring the original from the distorted one [11]. The training phase has to learn 
the distortion in the video; thus, it is dependent on one reference video to train the model, which limits the 
generality of the model's ability. 

In this paper, we analyze and discover techniques for video quality prediction through deep learning. The next 
section will give related work for video quality prediction with deep learning. This is followed by a discussion of the 
results for specific techniques using a new framework. 

 

 

 

 

 

 

 

 

 

 

Figure 1: Videos content types worldwide in 3rd quarter 2023 [1] 
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2. Related work 

Video QoE prediction is a very crucial task for different types of applications, such as video streaming. These 

applications include stereoscopic video and laparoscopic video, among others. Compression, distortion, or both can 

lead to the loss of useful information in these videos. This has an influence on user satisfaction or an impact on user 

happiness, and it can be deadly.  All previous surveys and reviews did not attempt to address the deep learning 

methods used to find the QoE in video multimedia. Telili et al. conducted a review of prediction bitrates in both 

machine learning and deep learning methods [12]. Also, Zheng  et al. provides a survey on the studies that have been 

done on video quality assessment for user-generated videos, without giving the limitations or weak points of these 

studies. Moreover, they do not include the evaluation performance [13]. 

In this paper, we discuss and analyze the most important methods used in the QoE fields for different types of 

videos. We describe some of the quality prediction techniques in the following subsection. Table 1 give a summary 

of the techniques, their methods, datasets used, and limitations. 

2.1 Video Quality Assessor (DeepVQA)  

The authors of [14] presented a framework named Deep Video Quality Assessor (DeepVQA). The framework 

quantifies the video in spatial and temporal visual perception via a convolutional neural network (CNN) and a 

convolutional neural aggregation network (CNAN).The method is fully referenced, implying that it requires the 

original video to be without distortion. The framework tries to mimic human perceptions of sensitivity. The 

evaluation process utilizes two data sets: the LIVE VQA database [15] and the CSIQ VQA dataset [16]. The results for 

the Live VQA dataset are PLCC 0.8952 and SROCC 0.9152, while for the CSIQ VQA dataset, PLCC 0.9135 and SROCC 

0.9123. The model may not be suitable for real-time performance, which is essential for applications such as live 

video streaming or video conferencing. 

2.2 Deep Quality of Experience (DeepQoE) 

In [17], it introduced a framework for predicting video quality of experience (QoE). The framework has three stages: 

feature preprocessing, representing learning, and QoE prediction. The generality is achieved through mixed deep 

learning techniques like word embedding and a 3D conventional neural network (3CD), which are used to extract 

features in feature preprocessing stages [18]. Different datasets utilize each technique. In the learning stages, a 

neural network receives these general features as input. In the last stages, a unified prediction for classification and 

regression takes the output of learning as input. Three datasets are used for evaluation. There are two small 

datasets, which are WHU-MVQoE2016 [19] and Live-Netflix [20] Video, and a large dataset, Video Set [21]. DeepQoE 

performs well on regression, even in small datasets. The measurement of accuracy was about 0.88. However, the 

framework does not compare with other techniques used in deep learning. Also, it does not get higher performance 

than machine learning. 

2.3 Cardenas-Angelat model 

In [22], it proposed three architectures to predict video quality: single task, multitask, and convolution. These three 

models are evaluated using simulation experiments in the lab in a mobile environment. It is a fully connected 

network for single-tasking and multi-tasking. For the convolution, they used CNN. Each model receives four features 

as input. Initial Loading Delay (ILD) refers to the time in seconds between the initiation of video playback by the 

user and the actual start of the playback. Secondly, we consider the total time of video stalling (TRB), a result of 

buffering events. Two statistical measures of the video resolution, its mode (MODEQ) and average (AVGQ), are 

considered. The CNN model also uses the amount of transmitted data as an input image. The overall performance on 
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the test set is around 90% accuracy. The limitation of these three models is that there is no generality. The 

performance of the three models is determined by a specific device environment (on the smart phone) and a specific 

dataset for evaluations. Moreover, the evaluation results only show each feature separately, not overall features. 

2.4 Convolutional Neural Networks for Quality of Experience  (CNN-QoE) 

A new model is proposed to capture the continuous quality prediction of video on different devices. [23] An 

improvement Temporal Convolutional Network (TCN) [24] is employed to catch the complex dependencies in 

sequential data. Also, TCN can be implemented in parallel, so it can overcome the computational cost of 

LSTM. There are many features that can affect video quality in video streaming, such as STRRED, MS -SSIM, 

PSNR, and STRRED. The experiment is implemented using three datasets. LFOVIA Video QoE [25], LIVE Netflix 

Video QoE Database and LIVE Mobile Stall Video Database II [26]. The evaluation shows the highest SROCC at 

0.885 and the lowest RMSE at 5.27%. Still, TCN has high computation, especially over large datasets .  

2.5 LSTM-QoE (Long Short-Term Memory-Quality of  Experience) 

In [27], a method based on a group of LSTM units is proposed to predict adaptive streaming video quality in a 

continuous environment. The method adopts three features: Short Time Subjective Quality (STSQ), Playback 

Indicator (PI), and Time Rebuffering (TR). STSQ is a subject perceptual metric that a user is given for a short video 

segment. There are two values for PI: either the video plays or it undergoes rebuffering. Finally, TR is the duration of 

time since the last rebuffering happened. The LSTM network is trained using four datasets: the LIVE Netflix 

Database, the LFOVIA QoE Database the LIVE QoE Database [28], and the LIVE Mobile Video Stall Database-II. Also, 

mean pooling enhances the performance of LSTM networks. The evaluation showed approximately LCC 0.9. The 

limitation of this method is the increased computation time as the number of LSTM units grows. 

2.6 Memory based approach under Three Settling (M-3R) 

In [29], a new model is proposed with the name M-3R predictor. The model evaluates QoE in a continuous 
environment, where each frame is considered. Many features have been extracted: Peak Signal-to-Noise 
Ratio(PSNR), Structural Similarity Index Measure (SSIM), Multi-scale Structural Similarity (MS-SSIM), Multi-method 
Assessment Fusion (VMAF), Gradient Magnitude Similarity Deviation (GMSD), STRRED, and Natural Image 
Evaluation (NIQE). More than one unit of Long-Short Term Memory (LSTM) networks is getting these features as 
input. A three-setting effect is applied by applying the model to Full Reference (FR), Reduced Reference (RR), and No 
Reference (NR). The evaluation is done by streaming databases: Live Netflix I, Live NFLX II [30], and Mobile Stall II. 
The performance result is an approximation of 0.8859 for PLCC, 0.8832 for SROCC, and 0.3453 for RMSE. Since this 
technique uses a large number of units of LSTM, a high computation complexity is included. 

2.7 Rapid and Accurate Video Quality Evaluator (RAPIQUE) 

The [31] presents a new model to predict the quality of UGC (user-generated content) videos that is based on the 

no-reference method. The model used two features: natural scene statistics and deep learning features derived from 

CNN. A vector of both features is built by concatenation. This vector is used as input to get a quality score as output. 

The model was evaluated using three databases: KoNViD-1k [32], LIVE-VQC [33], and YouTube-UGC [7]. The 

evaluation results applied to all compound databases. The results show SRCC, PLCC, and RMSE of 0.8070, 0.8229, 

and 0.3968, respectively. The limitation of the model is the gap differences between RMSE and SRCC, which show 

more errors than expected for SRCC and PLCC values. Furthermore, it does not compare performance with previous 

models. In addition, the model has a compression effect. 
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Table 1: summary of  video QoE prediction using deep learning 

Name Author Features Method Datasets Evaluation measurements Limitation 

DeepVQA 

 

Kim 2018 

[14] 

spatial and temporal 

features 

CNN and 

CNAN 

 

LIVE VQA  CSIQ VQA 

 

Live VQA :PLCC 0.8952 , SROCC 

0.9152, CSIQ VQA : PLCC 0.9135 , 

SROCC 0.9123 

 

may not suitable for real-
time performance since 
based on full reference 

DeepQoE Zhang 2018 

[17] 

Different type word 

embeddi

ng 3CD 

WHU-MVQoE2016 and Live-

Netflix Video 

accuracy about 0.88 Not compare with other 

techniques used in deep 

learning.  

Cárdenas-

Angelat 

model 

Angelat 

2019 [22] 

ILD, TRB, MODEQ, 

AVGQ 

CNN, 

FCNN 

Database are created Accuracy approximately 0.09 No generality ,evaluate 

only on mobile 

environment and on one 

dataset 

CNN-QoE Duc 2020 

[23] 

STRRED,MS-

SIM,PSNR, and 

STRRED. 

TCN LFOVIA LIVE Netflix and LIVE 

Mobile Stall Video Database 

II  

highest SROCC at 0.885 lowest 

RMSE at 5.27%.  

high computation, 

especially over large 

datasets 

LSTM-

QoE 

Eswara 202

0 [27] 

STSQ, PI, TR LSTM LIVE Netflix Database, 

LFOVIA QoE Database, LIVE 

QoE Database, LIVE Mobile 

Video Stall Database-II 

LCC, SROCC, RMSE 

LFOVIA 0.858,  0.808, 0.0864  

Netflix Video 0.802, 0.714, 

0.0778 Respectively  

increased computation 

time as the number of 

LSTM units grows 

M -3R Ghosh 2021 

[29] 

PSNR,SSIM,MS-SSIM, 

VMAF, GMSD , 

STRRED, ,NIQE.  

 

LSTM Live Netflix I, Live NFLX II, 

and Mobile Stall II 

0.8859 for PLCC, 0.8832 for 

SROCC, and 0.3453 for RMSE 

high computation 

Name Author Features Method Datasets Evaluation measurements Limitation 

RAPIQUE Tue 

2021[31] 

natural scene 

statistics and deep 

learning features  

CNN KoNViD-1k , LIVE-VQC , 

YouTube-UGC  

SRCC 0.8070, PLCC 0.8229,  RMSE 

, 0.3968,  

compare performance 

with previous model 

No-

Referen

ce 

Quality 

Assessm

ent 

Gu 2022 

[34] 

frames in the DCT 

frequency  

CNN NAMA3DS1-COSPAD1 , 

WaterlooIVC 3D Video Phase 

I , QI- SVQA database 

PLCC  0.9520  , SROCC 0.9458 , 

RMSE 0.2994 

performance-focused 

frequency domain 

DeSVQ Ghosh 2022 

[38] 

Frames, PSNR 

MSSSIM, STRRED, 

VMAF 

LSTM, 

CNN 

LIVE Netflix I, LIVE NFLX II, 

Mobile Stall II DeSVQ the 

Mobile Stall II dataset.  

 LCC (0.8988), SROCC (0.8936), 

and least RMSE (0.363) on 

Mobile Stall II 

high computation 

MO-QoE Ghosh 2022 

[10] 

MFF ANN , 

FNN 

LIVE, VQEG HD3, VQEG,  HD4 

, LIVE Netflix , LIVE NFLX II , 

Waterloo , CSIQ , LFOVIA 

highest ROCC is 0.9328, the PLCC 

highest is 0.9360 

No compare with other 

models  

3S-

3DCNN 

Islam 2022 

[39] 

spatial, motion, and 

depth features 

3D CNN LFOVIAS3DPh2 , NAMA3DS1-

COSPAD1 

RSME 0.2757 for NAMA3DS1-

COSPAD1 SROCC to exceed 98% 

for in LFOVIAS3DPh2.  

the evaluation is 

restricted to only two 

datasets 
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2.8 No-Reference Quality Assessment Based on Deep Frequency Perception  

In (Gu et al. 2022), they proposed a method to quantify stereo video using frequency domain characterization, with 

no reference video needed [34]. The video resolution is reduced to solve the problem of the large communication 

bandwidth, which will lead to the loss of some information in the spatial domain. To overcome this loss that affects 

accuracy, features are extracted from video frames in the frequency domain using DCT. The CNN model is used to 

extract the mathematical statistics of frequency coefficients, which reduces the size of the data since high-frequency 

information has a high impact value. The experiment uses three datasets: the NAMA3DS1-COSPAD1 [35] database, 

the Waterloo IVC 3D [36] Video Phase I database, and the QI-SVQA database [37]. The evaluation of this model was 

PLCC, SROCC, and RMSE, which were about 0.9520, 0.9458, and 0.2994, respectively. The limitation of this model is 

the performance-focused frequency domain features of stereo video. 

2.9 Deep Learning-Based Streaming Video QoE Estimation (DeSVQ)  

A deep learning method is described in [38]. It uses a framework that combines Convolution Neural Network (CNN) 

and Long Short Term Memory (LSTM) networks. They combine different features that were extracted in two steps 

and show how the QoE is affected by complex dependencies during the prediction process. In the initial stages, CNN 

directly extracts the features from the frames in the distorted videos. The LSTM network then sequentially maps 

them to QoE scores. In another stage, the LSTM network explores the temporal dependencies using the objective 

(numerical) features. Peak-Signal-to-Noise Ratio (PSNR), Multi-Scale Structural Similarity Index (MSSSIM), Spatio-

Temporal Reduced Reference Entropic Differencing (STRRED), and Video Multi-method Assessment Fusion (VMAF) 

are five of these features. The output from both stages is linearly combined and fed to the decision trees. The DeSVQ 

architecture is validated on three different datasets. LIVE Netflix I, LIVE NFLX II, and Mobile Stall II DeSVQ get the 

highest LCC (0.8988), SROCC (0.8936), and least RMSE (0.363) on the Mobile Stall II dataset. One limitation of this 

method is its high computation since LSTM is considered sequential processing. 

2.10 MO-QoE model 

In [10], a model for predicting video QoE using Multi-Feature Fusion (MFF) was presented. Optimized Learning 
Models (OLMs) are the optimized neural network models designed for QoE prediction. The OLM algorithm is 
implemented using neural networks (ANN and FNN). These two neural networks are considered the foundation for 
deep learning. An Adaptive Moment estimation and Batch Gradient Descent algorithm are used to update the 
weights and biases of the learning models to their optimal values. The inputs to our model are based on the MFF 
scheme, where the numbers of features that can be combined and provided are between five and six. These features 
are given a generalized solution to predict perceptual video quality effectively. Many databases have been used for 
evaluating our proposed model, including LIVE, VQEG HD3, VQEG HD4, LIVE Netflix, LIVE NFLX II, Waterloo, CSIQ 
and LFOVIA. The accuracy is computed using SROCC; the highest one is 0.9328, and the PLCC is 0.9360. 

VQP-Net Khan 2022 frame and temporal 

vector of quality  

FCCN 

ResNet 

LVQ database PLCC and SROCC of 0.9899 and 

0.9388,.  

limited scope only one 

database. Not considered 

not the compression 

artifact 

Deep 

ISVM 

Elwerghem

mi 2023 

visual patterns, 

motion, and 

temporal 

CNN Poqemon Database, LIVE-

Netflix Video Database, and 

LFOVIA Database 

accuracy for  Poqemon about 

86.35,  LIVE-Netflix Video  is 

58.33, and LFOVIA is 75.29 

the variances accuracy 

result between  datasets 

 

CLN-RLN  Liu, 2023 KPI FCN Database are created without the split RMSE about  

0.09757 with splitting RMSE 

0.0175150 

no generalization. 

unrealistic linearity 

between QoS and QoE.  
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2.11 Three Stream the Three-Dimension Convolution Neural Network (3S-3DCNN) 

In [39] a non-reference technique for assessing stereoscopic video is proposed. Two cameras position themselves at 

an distance to create stereoscopic video [40]. The 3D CNN architecture is based on spatial and temporal features 

between sequence frames, disparity, and motion information. To assess the quality of stereo video, a 3-Stream 3D 

CNN (3S-3DCNN) extracts spatial, motion, and depth features. These extracted features are then fed into fully 

connected layers for regression. Two datasets are used for evaluation: LFOVIAS3DPh2 [41] and NAMA3DS1-

COSPAD1. Also, a modified 3S-3DCNN model called 3S-3DCNN-clean is proposed and applied. The experimental 

evaluation showed RMSE to be 0.2757 for dataset NAMA3DS1-COSPAD1 and SROCC to exceed 98% for distortion 

video in LFOVIAS3DPh2. The evaluation limits the 3S-3DCNN model to only two datasets, despite its impressive 

performance.  

2.13 Video Quality Prediction Network (VQP-Net) 

In [42], a new framework is proposed that predicts the quality of laparoscopic videos. Laparoscopic videos are 

videos that are recorded during surgical operation procedures and are used for training students. VQP-Net applies 

the previous learning models sequentially to each frame. It will give a temporal vector of quality score that will be 

applied to FCCN to get the predicted result for video. There are two learning approaches: transfer learning and end-

to-end learning. The transfer learning used in the pre-trained FQP-ResNet model will only be applied to the FCNN. 

This will reduce the complexity of training computation time. The end-to-end learning approach applies the weight 

update to the entire model, so the same loss function is used to make it more homogenous. The experiment was 

applied to the LVQ database [43], which contains videos of cholecystectomy surgeries with distortion. The results 

show PLCC and SROCC values of 0.9899 and 0.9388, respectively. The limited scope of the work is that it applied 

only to one database. In addition, it is based on the distortion caused by different noises but not the compression 

artifact. 

2.12 Deep Incremental Support Vector Machine (Deep ISVM)  

Elwerghemmi et al. proposed a method that combines both deep learning networks and machine learning 

algorithms to predict video quality [44,45]. The aim is to continuously quantify the perceived QoE of streaming 

video. The framework consists of two levels. The first level is based on the DeepQoE model [17] for reprocessing 

and feature extraction from videos. The deep learning network extracts discriminative features for video using CNN 

architecture. These features are selected from video frames or sequences, visual patterns, motion, and temporal. The 

second level, based on the stacking model, is the ensemble method, where many classification models are combined 

via a meta-classifier [46]. The incremental support vector machine (ISVM) is a multiclass model that is based on the 

stacking method to enhance prediction. A five-level ISVM classifier gets output from the first level, and the highest 

output will fire the prediction before the threshold. This method, along with ISVM, also allows the model to adapt to 

new data without retraining the entire network. The ISVM incrementally updates its decision boundaries as new 

samples arrive. Three databases are applied: the Pokémon Database [47], the LIVE-Netflix Video Database, and the 

LFOVIA Database. The overall performance of the method shows that its maximum accuracy for the Pokémon data 

set is about 86.35, for the LIVE-Netflix Video dataset it is 58.33, and for LFOVIA it is 75.29. The model was evaluated 

only on three databases, with some having very low accuracy. A refinement to the deep ISVM model needs to 

decrease the variance accuracy result. 

2.14 Classification Learning Network-Regression Learning Network (CLN-RLN) 

Liu et al. [48] proposed a model that is based on the QoE/QoS mapping. QoE predicts from QoS collected every 

millisecond. A number of network performance measurements and key performance indicators (KPIs) are used to 

show the connection between QoE and QoS in wireless networks. The model is built with two deep-learning neural 
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networks. The first-level FCN, known as the classification learning network (CLN), accurately classifies the input 

data into various categories. Then, the classification results will be processed by the second-level FCN, the 

regression learning network (RLN), which performs regression to predict the quality. This clustering will help to 

decrease the variance between data in one batch and increase performance. Also, the datasets are provided by the 

MATLAB simulator. The proposed model has a root mean square error (RMSE) of about 0.09757 without the split 

data technique. However, the model with splitting gets 0.0175150. The proposed method applied and examined 

only a specific dataset, which restricted generalization. Also, it is based on the PKI metric, which, although 

unrealistic and impractical, assumes linearity between QoS and QoE.  

3. Summary and Analysis for related work 

The previous sections presented various deep learning methods for predicting video quality. These deep learning 

methods vary in difficulty, such as convolutional neural networks (CNNs), long short-term memory (LSTM) models, 

and more complex designs like 3D CNNs, hybrid fusion models, and ensemble learning. DeepVQA and CNN-QoE used 

CNNs and special methods to understand both space and time in a fully referenced way. LSTM-QoE, DeSVQ, and M-

3R, on the other hand, concentrated on capturing temporal dependencies using LSTM networks, especially in the 

context of continuous streaming scenarios. The models that use LSTM often come with increased computational 

costs due to their sequential processing nature. 

The newest models, such as DeepQoE, MO-QoE, and DeepISVM, emphasize feature fusion and optimization by 

integrating different perceptual and objective quality metrics to improve generalization across datasets. Models like 

RAPIQUE and 3S-3DCNN present no-reference strategies, making them suitable for real-world applications where 

undistorted reference videos are unavailable to compare. Certain models, such as VQP-Net, concentrate on 

identifying the quality of laparoscopic videos. The CLN-RLN model aimed to predict the quality of experience in 

scenarios with limited network resources by utilizing quality of service parameters. Despite achieving high 

performance in correlation metrics (PLCC, SROCC), many models still face limitations due to their dataset 

dependency, computational complexity, or application scope. In general, even though deep learning has greatly 

improved how we understand video quality, future efforts should focus on fixing issues with how well these models 

work in different situations, their ability to work in real time, and their strength across various fields. 

4. Discussion 

Three models are selected to be analyzed. We examine three models: CNN-QoE, LSTM-QoE, and DeSVQ. The three 

models are applied to two different data sets, which are the Live Netflix Database, and Live Mobile Video Stall 

Database-II. LIVE Netflix Database has 120 videos, LFOVIA has 36 videos, and LIVE Mobile Video Stall Database II 

has 174 videos. While DeSVQ   is applied Live Netflix Database, Database, and Live Mobile Video Stall Database. 

Three measurements are used: LCC (Linear Correlation Coefficient), SROCC (Spearman Rank Order Correlation 

Coefficient), and RMSE (Root Mean Square Error). The LCC and SROCC have values between 1 and -1. LCC measures 

the correlation between predicted and actual predictions, like mathematical correlation [49]. Also, SROCC measures 

the correlation between predicted and actual predictions in terms of human perception. The two following equation 

is given the : 
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Where n number of data value; is    denotes the actual value,  ⏞
 
 represents the predicted value.  ⏞̅  is the mean of the 

predicted values, and  ̅  is the mean for the actual values Where n is the amount of data set  

On the other hand, RMSE measures the differences between predicted and actual values. As the value of RMSE 

decreased, the prediction was better [50]. 

     √
 

 
∑         ̂ 

  
     

Where n number of data value; is    denotes the actual value,   ̂ represents the predicted value. 

Table 2 Performance result of three models LSTM-QoE, CNN-QoE, and DeSVQ 

Dataset Measurement Models 

LSTM-QoE CNN-QoE DeSVQ 

Mobile Video Stall Database-

II 

LCC 0.939 0.892 0.8988 

SROCC 0.936 0.885 0.8936 

RMSE 0.05702 0.0536 0.352 

Live Netflix I LCC 0.802 0.873 0.8935 

SROCC 0.714 0.878 0.8908 

RMSE 0.0778 0.0527 0.327 

Table 2 for the data set Mobile Video Stall Database-II shows that LSRM-QoE performs better than both CNN-QoE 

and DeSVQ. This is due to the fact that  it is better at modeling temporal dependencies in stalling that is common in 

mobile video. For the RMSE metric, LSTM-QoE and CNN-QoE are almost the best at getting the minimum value. In 

addition, CNN-QoE has lower LCC/SROCC than LSTM-QoE. DeSVQ has a higher RMSE. but it has better correlation 

between predicted value and MOS when compared with CNN-QoE. For dataset Live Netflix I DeSVQ is performed in 

LCC and SROCC, which indicates that it is more generalized on this type of data. But still has a higher RMSE when 

compared with two models. CNN-QoE achieves a lower RMSE, which indicates a good prediction but has a lower 

correlation. LSTM-QoE performs poorly in this dataset. 

The comparison shown in figure 2 shows how three QoE prediction models—LSTM-QoE, CNN-QoE, and DeSVQ—

perform on two standard datasets: Mobile Video Stall Database-II and Live Netflix I. Mobile Video Stall Database-II 

and Live Netflix I. LSTM-QoE shows better performance in both LCC and SROCC on the Mobile Video Stall Database 

II, which mostly demonstrates stall-related conditions, therefore suggesting its ability to capture temporal quality 

variations. The ability of LSTM to model sequential dependencies is a key feature. Thus, LSTM provides this benefit, 

which makes it especially useful for material rich in stalls. CNN-QoE somewhat surpasses LSTM-QoE in terms of 

RMSE. That CNN-QoE suggests more accuracy in numerical score predictions, but the difference is minor. Although 

competitive in correlation measures, DeSVQ has a much greater RMSE, suggesting less consistent raw score 

predictions. DeSVQ outperforms the others in both LCC and SROCC in the Live Netflix dataset, which consists of an 

expanded range of quality degradations, including bitrate variations and compression artifacts. It means that DeSVQ 

is more suitable for capturing more complex quality variances outside of temporal distortions. CNN-QoE shows 

consistency in correct score estimation by maintaining its trend of obtaining the lowest RMSE across datasets. On 

this dataset, LSTM-QoE does not perform well due to its poor ability to handle non-temporal deviations. The study 

demonstrates that, whereas LSTM-QoE appears in situations with temporal quality falls, CNN-QoE and DeSVQ 

provide greater generalisations and accuracy in more varied video streaming environments. 
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Figure 2: Evaluation of CNN-QoE, LSTM-QoE and CLN-RLN 

All the previous work is depending on subjective metrics, which are MOS in training the deep learning model. A new 
framework is proposed that integrates the subjective metric (MOS) with an objective metric that can be computed 
from the video itself. The newly created metric can be applied as new values to start the training. Each metric will be 
tuned with weight since each feature has a different effect on different video datasets. Additionally, we must adjust 
the updated weight to address the issue of forgetting. 

 Additionally, this new metric divides the data set into multiple groups. This new method is used for the idea of 
augmented labelling to train the new models. The augmented labelling is used to increase the accuracy of the model 
and help overcome errors that sometimes appear due to human views. Each feature will be tuned with weight since 
each feature has a different effect on different video datasets. Moreover, we must adjust the updated weight to 
address the issue of forgetting. 

4. Conclusion 

This paper investigates quality prediction methods. We have clarified many models, their methods, datasets, and 

limitations. We have also explained the performance of three models: LSTM-QoE, CNN-QoE, and DeSVQ and the 

reasons behind their outcomes. LSTM-QoE is better in temporary-dependence features due to its sequence-

modeling strength. CNN-QoE regularly provides low RMSE, making it more suitable for precise MOS prediction. 

DeSVQ offers strong performance on more complex or less temporally obvious distortions.  In addition, a new 

framework is proposed. This new framework is based on the limitations of the three models. Moreover, it attempts 

to make more general models that can predict different types of video from different datasets. 
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