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A B S T R A C T 

Precise and stable trajectory tracking in mobile robotics is challenging due to dynamic 
disturbances and uncertain conditions. Traditional controllers like P-D and PID often 
underperform in non-linear, unpredictable environments. They also lack the adaptability 
needed for real-time, vision-based control systems. To address these issues, this paper 
explores and compares the effectiveness of three control approaches: P-D, PID, and a 
Fractional Order PID (FOPID) controller optimized using the World Cup Optimization 
Algorithm (WCOA). The control system is driven by inputs from a computer vision setup, and 
the controllers are evaluated on their ability to maintain accurate setpoint tracking under 
simulated dynamic disturbances. The FOPID controller’s parameters are tuned using WCOA, 
enhancing its adaptability and precision. The robustness of WCOA is also validated using 
standard benchmark functions including Sphere, Rastrigin, Ackley, Rosenbrock, and 
Griewank. Simulation results show that the WCOA-tuned FOPID controller significantly 
outperforms both P-D and PID controllers in minimizing error, maintaining control stability, 
and ensuring accurate trajectory tracking. Its superiority is also demonstrated through real-
time tests on a mobile robot. Furthermore, feasibility evaluations reveal high levels of 
usability, operability, and learnability. These results highlight the strong potential of WCOA as 
a robust optimization method for advanced control systems and provide a foundation for 
future research in dynamic environments, hybrid optimization techniques, and broader 
engineering applications. 

MSC. 

https://doi.org/10.29304/jqcsm.2025.17.22181 

1.Introduction 

Computer vision has emerged as a rapid growth area triggered by the progressive growth in both Artificial 
Intelligence and Computer Science, with its focus on allowing machines to interpret and make sense of data within 
their environments. The skill to mirror human vision enables computer vision systems to extract information from 
visible digital images and videos, along with other types of visual data. One might include the arrangement of 
computers with algorithms, machine learning, and various ways to allow them to detect patterns, recognize objects, 
follow movement, and form decisions based on visual input [1]. 
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The range of applications for computer vision is vast and includes the automotive industry's invention of self-
driving cars, to retail's handling of automated checkouts and inventory management, security and surveillance 
systems that perform facial recognition, robotics applications, augmented reality, and common consumer devices 
such as smartphones [2]. The performance target of a dynamic system, typically maintained at its optimal level, is 
achieved through the implementation of control strategies [3]. Over the years, extensive use of P-D and PID 
controllers has been observed [4]. In most industrial applications including process control, robotics, automotive 
systems, and aerospace engineering, these controllers maintain simplicity and robust performance [5]. 

The main contributions of this paper are as follows: 

 To provide performance comparisons of the P-D, PID, and WCOA-optimized FOPID controllers in a 
computer vision-based control system for mobile robotics. 

 WCOA will be applied to tune the parameters of the FOPID controller to enhance its performance in terms 
of error reduction, stability of the control output, and overall accuracy of the system. 

 To investigate robustness and effectiveness, the WCOA was applied to a set of benchmark functions 
representing different optimization challenges such as multimodality and deceptive landscapes. 4. To assess 
in real time the effectiveness of the FOPID controller, optimized using the WCOA for a mobile robot, by a 
running test, and to demonstrate its superiority in trajectory tracking and system stability. 

 The real-world testing of the application and the feedback about the feasibility, usability, operability, and 
learnability will be performed in order to validate the application of the WCOA-optimized FOPID controller 
to real-world engineering systems. 6. Applications to areas with dynamic and uncertain environments, 
among others like power systems, autonomous vehicles, and industrial automation, may be explored for the 
use of a WCOA-optimized control system. 

This paper is organized as follows: the proposed objectives and methodology are presented in Section 2. Whereas, 
the theoretical background on P-D, PID, and FOPID controllers and simulation setup review is going to be given in 
Section 3; in Section 4, the explanation of the WCOA optimization Algorithm will be given as the methodology to 
investigate the performance of controllers. Simulation results comparing the performance of the P-D, PID, WCOA-
optimized FOPID controller, and benchmark functions will be presented in Section 5. Section 6 concludes the paper 
with a summary of the key contributions and suggestions for future research directions. 

2. Related Works 

In this paper, three control strategies are taken into consideration: P-D, PID, and FOPID toward performance 
evaluation for the regulation of a simulated control system. The FOPID controller optimizes through WCOA for an 
optimal set of five tuning parameters, namely Kp, Ki, Kd, \lambda, and \mu. Then, WCOA-optimized FOPID 
controller performance is compared with traditional P-D and PID controllers with respect to error minimization, 
control output stability, and total absolute error. This is carried out through a set of simulations designed to test 
each controller's tracking ability of a reference signal under dynamic input conditions. Furthermore, in order to 
assess their practical applicability, we extend the analysis with feasibility tests where a review of usability, 
operability, and learnability of the controllers in view of their application to real-world systems is performed. In 
this respect, mobile robot running tests are done in a manner that will validate the effectiveness of the controllers 
on a physical system. The tests are conducted such that the controllers show usefulness in an environment where 
precision and adaptability in control are crucial.  

In the last twenty years, the dynamical system has been watched to be becoming more and more imperfect and, 
hence, much more sensitive to external disturbances, which has exposed the shortcomings of conventional control 
methodologies [6]. In particular, the growing need for higher accuracy, etc., along with the requirements to make the 
control systems more robust and flexible stimulated the application of advanced control concepts, where fractional-
order controllers play a significant role [7].  However, many existing implementations have not fully addressed real-
time performance under rapidly changing environments, limiting their practical deployment. Another method of 
advanced control is the Fractional Order Proportional-Integral-Derivative Controller abbreviated FOPID [8]. A PID 
controller is enhanced by adding the fractional order of integration and differentiation parameters of \lambda and 
\mu, respectively. Added flexibility allows the FOPID controller to better model and compensate for complex 
dynamic behavior in systems possessing memory and hereditary properties [9].  Yet, these improvements often 
come at the cost of increased complexity, making real-world integration more difficult in resource-constrained 
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systems. In this regard, FOPID controllers are gaining importance in workable research, sufficient in delivering 
better results than the classical P-D and PID, especially in nonlinear dynamics and time-varying parameter systems 
[10]. Nevertheless, most prior studies remain limited to simulation environments and lack comprehensive 
hardware-based validation. However, their design and tuning remain a potential bottleneck, despite all the pros of 
FOPID controllers [11].  What makes the tuning more complicated is that fractional calculus adds complexity to 
traditional controllers, increasing the number of parameters, for which optimal values have to be chosen in view of a 
difficult compromise between stability, response time, and reduction of error [12]. Many earlier tuning methods rely 
on conventional optimization techniques that often converge to local optima or require high computational effort, 
limiting their scalability. On this score, optimization algorithms have become very useful tools assisting in carrying 
out the tuning of FOPID controllers. These algorithms are able to find, among all the parameters in a given system, 
the set of parameters that maximizes performance [13, 14].  Still, certain approaches lack robustness when applied 
to systems with fast-changing or unpredictable dynamics, which reduces their effectiveness in real-time robotic 
applications. 

Optimization techniques such as metaheuristics inspired by natural or social phenomena represent a modern class 
of optimization algorithms. An example is the World Cup Optimization Algorithm (WCOA), which is a new 
metaheuristic optimization technique inspired by the competition structure of the tournament in the FIFA World 
Cup [15]. WCOA models teams as particles in a search space and emulates their interactions and competitive 
dynamics in order to explore the realm of optimum solutions. This approach identifies the best teams or solutions 
after many stages of competition and converges eventually to the global optimum. WCOA applied for optimizing 
FOPID controller parameters has the capability to improve controller performance in complex systems [16, 17]. 
However, most studies involving WCOA have not yet explored its application in vision-based mobile robotics, 
leaving its real-time viability in such systems largely unexamined. 

Before dealing in detail with this work on the control systems of mobile robots, first of all, it is compulsory to point 
out the importance of FOPID controllers within modern control theory. FOPID controllers are an extension of 
classical PID controllers and assure more flexibility and performance compared to their predecessors, which are 
very important for complex dynamic systems such as mobile robots [18, 19]. Recent developments focused on the 
optimization techniques of FOPID controllers using different kinds of algorithms to acquire better trajectory 
tracking, stability, and robustness in uncertain environments. In [20], the authors have already conducted previous 
efforts, focusing on making an optimal backstepping-based FOPID controller to solve the problem of trajectory 
tracking in robotic mobility. To control the parameters of FOPID controller, the research used hybrid meta-
heuristic optimization methods to the controller significantly improving the tracking performance and system 
stability. However, the study was limited to simulations and lacked real-time hardware validation. Subsequently, a 
research study examined the enhancement of path-tracking control in mobile robots applying the proposed hybrid 
FOPID controller and backstepping method. The work done in the research demonstrated that this combined 
approach enhanced the accuracy of trajectory tracking by a very large margin and provided enhanced immunity 
from disturbances as compared to conventional control strategies as concluded in [21]. Yet, the optimization was 
applied in a static or simplified environment, with limited responsiveness to dynamically changing conditions. Over 
several studies, multiple Swarm Intelligence algorithms were investigated relative to their performances in 
permanent magnet synchronous motors used for speed regulation. In the light of the findings, the FOPID 
controllers with the advanced meta-heuristic algorithms were found to be more accurate and robust than 
conventional approaches [22]. Nevertheless, these studies focused on motor control systems, not mobile robots, 
limiting their generalization to trajectory tracking scenarios. Subsequently, the authors in [23] undertook research 
to share the episode-based optimal tuning of FOPID controllers for wheeled mobile robots using various hybrids of 
PSO and GWO algorithms. The obtained comprehensive approach illustrated important improvements in 
integration of the means for trajectory tracking as well as in decreasing the number of errors in the control system. 
However, the hybrid algorithm’s complexity increased computational cost, and real-time performance was not 
deeply explored. After that, the authors utilized a Firefly Algorithm to optimize the parameters of an FOPID 
controller in an AMR. This led to improved control accuracy in the robot’s navigation and improved responsiveness 
of the robot to changes in the physical environment and demonstrated the ability of the Firefly Algorithm to fine-
tune the FOPID controller for dynamic and uncertain environment [24]. Still, the algorithm exhibited slower 
convergence and was not benchmarked against multiple global optimization methods for broader validation. Then, 
the research regarding the improvement of mobile robot control using a controller of FOPID - tuned by WCOA - 
demonstrated that a WCOA-optimized controller significantly enhances control performance towards reduced 
error and enhanced stability, especially during dynamic conditions [25].  Despite its potential, this work did not 
evaluate the controller’s usability, operability, or robustness across varied real-world scenarios. Finally, the 
authors in [26] have been introduced a study on the adaptive FOPID controller design using optimization via 
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Genetic Algorithm for mobile robot navigation in uncertain and unknown environments. The results depicted 
better adaptability and control precision in complicated and dynamic scenarios, underlining the effectiveness of 
the adaptive FOPID controller in handling unpredictable conditions. 

3. Model Setup 

This section presents a model setup used for comparisons among P-D, PID, and WCOA-optimized FOPID controllers 
in detail by providing the necessary mathematical equations, algorithms, and pseudo-codes related to the WCOA, as 
shown in Fig. 1. In this approach, step-by-step detailed explanations are provided on initialization, controller design, 

optimization, simulation, and performance evaluation. 

Fig 1- Steps of proposed approach. 

3.1. Initialization and Simulation Setup   

Some of the key parameters - dt (a time step), total time of simulation, and setpoint, in fact, the target that 
controllers ought to reach - are defined at the beginning of the simulation. Thereafter, the constant base speed for 
the motor control simulation is defined. The system simulates random input values using a range of pixel data, 
represented by                  , 1,             ). This data is processed to create varying weight values, 
which act as disturbances for the control system to handle. The system's error at any time step 𝑡 is calculated as 
[27]: 

                                                                                                                                        

The control effort applied to the system is a function of this error, with different controllers (P-D, PID, and FOPID) 
calculating the effort differently based on their control laws. Table 1 is designed to quantify the performance of 
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different controllers P-D, PID, and WCOA-optimized FOPID used in your MATLAB work. This table uses a scoring 
system ranging from 1 to 5, where a score of 1 represents the poor performance and a score of 5 represents the 
excellent performance across a three key performance metrics which are: Error Reduction, Control Output 
Stability, and the Total Absolute Error.  Table 2 presents a systematic way of mapping input values from the pixel-
bound captured through the camera/vision systems to weight values the control system can then use for corrective 
actions. Each row in this table represents a range of pixel values and its corresponding weight, which shall enable 
the control system to assess the deviation from setpoint and thereby act. 

Table 1 - Score Conversion. 

Controller Type Performance Metric Score (1-5) Description 

P-D Controller  
Error Reduction 2 

Moderate reduction in 
error, with noticeable 

oscillations. 

Control Output Stability 2 
Control signals exhibit 

aggressive behaviour with 
overshoots. 

Total Absolute Error 3 
Higher overall error 
compared to PID and 

FOPID. 

PID Controller  
Error Reduction 3 Improved over P-D but still 

some error remains. 

Control Output Stability 3 Stable control output but 
with some oscillations. 

Total Absolute Error 3.5 
Lower error than P-D 
controller, smoother 

performance. 

WCOA-Optimized 
FOPID Controller Error Reduction 5 

Excellent error 
minimisation, rapid 

convergence to setpoint. 

Control Output Stability 5 
Smooth, stable control 
output with minimal 

overshoot. 

Total Absolute Error 4.5 
Lowest total error, 

outperforming both P-D 
and PID. 

 

Table 2 - The weight value specified for each frame. 

Pixel Range Weight Value Description 

0 – 20 4 Large deviation; requires significant positive 
correction. 

20 - 37.5 3 Moderate positive deviation; needs positive 
correction. 

37.5 – 55 2 Small positive deviation; minimal positive 
correction needed. 

55 - 72.5 1 Slight positive deviation; very small 
correction needed. 

72.5 - 87.5 0 
No deviation; no correction needed, system 

at setpoint. 

87.5 – 105 -1 
Small negative deviation; minimal negative 

correction needed. 
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105 - 122.5 -2 Moderate negative deviation; needs negative 
correction. 

122.5 - 140 -3 
Significant negative deviation; requires 

larger correction. 

140 – 160 -4 
Large negative deviation; requires 

significant negative correction. 

3.2. Controller Parameters Setup   

Since the P-D controller's gains are initialized, it possesses two gains: proportional gain, or   , and derivative gain, 
or   . Thus, using the P-D controller means to calculate the error-that will correspond to a difference between a 
current system state and a setpoint-and to change the system output. The formula to get the control effort for the 
P-D controller [28]: 

                       (        )                                                                                                           

                                                                                                                        

In addition to the P-D controller, the PID controller also has an integrator that sums up past errors to improve 
steady-state accuracy. Gains for the proportional term   _PID, the integral term   _PID and the derivative term 
  _PID are initialized. The control effort for the PID controller includes proportional, integral, and derivative terms 

as shown in Figure 2. 

Fig 2- FOPID Controller Setup. 

The FOPID is more advanced, meaning it applies fractional-order terms for integration as well as differentiation 
with fractional orders   and   correspondingly. The initial values for the FOPID gains are set to   _FOPID, 
  _FOPID, and   _FOPID. FOPID controller introduces also fractional orders for integration and differentiation 
[18]: 

                                                                                                                            

4. WCOA for FOPID Tuning 

WCOA is one of the newly emerging optimization algorithms. It depends on the principle of the competitor during 
the tournament process, exactly as it takes place in the FIFA World Cup. In your work, this algorithm will be used in 
order to make the biggest influence on the parameters of the FOPID controller that is capable of minimizing the 
error in the output of the system. The complete explanation of every step of the WCOA with key equations and an 
explanation of each phase is given in the following. In WCOA, every team is a possible solution of the optimization 
problem. Parameters   ,   ,   ,  , and   of the FOPID controller are considered the players of every team. The 
algorithm first initializes an initial population of random teams with different values of listed parameters. Equation 
of initialization [29]: 
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Where,   is referring to the random number which fall between 0 and 1; and    is referring to the     team.  

Each team represents a set of the FOPID parameters, and the initial random distribution ensures that the 
search space is diverse. The performance of each team will be based on the performance of the FOPID controller in 
minimizing the system error as time progresses. The fitness function evaluates the total absolute error of the 
desired setpoint and the output of the system. The lesser the total error, signifies the better of the performance [30]. 

Fitness    ∑   etpoint  Output
 
    

 

   

 
(6) 

Where, the  etpoint is the desired target value, the Output
 
    is the system's output at time   for team  , and   is the 

total number of time steps in the simulation. 

After evaluating the fitness of all teams, the teams are ranked based on their fitness scores. The top-
performing teams are classified as winners, while the bottom-performing teams are classified as losers. This step 
mimics the structure of the FIFA World Cup, where only the best teams proceed to the next rounds. The key 
innovation in WCOA is the influence of the winners on the losers. The parameters of the losing teams are updated to 
become more like those of the winning teams. The magnitude of the update is governed by a random factor, 
ensuring exploration while guiding the algorithm toward better solutions. For each loser team 𝑖 according to [29]: 

     
        

   (        
        

) (7) 

     
        

   (        
        

) (8) 

     
        

   (        
        

) (9) 

                               (10) 

                               (11) 

Where,   is a random number between 0 and 1,        refers to the best-performing teams, and       refers to the 
worst-performing teams. 

The random factor 𝑟 allows for variation in how much influence the winner exerts over the loser, preventing 
the algorithm from becoming stuck in local optima. To maintain diversity in the population and avoid premature 
convergence, elitism is applied, where the best-performing teams (elite) are carried over to the next generation 
without any modification. Additionally, random mutations are introduced to some teams to explore new areas of the 
search space. Each parameter of a randomly selected team undergoes a mutation with a small probability [29, 30]: 

         
    mutation factor    (     

      
) (12) 

The                 is a small value that determines the extent of mutation. The algorithm continues updating the 
teams over multiple iterations. It stops when one of the following convergence criteria is met: 

 Maximum Number of Iterations: The algorithm reaches a predefined number of iterations. 
 Error Threshold: The total error falls below a certain threshold, indicating that the FOPID controller has 

been tuned optimally. 

Once the convergence criteria are met, the best-performing team represents the optimal set of FOPID parameters: 
     

,      
,      

,     ,     . The pseudo WCOA code is summarize as follows: 
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Algorithm 1: proposed pseudo-code of WCOA algorithm  

1. Initialize the population of teams with random FOPID 
parameters                

2. Set number of iterations and particles 
3. for each iteration DO: 
4. Evaluate fitness of each team based on performance (total 

error) 
5. Sort teams based on fitness 
6. Select top teams as winners and bottom teams as losers 
7. Winners influence the parameter updates of the rest 
8. Update FOPID parameters based on performance: 
9.                         ∗              

             
10.                          ∗              

             
11.                          ∗             

             
12.                        ∗                         
13.                        ∗                         
14. Introduce random variations to avoid local minima 
15. end for 
16. Return the optimized FOPID parameters 

 

4.1. Benchmark Functions 

Benchmark functions are mathematical functions used to evaluate and compare the performance of optimization 
algorithms. They provide a controlled environment where the algorithm’s ability to find the global minimum can be 
tested, especially in the presence of multiple local minima or complex landscapes. Below are detailed explanations 
of several well-known benchmark functions, including their equations and key characteristics. 

4.1.1 Sphere Function 

The Sphere function is the simplest and most used benchmark function. It is convex and has a global minimum at the 
origin      . Since the function surface is a smooth, paraboloid shape, it is often used to test the baseline 
performance of an optimization algorithm, which given by: 

             (13) 

4.1.2 Rastrigin Function 

The Rastrigin function is a highly multimodal function, meaning it has numerous local minima. Despite these local 
minima, the global minimum is located at the origin      . The cosine term introduces the periodic ripples that cause 
the function to have multiple local minima. 

                                              (14) 

Where   is represents the number of the variables (          ). 

4.1.3 Ackley Function 

The Ackley function usually serves as a test for optimization functions since it contains a large search space with a 
lot of local minima. There is a nearly flat outer region and a large basin in the centre, surrounding the global 
minimum. Though its gradient is relatively smooth, there are plenty of challenges related to the function due to 
sharp peaks and valleys. 
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                     √                                                  (15) 

4.1.4 Rosenbrock Function (Banana Function) 

The Rosenbrock function -also known as the "Banana function"- is a nonconvex function with a long, curved valley. 
Although the global minimum lies at, convergence to that point is hard for most optimization algorithms since the 
path to the global minimum includes one long, parabolic ridge. It therefore serves as a steep-sided narrow-valley 
test of how well an optimization algorithm can resolve complex topologies. 

                          (16) 

4.1.5 Griewank Function 

One of the multimodal functions is the Griewank function, which possesses many widespread local minima, with its 
global minimum at the origin. Whereas the cosine term adds oscillations to this function, the polynomial term is 
monotonically increasing with the distance away from the origin, hence having such a structure makes it much more 
difficult for algorithms to find a global minimum since they might get stuck in local minimum points. 

         
    

  
 

    

  
           (

 

 
) (17) 

Table 3 summarizes seven of the benchmark functions in common use for optimization. Here, the benchmark 
functions cited serve as a test case for algorithms such as the WCOA with respect to studying their capability of 
escaping various optimization obstacles, including multimodality, nonconvexity, and deceptive landscapes. 

Table 3- Our updated Benchmark Functions. 

Function Global Minimum Domain Nature Challenge 
Level 

Sphere            [-5.12, 5.12] Convex, Unimodal Low 

Rastrigin            [-5.12, 5.12] Multimodal High 

Ackley            [-5, 5] Multimodal Moderate 

Rosenbrock            [-5, 5] 
Non-

convex, 
Unimodal 

High 

Griewank            [-5, 5] Multimodal High 

 

5. Results and Discussion 

The next section summarizes the results and gives a discussion of how the three controllers-noticeably the P-D, 
PID, and WCOA-optimized FOPID-fared in the simulations done using our MATLAB code. 

5.1. WCOA algorithm for Computer Vision Control System 

In our work, the WCOA was implemented to tune the parameters of the FOPID controller. There are some key 
parameters of this algorithm, which may have an influence on the performance and efficiency of this optimization 
algorithm. The number of iterations is 100, which defines the number of runs the optimization process is performed 
for. Each iteration indicates one step at which teams evaluate and update themselves on the basis of performances. 
Since the number of iterations is set to 100, there is a very good balance between computational efficiency and 
enough exploration of the solution space for convergence of the algorithm towards optimum solutions with limited 
computational overhead. The number of teams was set to 10, which meant the number of candidate solutions, or 
teams, that were competing in the course of optimization. Each team represents a set of FOPID controller 
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parameters   ,   ,   ,  , and   that the algorithm evaluates and updates based on their fitness. The application of 
10 teams ensures diversity in the search space for both exploration and exploitation of potential solutions. 
Increasing the number of teams would further increase exploration at the risk of increasing computation time. The 
choice of a team size of 10 members was found to balance exploration for diverse solutions while also converging to 
optimal parameters. Careful selections of the final parameter range for the FOPID controller were made in such a 
way that the WCOA algorithm would investigate more promising regions of the solution space.    and    is 
initialized between [0, 2] while Kd initialization is between [0, 1]. In contrast, the fractional orders of integration 
and differentiation   and   are bounded between [0.4 0.6]. This is done in regard to the expected behaviour of the 
control system and some empirical knowledge about typical ranges of FOPID controller parameters. The final ranges 
were used to constrain the WCOA search for promising parameter sets that would be likely to yield good results and 
avoid wasting computing resources on less promising sections of the search space. The fitness function used in the 
implementation of WCOA was one that minimized the total error over the period of simulation. In other words, the 
extent to which the system output deviation from the desired setpoint was minimized for each candidate solution 
was evaluated. The fitness function played an indispensable role in guiding the process of optimization, as it 
identified which set performed better in the context of error minimization. Lower values of the fitness indicated 
better controller performance, whereas the WCOA adapted parameters of underperforming teams to move them 
closer to the higher performing ones. Hence, significantly lower errors were obtained in the case of FOPID optimized 
by WCOA compared to P-D and PID controllers. The aggregation of these optimal WCOA parameters indeed yielded 
an optimized set of gains for the FOPID controller, which assured superior performance than the traditional 
controllers on error reduction, stability in control output, and system performance. Thus, this optimization process 
illustrated the efficacy of the WCOA in fine-tuning the FOPID controller for complex dynamic control tasks. 
In Figure 3, the comparison of error shows the performance of each controller in terms of how well it performs in 
converging towards the desired setpoint with time. The WCOA-optimized FOPID controller gives faster convergence 
to the setpoint and maintains a low error than both the P-D and PID controllers. As expected, the residual error 
obtained with the P-D controller is highest, and the performances of the PID controller have been in the middle, but 
cannot match the fine-tuning capability of FOPID. It can be visualized that the minimum error value for a system is 
provided by the FOPID controller optimized using WCOA compared to P-D and PID controllers for better tracking 
performance. However, the control output comparison shows the actual signals generated by each controller to 
adjust the system. Smoother and more stable control signals are generated by the FOPID controller optimized using 
WCOA for better stability of the system. In contrast, the P-D controller gives results that are more aggressive and 
might cause instability, while the PID controller reflects intermediate performances. On the other hand, the FOPID 
controller results in control outputs to be more stable, reflecting its ability to finely tune the system without 
introducing excessive oscillations or overshoots. Total absolute error gives a measure of the overall performance of 
each controller across the entire period. The summation of absolute errors for every controller clearly indicates that 
the minimum overall error was achieved by FOPID optimized with WCOA, followed by the PID controller and then 
the P-D controller. Throughout the process, the WCOA-optimized FOPID maintains a lower sum of absolute errors in 
every iteration. That is, this controller is doing well in achieving long-term accuracy and control in the system. 
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Fig 3- Error comparison for the controllers. 

In Figure 4, out-of-sample and in-sample results on the performance of the controllers in real-time mobile robot 
navigation are shown. The post-test results depict enhancement in the performances of the WCOA-optimised FOPID 
controller in trajectory tracking, which had reduced deviations against the P-D and PID controllers. Improvements 
to the reduction of error and smoothing of the control will easily translate into betterment regarding the 
performances of the robot. A running test on a mobile robot showed how effective a WCOA-optimized FOPID 
controller was with regard to real-world trajectory tracking enhancement with stability.  

 

Fig 4- Mobile robot running test result. 

In Figure 5, a feasibility test was carried out for the controllers in terms of usability, operability, and learnability. In 
all respects, the FOPID controller optimized with WCOA had the topmost readings, indicating its ease of use and 
adaptability to operating environments. This makes it practical for real-world applications that are very critical in 
terms of user interaction and system tuning. The usability, operability, and learnability of the proposed WCOA-
optimized FOPID controller were also assessed based on high ratings, which can be well deployed practically. 
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Fig 5- Feasibility test questionnaire results. 

5.2. Results of Benchmark Functions 

In this work, the performance and robustness of WCOA were tested against a suite of benchmark functions that 
would help further present its applicability in real-world problems, such as FOPID controller optimization. The 
standard test cases present a representative variety of optimisation challenges ranging from simple and smooth 
surfaces to complex, multimodal landscapes. These functions enable us to check the capability of WCOA in reaching 
the global optima while trying to avoid the local minimum-which is so crucial in control system applications. 
Figure 6 shows the Sphere Function which has a smooth surface parabolic bowl with the global minimum at the 
origin, (0,0). In addition, the contour plot and 3D surface are continuous and convex and have no local minima; for 
that reason, this is the simplest of the optimization problems. WCOA converged fast to the global minimum, as 
indicated by this figure, where the search path heads directly to the lowest point at coordinates (0,0). This result is a 
testimony to algorithmic efficiency for the solution of fundamental convex problems. A smooth gradient allowed 
WCOA to exploit the direct path toward the minimum with little exploration, confirming its ability to handle 
straightforward tasks with low computational complexity. 

 

Fig 6- Sphere function illustration. 

Figure 7 shows the Rastrigin Function's highly multimodal surface with periodic ripples caused by the cosine terms 
in the function. These ripples create an extraordinarily large number of local minima. It would be very easy for an 
optimization algorithm that is without any global search capabilities to become stuck in one of these. Despite the 
complex and multi-minima surface, the WCOA was still able to find the global minimum that is at position (0,0). The 
above figure shows how the algorithm flowed around local minima and negotiated the rippled surface. Such a 
problem is well-suited to the balance between exploration and exploitation in WCOA, which first explores the 
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function globally before focussing its attention on the most promising regions around the global minimum. That 
figure showed that, even in the presence of numerous local minima, the WCOA had efficiently located the global 
minimum; therefore, a robust technique to handle such complex, multimodal problems. 

 

Fig 7- Rastrigin function illustration. 

As Figure 8 shows, the Ackley Function figure depicts a flat outer region and sharp steep valleys in order to reach 
the global minimum at the middle. What is more, this function has a misleading outer region; the flat landscape 
challenges the convergence of algorithms at the minimum, relying merely on local information. The WCOA 
successfully crossed the deceptive flat region, as can be seen in this figure, and reached the sharp global minimum at 
the centre. It can be seen from this figure that this algorithm explored the function quite broadly and didn't get 
trapped in the flat regions. Once the algorithm found the centre, it converged smoothly to the minimum. This result 
indicates that the WCOA has the capability to address functions with deceptive features, as most algorithms would 
lose momentum in these kinds of flat regions. 

 
Fig 8- Ackley function illustration.  

Figure 9 presents the Rosenbrock Function, which a narrow parabolic valley, which has its global minimum at 
the point (1,1). It is considered the most difficult function for an optimization algorithm to handle, due to steep sides 
and a narrow path needing to be traced out carefully to converge towards the global solution. The WCOA 
successfully followed the curved valley of this problem to converge towards the global minimum. This performance 
underlines the importance of a balance between exploration and exploitation in the process of optimisation since 
too much exploration could make an algorithm wander away from the valley, while insufficient exploration might 
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make it converge to suboptimal areas. The WCOA has this balance, as demonstrated by the smooth trajectory 
through the valley. While the function needed more iterations compared to the simpler landscapes Sphere function, 
for the WCOA performed well to cope with the complexity of the topology brought by the Rosenbrock function. 

 

Fig 9- Rosenbrock function illustration. 

Figure 10 shows the Griewank Function, whose landscape is filled with an enormous number of local minima, 
dispersed over the search space. Its highly multimodal nature, caused by a combination of cosine modulations and 
quadratic terms, creates difficulty in reaching the global minimum if no appropriate capabilities of robust global 
search exist. The WCOA showed excellent performance in this function by avoiding entrapment into the local 
minima and successfully converging into the global minimum at point (0,0). This figure brings out that WCOA is 
good both at maintaining wide exploration in the search space and at intensifying the solution once it gets closer to 
the global minimum. Handling such a complex multimodal function definitely affirms the robustness of the WCOA in 
difficult optimization problems. 

 

Fig 10- Griewank function illustration. 
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6. Conclusion 

This paper implemented and compared three control strategies, namely: P-D, PID, and WCOA-optimized FOPID 
controllers, in the framework of computer vision-based control. WCOA was used for the optimization of the FOPID 
controller parameters, while the performance of each of the above-mentioned implemented control strategies was 
assessed using simulations, based on error minimization and control output stability, general system performance. 
Our results showed that the WCOA-optimized FOPID controller consistently outperformed both the P-D and PID 
controllers in terms of error reduction, control precision, and system stability. Concretely speaking, better tracking 
performance with smoother control signals and higher capability of total absolute error minimization were 
performed by the FOPID controller in comparison to the traditional controllers. The robustness and versatility of 
the WCOA were further confirmed by benchmark function evaluations in navigating successfully through a number 
of difficult optimization landscapes, including multimodal, non-convex, and deceptive functions. The algorithmic 
ability for exploration-exploitation balance allowed the WCOA to find the global minimum of some quite 
challenging benchmark functions like Rastrigin, Ackley, Rosenbrock, and Griewank without getting trapped into 
local minima. In real-world applications such as a running test of a mobile robot, there are reports of considerable 
improvements in trajectory tracking and system stability with the WCOA-optimized FOPID controller compared to 
P-D and PID controllers. Furthermore, from the results of feasibility tests, the usability, operability, and learnability 
of the WCOA-optimized FOPID controller are highly rated to prove quite practical in a real-time control system. 
However, the proposed model is not without limitations. Firstly, while simulation and real-world testing confirmed 
strong performance, the system was not evaluated under extreme environmental uncertainties or with multiple 
simultaneous disturbances, which may affect robustness in more chaotic scenarios. Secondly, although the WCOA 
algorithm exhibited effective tuning capabilities, it has a relatively higher computational overhead compared to 
simpler heuristics, which may constrain its real-time applicability in embedded systems with limited processing 
power. Finally, the current implementation assumes a relatively stable visual input; rapid visual occlusions or poor 
lighting conditions may degrade controller accuracy. These limitations open avenues for future improvements, 
such as developing lightweight variants of WCOA, integrating adaptive vision filters, and testing the system in more 
complex dynamic environments. 
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