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A B S T R A C T 

The purpose of malware design is to attack computers specifically for data theft operations 
and system network disruption to gain access to sensitive data. The mobile platform risk 
increases due to the widespread Android operating system use because its design keeps it 
open-source by nature. The research demonstrates the use of deep learning composite 
models for the detection of Android software malware. The proposed method leverages a pre-
trained GoogleNet convolutional neural network for feature extraction from malware-related 
data and employs a deep recurrent BiLSTM network for classification. The MRMR (Minimum 
Redundancy Maximum Relevance) algorithm enables feature selection in a process that 
optimizes model classification speed as well as accuracy levels. This detection system 
addresses three main malware detection obstacles: the analysis of extensive data sets as well 
as the quick development of complex malware code and its well-camouflaged signatures. The 

simulation results showed that the model successfully detected various malware types with 
99.30% success rate. Research results show that contemporary security threats need complex 
malware detection systems because conventional antivirus solutions have proven ineffective 
against new security threats. The constructed AI-based malware detection framework serves 
as an advanced solution that delivers improved protection for Android devices and their 
cyber threats. 

https://doi.org/10.29304/jqcsm.2025.17.22188

 
1. Introduction 
Smart devices, specifically Android-based smartphones, now play a crucial role in daily life, both at work and in 
personal spheres. The extensive use of Android devices has turned this operating system into the most attractive 
target for malware developers who exploit system vulnerabilities to conduct damaging attacks such as data theft 
and system corruption [1]. 
 Android being an open source platform for application building has great versatility for its applications, which in 
turn creates greater potentiality of its vulnerability for criminal hackers[2]. 
The Perimeters, in question, have been tackled by traditional antivirus programs as these are specifically designed 
to identify and prevent already identified to be part of the virus definition database threats [3]. 
The two major challenges that make it hard to detect malware include the fact that a large number of files need to be 
scanned, while the attackers employ such practices as encryption and polymorphism [4]. 
Furthermore, there are “fileless” malware variants that create almost no records on a drive and thus can be truly 
difficult to detect [5]. 



2 Haider Tawfiq Athab, Journal of Al-Qadisiyah  for Computer Science and Mathematics Vol.17.(2) 2025,pp.Comp 123–134

 

This allows utilizing the further development of neural-network technologies, which, in turn, provide higher 
accuracy and adaptability, based on advanced realistic pattern recognitions [6]. 
Based on these challenges, this paper introduces a suitable feature extraction approach known as GoogleNet, feature 
selection technique known as the MRMR algorithm, and final classification stage that employs BiLSTM network to 
accurately and effectively detect Android malware. 

2. Basic Concepts 

2.1. Android Malware 
The term Android malware defines software which attacks devices running on Android operating system to violate 
security features and personal information access along with system performance. Open-source Android together 
with its extensive adoption by users has made it the primary focus for cybercriminals [7]. Various malware types 
exist including trojans and ransomware and spyware and adware which aim to achieve different cybercrimes such 
as system disruption and data theft and unauthorized access [8]. 
Detecting Android malware requires immediate attention due to the quick advancement of attacks in the malware 
domain. Traditional methods of detection fail against attackers who use obfuscated and encrypted malware coupled 
with polymorphic malware techniques [9]. Malware distribution gets boosted through social engineering methods 
which include phishing attacks and fake application techniques [10]. Fileless malware is a threat factor because it 
operates from device memory while staying out of storage and leaves barely detectable footprints [11]. 
Several malware detection methods now exist to combat security threats which include static analysis combined 
with dynamic analysis along with machine learning-based approaches. Application code belongs to static analysis 
because it detects anomalies without executing the software yet dynamic analysis detects anomalies by tracking 
application behavior during runtime [12]. The detection accuracy has received substantial enhancement from deep 
learning methods which extract hidden patterns from big data [13]. 

2.2. GoogLeNet 
In 2014 Szegedy and his collaborators at Google introduced GoogLeNet which stands as a deep convolutional neural 
network (CNN) during the ILSVRC (ImageNet Large Scale Visual Recognition Challenge) [14]. The Inception 
architecture serves as its foundation with an enhanced computational efficiency arising from different filter sizes in 
one layer to detect multiple spatial patterns [15]. 
The network structure includes 22 layers where 1×1 convolution operations help lower dimensions while reaching 
better performance. The implementation of global average pooling in GoogLeNet differs from standard CNN 
operations because it replaces fully connected layers to reduce parameter count and minimize overfitting problems 
[16]. 
The GoogLeNet architecture remains prevalent in multiple applications with users applying it for image 
classification and object detection and feature extraction in malware detection systems. The tool offers high value 
for deep learning security solutions due to its effective and precise operation [17]. 

2.3. Long Short-Term Memory 
The specialized recurrent neural network (RNN) Long Short-Term Memory (LSTM) solves the vanishing gradient 
problem to process extended sequences found in sequential data [18]. The 1997 neural network invention by 
Hochreiter and Schmidhuber combined memory cells with input gates as well as forget and output gates which 
enabled the model to maintain important information over extensive sequences [19]. 
These recursive neural networks find their primary use in NLP along with time-series prediction and malware 
detection because they excel at processing sequential relationships between data points [20]. The BiLSTM variant 
strengthens performance since it analyzes information from past as well as future time steps which optimizes their 
utility for classification tasks [21]. 

3. Methodology 

3.1. Proposed Method 
This work aims at Android malware detection through deep learning-based integrated methods. Feature extraction 
processes take place through GoogLeNet while the classification task relies on BiLSTM. GoogLeNet represents the 
preferred neural network choice because of its exceptional capability to identify patterns across extensive datasets 
for obtaining significant features. 
The BiLSTM neural network performs classification by extracting data in two directions which results in improved 
detection accuracy. The network requires two steps for data processing where procurement of data precedes data 
cleanup to achieve network readiness. The researchers divide the acquired data between training and testing 
segments. A GoogLeNet extracts features that the MRMR algorithm selects to enhance accuracy levels. A 
performance assessment follows the BiLSTM network implementation when the optimized features are presented 
as input for malware identification operations. 
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Fig .1 the proposed method flowchart 

3.2. STAGES OF THE PROPOSED METHOD 

THE PROPOSED PROGRAM FUNCTIONALITY CONTAINS THREE SEQUENTIAL STAGES BEGINNING WITH 
PREPROCESSING FOLLOWED BY FEATURE EXTRACTION AND MALWARE CLASSIFICATION OPERATIONS. THE 
PROCESS INCLUDES DISTINCT STAGES WHICH FUNCTION TOGETHER TO MAINTAIN BOTH ACCURACY AND 
EFFICIENCY OF MALWARE DETECTION CAPABILITY. THE ESSENTIAL STEPS GET REPRESENTED IN THE 
FOLLOWING OVERVIEW. 

3.2.1. PREPROCESSING 
THE DATASET REQUIRES ALL IMAGES TO RESIZE THEM INTO 224×224 PIXELS BEFORE THEY BECOME 
COMPATIBLE FOR GOOGLENET INPUT. IMAGE FEATURE EXTRACTION BECOMES EFFECTIVE THROUGH THIS 
STEP BECAUSE IT SUPPORTS NETWORK PRE-TRAINING STANDARDS AND NETWORK INPUT 
REQUIREMENTS. 

3.2.2. DATA SEGMENTATION 
THE SPLIT OF DATA SERVES TWO PURPOSES WHICH INCLUDE TRAINING THE MODEL USING THE PRIMARY 
SUBSET AND TESTING IT USING THE SECONDARY SUBSET. 
A FIFTY PERCENT MARGIN OF THE DATA BELONGS TO THE TRAINING SET WHILE THE TESTING SET 
COMPRISES FORTY PERCENT OF THE REMAINING INFORMATION FOR MODEL EVALUATION. 
TESTING SET (40%) FUNCTIONS AS THE MAIN TOOL FOR DETERMINING MODEL PERFORMANCE ALONG 
WITH EVALUATION OF ITS GENERALIZATION CAPABILITIES. 

3.2.3. FEATURE EXTRACTION USING GOOGLENET 
GOOGLENET, WHICH EMPLOYS THE INCEPTION ARCHITECTURE, EXTRACTS MEANINGFUL PATTERNS FROM 
INPUT IMAGES THROUGH MULTIPLE LAYERS: 
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 THE PREPROCESSING LAYERS PERFORM TWO OPERATIONS ON IMAGES BY ADJUSTING THEM AND 

NORMALISING THEIR VALUES. 

 THE CONVOLUTIONAL LAYERS IDENTIFY DIVERSE VISUAL ITEMS INCLUDING COLORS AND 

TEXTURES. 

 THE POOLING LAYERS MAINTAIN IMPORTANT INFORMATION BY REDUCING THE INPUT 

DIMENSIONS. 

EXTRACTED FEATURES BECOME FEATURE VECTORS THROUGH THE LAST SET OF LAYERS FOR 
CLASSIFICATION. 

3.2.4. FEATURE SELECTION USING MRMR ALGORITHM 
A FEATURE SELECTION PROCESS USES THE MINIMUM REDUNDANCY MAXIMUM RELEVANCE (MRMR) 
METHOD TO OPTIMIZE THE FEATURES. THE MODEL ACHIEVES BETTER PERFORMANCE THROUGH THIS 
METHOD. 
THE CLASSIFIER ACHIEVES MAXIMAL RELEVANCE BETWEEN FEATURES AND ITS CLASSIFICATION 
RESPONSIBILITIES. 
• MINIMISING REDUNDANCY BETWEEN SELECTED FEATURES. 
THE MRMR ALGORITHM MEASURES MUTUAL INFORMATION BETWEEN FEATURES AND LABELS FOR 
IDENTIFYING THE MOST PERTINENT SUBSET. 

3.2.5. CLASSIFICATION USING BILSTM 
THE EXTRACTION FEATURES UNDERGO CLASSIFICATION THROUGH BILSTM (BIDIRECTIONAL LONG 
SHORT-TERM MEMORY). STANDARD LSTM LACKS THE ABILITY OF BILSTM TO ANALYZE DATA 
FORWARDS AND BACKWARDS WHICH MAKES IT MORE EFFECTIVE FOR CONTEXT UNDERSTANDING. 
KEY COMPONENTS OF BILSTM INCLUDE: 
THE FIRST COMPONENT TRANSFORMS TEXTUAL DATA INTO NUMERICAL SEQUENCES FOR 
PROCESSING. 
• BILSTM LAYER – CAPTURES SEQUENTIAL DEPENDENCIES IN BOTH DIRECTIONS. 
THE DROPOUT LAYER REDUCES TRAINING OVERFITTING BY APPLYING RANDOM NEURON 
DEACTIVATION DURING MODEL TRAINING. 
• OUTPUT LAYER – USES A SOFTMAX FUNCTION FOR FINAL CLASSIFICATION. 

3.2.6. MODEL EVALUATION 

TESTING OCCURS USING THE MODEL ON THE TESTING DATASET AFTER COMPLETION OF ITS 
TRAINING PERIOD. THE MALWARE DETECTION SYSTEM EFFECTIVENESS CAN BE MEASURED THROUGH 
ACCURACY TOGETHER WITH PRECISION RECALL AND F1-SCORE. 

3.3. Database 

The research uses USTC-TFC2016 which divides its information into two primary segments. The first section 
merges malware traffic originating from CTU researchers from public sources into ten categories which they 
obtained through real-world network environments between 2011 and 2015. The researchers kept reduced 
portions from large samples and combined smaller samples based on their generator program when necessary. 

The second part of the dataset includes normal network traffic which was gathered through specialized network 
simulation equipment. The pcap-formatted dataset occupies a total size of 3.7GB and researchers have made it 
accessible through GitHub. The dataset divides into twenty visual categories through Fig (2) while including 1,078 
images. 
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Fig.2: images in the database representing various types of malware 

3.4.  Evaluation Metrics 
In this thesis, the proposed approach will be assessed based on the following performance metrics: 

 Precision: Measures the proportion of correctly detected malware instances out of all predicted malware 
cases. It is calculated as: 

         
  

     
                                                             (4-1) 

 Recall: Represents the ability to correctly identify actual malware cases. It is given by: 

       
  

     
                                                                  (4-2) 

 Accuracy: Evaluates the overall correctness of the model by considering both malware and normal traffic 
classifications. The formula is: 
 

         
     

           
                                                       (4-3) 

 
 F1 Score: A harmonic mean of Precision and Recall, balancing both metrics to provide a single 

performance measure. It is defined as: 
 

    
 ∗         ∗   

             
                                                                (4-4) 

In these equations: 
 TP (True Positives): Correctly identified malware instances. 
 TN (True Negatives): Correctly classified normal traffic. 
 FP (False Positives): Normal traffic incorrectly flagged as malware. 
 FN (False Negatives): Malware instances mistakenly classified as normal traffic. 

4. Results 

4.3. Simulation Settings Summary 
Visual data feature extraction in this research used the GoogleNet deep neural network. The GoogleNet 
processed every image dataset entry to produce a feature vector with 1000 attributes per image. 
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A total of 647 malware image samples received training while 431 samples functioned as test samples out 
of the available 1078 images. The application of the MRMR algorithm produced an optimized subset of 400 
features from the original 1000 features which improved both efficiency and accuracy of the model. 
The BiLSTM network served as the model for identifying malware through classification purposes. As 
presented in Fig (3) the network convergence behavior shows that training involved 40 epochs and 840 
iterations until the network reached stability at around 200 iterations. The model underwent training for 
93 seconds while achieving an efficient training period. 

 

Fig .3: BiLSTM Network Convergence Chart 

4.4Evaluation of Simulation Results 
The simulation numbers show the results of the proposed technique's operation across training and test 
data sets within this section. This section implements an analysis which compares the new method to 
current techniques in the field. 

4.4.1. Results on Training Data 
The BiLSTM network received trained feature vectors with their matched labels as part of its training phase 
that used the training dataset. The model process began with labelless re-introduction of the same training 
data for achieving autonomous predictions. The network achieved noteworthy levels of accuracy on 
training data since it already received training from these same data sets. 
The system works with a dataset which includes 25 categories made up of normal network traffic and 24 
different malware types that need the model to identify proper matching categories for each feature vector. 
The evaluation metrics depicted in Fig (4) demonstrated that accuracy, precision, recall and F-score 
reached an exceptional level of greater than 99%. These values result from executing the simulation once 
alone. 
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Figure .4: the evaluation parameters on training dataset 

The proposed approach model's classification error rate can be examined through Fig (5). The chart serves 
to evaluate the prediction deviations between actual and predicted values which indicates the accuracy 
level of the model. 

 

Figure .5: Regression Chart for Training Data 
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The fig (6) shows the ROC curve that applies to the training dataset. The accuracy measurement for 
individual classes shows the model's effectiveness in separating various malware kinds and normal traffic. 

 

Figure .6: ROC Curve for Training Data 

4.3.1. Evaluation on Test Data 

The assessment takes place on test data that contains previously unexposed samples because it enables a full 
examination of the proposed method. The processing system applies its predictions to determine the classifications 
for each unclassified sample. 

Fig (7) shows the numerical evaluation data for test data metrics evaluation. The achieved results show outstanding 
performance due to 99.30% accuracy and precision, recall and F-score metrics all reaching 99.30% and 99.31% and 
99.30%. The simulation results originate from running the experiment once. 
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Fig.7: Evaluation Metric Chart for Test Data 

The test data regression curve in Fig (8) depicts prediction errors as it shows actual data points (circular markers) 
against the fitted regression line. The model achieves enhanced category precision when the data points and fitted 
line show closer alignment. 

 

Fig.8: Regression Chart for Test Data 

The ROC curve functions as a vital performance evaluation metric to analyze the classifier according to Fig (9). The 
main diagonal line functions as the chance decision line because it demonstrates random classification behavior that 
lets the true positive rate match the false positive rate. The ROC curve generates needed classification comparison 
data through its two derived axes which display both true positive rates and false positive rates. The vertical 
position of each line on the axis represents a different class group while classification precision rises when the line 
moves closer to point 1. Analysis shows that BiLSTM detection accuracy reached its lowest point when dealing with 
class 18 as the significant vertical deviation indicates the model demonstrated limited success within this category. 
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Fig.9: ROC Curve for Test Data 

4.4. COMPARISON OF MALWARE DETECTION METHODS 

The proposed GoogleNet-MRMR-BiLSTM approach achieves the highest performance across all evaluation 
metrics, outperforming existing methods. The combination of GoogleNet for feature extraction, MRMR for 
optimal feature selection, and BiLSTM for classification enables more precise and reliable malware detection 
from visual data. 

Table 1: Comparison of the Proposed Method with Existing Techniques 

Method Accuracy (%) Precision (%) Recall (%) F-Score (%) 

Fang et al. (2020) [17] 82.8 75.5 71.5 60.9 

DeepVisDroid (Bakour & Ünver, 2021) [18] 95.2 88.8 92.9 87.7 

Xiao and Yang (2019) [19] 92.7 93.3 95.5 84.2 

Sun et al. (2021) [20] 90.9 92.5 94.6 78.7 

MADRF-CNN (Reference Method) [21] 96.9 97.1 98.9 92.0 

Proposed Method (GoogleNet-MRMR-BiLSTM) 99.30 99.30 99.31 99.30 

 

5. Conclusion 

This study has introduced a versatile deep‐learning framework for end-to-end detection of Android malware, 
combining the powerful representation capabilities of GoogLeNet with the discriminative strength of MRMR feature 
selection and the contextual modelling of a BiLSTM classifier. Through extensive experiments on the USTC-TFC2016 
dataset, our approach consistently achieved over 99 % in accuracy, precision, recall and F1-score on unseen test 
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samples, outperforming contemporary image-based detection schemes. Such high performance underscores the 
benefit of integrating convolutional and recurrent architectures with information-theoretic feature pruning: 
GoogLeNet efficiently captures intricate visual patterns, MRMR distils the most relevant attributes and BiLSTM 
leverages sequential dependencies to make robust classification decisions. 
Beyond raw metrics, the modularity of our design offers significant practical advantages. By isolating feature 
extraction, selection and classification into distinct stages, researchers and practitioners can readily adopt emerging 
backbone networks or alternative selection techniques without reengineering the entire pipeline. This flexibility not 
only future-proofs the system against rapid advances in neural architectures, but also facilitates interpretability: 
analysts can trace which subset of features influenced a given detection outcome, a crucial aspect for security audits 
and threat attribution. 
Despite these promising results, several limitations warrant further attention. Our reliance on static, image-based 
representations means that purely behavioural traits—such as API-call sequences or memory usage patterns—
remain unexploited, potentially leaving blind spots for fileless or dynamically evolving malware. Additionally, 
evaluation on a single public dataset may not fully capture the diversity and novelty of threats encountered “in the 
wild,” especially zero-day or highly polymorphic strains. Finally, while our experiments ran efficiently on a 
dedicated GPU server, deploying such a pipeline on resource-constrained devices like smartphones or edge 
gateways will require careful model compression and acceleration strategies. 
Looking ahead, enriching this visual detection backbone with dynamic features promises to yield even more 
resilient malware classifiers. Integrating run-time monitoring—perhaps through API-call modelling or system-call 
traces—could capture covert behavioural signatures that static images cannot. Equally important is investigating 
adversarial resilience: crafting countermeasures against evasion tactics and adversarial perturbations will be 
essential to maintain trust in automated defences. Lastly, developing lightweight, quantised adaptations of the 
GoogLeNet-BiLSTM flow will be key for on-device deployment, extending robust protection directly to end users 
without sacrificing battery life or responsiveness. 
In sum, this work not only achieves state-of-the-art detection rates for Android malware images, but also lays a 
flexible foundation for future innovations. By marrying deep learning’s pattern-finding prowess with principled 
feature selection, we contribute a roadmap for evolving mobile security solutions that can keep pace with ever more 
sophisticated cyberthreats. 
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