An Equations Related to θ-Centralizers on Lie Ideals

Abdulrahman H. Majeed

Mushreq I. Meften

Department of Mathematics College of Science Baghdad University, Iraq e-mail: ahmajeed6@yahoo.com

Department of Mathematics College of Science Baghdad University, Iraq e-mail: [mushreq.meften@yahoo.com](mailto:%20mushreq.meften@yahoo.com)

عـالقـات قـريـبة هـن ـتمـركـزات فـي مـ ـث ـ ال ـيات لــي

هشرق إبراهين هفتن

قسن الرياضيات / كلية العلوم جاهعة بغذاد

عبذ الرحون حويذ هجيذ

 قسن الرياضيات / كلية العلوم جاهعة بغذاد

Abstract : The purpose of this paper is to prove the following result :

Let R be a 2-torsion free prime ring, U a square closed Lie ideal, and T, θ : R \rightarrow R are additive mappings, such that $3T(xyx) = T(x)\theta(yx) + \theta(x)T(y)\theta(x) + \theta(xy)T(x)$ and $\theta(x)T(xy+yx)\theta(x) = \theta(x)T(y)\theta(x^2) + \theta(x^2)T(y)\theta(x)$ holds for all pairs x, y $\in U$, if θ is a surjective endomorphism on U, and $T(u) \in U$, for all $u \in U$, then $T(xy) = T(x)\theta(y) = \theta(x)T(y)$ for all $x,y \in U$.

الخالصة -: الهدف مه البحث هى برهان الىتيجة اآلتية : لتكىن R حلقة أولية طليقة االلتىاء مه الدرجة الثاوية وU مثالي لي مغلق تربيعيا في R وRR :T, دالتان جمعيتان وT تحقق المعادلتيه التاليته لكل y,x في U

$$
3T(xyx)=T(x)\theta(yx)+\theta(x)T(y)\theta(x)+\theta(xy)T(x)\}
$$

$$
\theta(x)T(xy+yx)\theta(x)=\theta(x)T(y)\theta(x^2)+\theta(x^2)T(y)\theta(x)
$$

.E اذا كان θ دالة تشاكل شامل ذاتي على U وU T(y)=T(x)θ(y)=θ(x)T(y) فان T(xy)=T(x)θ(y)=θ(x)T(y) لكل x,y في U.

Keywords: prime ring, semiprime ring, derivation, Jordan derivation, Jordan triple derivation, left (right) centralizer, left (right) Jordan centralizer, centralizer, left (right) θ centralizer, left (right) Jordan θ -centralizer, θ -centralizer

Introduction

This note is motivated by the work of Vukman and Kosi-Ulbl [14]. Throughout this note, R will represent an associative ring with center $Z(R)$. A ring R is n-torsion free, where n is an integer, in case nx = 0, $x \in R$ implies $x = 0$. As usual the commutator $xy - yx$ will be denoted by [x, y]. We shall use basic commutator identities [x, yz] = [x, y]z + y[x, z] and [xz, $y = [x, y]z + x[z, y]$. Recall that R is prime if $aRb = (0)$ implies $a = 0$ or $b = 0$, and semiprime if aRa = (0) implies a = 0. An additive mapping D: R→R is called a derivation if $D(xy) =$ $D(x)y +xD(y)$ holds for all pairs x, $y \in R$, and is called a Jordan derivation in case $D(x^2) =$ $D(x)x + xD(x)$ holds for all $x \in R$. A derivation D is inner in case there exists $a \in R$ such that $D(x) = [a, x]$. Every derivation is a Jordan derivation. The inverse is in general not true. A classical result of Herstein ([7]) asserts that any Jordan derivation on a 2-torsion free prime ring is a derivation. A brief proof of Herstein's result can be found in ([2]). Cusack ([5]) has generalized Herstein's result to 2-torsion free semiprime rings (see also [3] for an alternative proof). An additive mapping T: $R \rightarrow R$ is called a left (right) centralizer in case $T(xy) = T(x)y$ $(T(xy) = xT(y))$ holds for all x, $y \in R$. We follow Zalar [17] and call T a centralizer in case T is both a left and a right centralizer. If $a \in R$ then $La(x) = ax$ is a left centralizer and $Ra(x) =$ xa is a right centralizer. An additive mapping T: R→R is called a left (right) Jordan centralizer in case $T(x^2) = T(x)x (T(x^2) = xT(x))$. Following ideas from [3], Zalar ([17]) has proved that any left (right) Jordan centralizer on a 2-torsion free semiprime ring is a left (right) centralizer. Also, Vukman ([15]) proved that if T: $R \rightarrow R$ is an additive mapping such that $2T(x^2) = T(x)x + xT(x)$ holds for all $x \in R$, then T is a centralizer. Also, Vukman ([16]) proved that if R is a 2-torsion free semiprime ring and T: $R \rightarrow R$ is an additive mapping such that $T(xyx) = xT(y)x$ holds for all x, $y \in R$, then T is a centralizer. In ([14]) Vukman and Kosi-Ulbl proved that if R is a 2-torsion free semiprime ring and T: $R \rightarrow R$ is an additive mapping such that $2T(xyx) = T(x)yx + xyT(x)$ holds for all x, $y \in R$, then T is a centralizer. An additive mapping D: $R \rightarrow R$, where R is an arbitrary ring, is a Jordan triple derivation in case $D(xyx) = D(x)yx + xD(y)x + xyD(x)$ holds for all x, $y \in R$. One can easily prove that any triple derivation is a Jordan triple derivation. Bresar ([4]) has proved that any Jordan triple derivation on a 2-torsion free semiprime ring is a triple derivation. In [8], We has introduced the notation of θ-centralizer and Jordan θ-centralizer, which is a generalization of the definition of centralizer and Jordan centralizer, and we proved, on a 2-torsion free semiprime ring, with some condition that every Jordan θ-centralizer is a θ-centralizer. In [9], [10], [11], [12] we generalized results on centralizer in rings to θ -centralizer in rings and lie ideals. In [6] Daif , Tammam and Muthana proved that if R be 2-tortion free semiprime ring and T: R \rightarrow R an additive mapping such that 3T(xyx)=T(x) θ (yx)+ θ (x)T(x) θ (x) + θ (xy)T(x) and $\theta(x)T(xy + yx)\theta(x) = \theta(x)T(y)\theta(x^2) + \theta(x^2)T(y)\theta(x)$ hold for all $x, y \in \mathbb{R}$, where θ is a homomorphism from R onto R, then T is a θ - centralizer. In this paper we generalize the result in [6] on lie ideals .

An Equations Related to θ-Centralizers on Lie Ideals

The Main Result

We now give the main result of this paper.

Theorem 1

Let R be a 2-torsion free prime ring, U a square closed Lie ideal, and let $T.\theta$: R \rightarrow R are additive mappings. Suppose that $3T(xyx) = T(x)\theta(yx) + \theta(x)T(y)\theta(x) + \theta(xy)T(x)$ and $\theta(x)T(xy+yx)\theta(x) = \theta(x)T(y)\theta(x^2) + \theta(x^2)T(y)\theta(x)$ holds for all pairs $x, y \in U$, where θ is a surjective endomorphism on U, and T(u) \in U, for all u \in U, then T(xy)= T(x) θ (y) = θ (x)T(y) for all $x,y \in U$.

Lemma 1.[1]

If U $\subset Z$ is Lie ideal of a 2-torsion free prime ring R and a, b $\in R$ such that aUb = ${0}$, then a=0 or b=0.

Lemma 2.[13]

Let R be a 2-tortion free prime ring, U be a square closed Lie ideal of R. Suppose that the relation $axb + bxc = 0$ holds for all $x \in U$ and some a, b, $c \in U$. In this case $(a + c)xb = 0$ is satisfied for all $x \in U$.

Proof. of Theorem (1):

$$
3T(xyx) = T(x)\theta(yx) + \theta(x)T(y)\theta(x) + \theta(xy)T(x) \text{ for all } x, y \in U
$$
 (1)

And,

$$
\theta(x)T(xy + yx)\theta(x) = \theta(x)T(y)\theta(x^2) + \theta(x^2)T(y)\theta(x)
$$
 for all $x, y \in U$ (2)

(i) If $U \not\subset Z(R)$

After replacing x by $x + z$ in (1), we obtain

$$
3T(xyz+zyx) = T(x)\theta(yz) + T(z)\theta(yx) + \theta(x)T(y)\theta(z) + \theta(z)T(y)\theta(x) + \theta(zy)T(x) + \theta(xy)T(z),
$$
 for all x, y, z \in U (3)

Letting $y = x$ and $z = y$ in (3) gives $3T(x^2y+yx^2) = T(x)\theta(xy) + T(y)\theta(x^2) + \theta(x)T(x)\theta(y) + \theta(y)T(x)\theta(x) + \theta(yx)T(x) + \theta(x^2)T(y)$ for all $x, y \in U(4)$

After replacing x by 3x and z by $2x^3$ in (3) and using (1), we obtain 9T(xyx³+x³yx) = 3T(x)θ(yx³) + 3T(x³)θ(yx) + 3θ(x)T(y)θ(x³) + 3θ(x³) T(y) θ(x) + $3\theta(x^3y)T(x) + 3\theta(xy)T(x^3) = 3T(x)\theta(yx^3) + T(x)\theta(x^2yx) + \theta(x) T(x)\theta(xyx) + \theta(x^2)T(x)\theta(yx) +$ $3\theta(x)T(y)\theta(x^3) + 3\theta(x^3)T(y)\theta(x) + \theta(xy) T(x)\theta(x^2) + \theta(xyx)T(x)\theta(x) + \theta(xyx^2)T(x) + 3\theta(x^3y)T(x)$ for all $x, y \in U(5)$ Replacing y by $3(x^2y + yx^2)$ in (1) and using (4), we obtain 9T(xyx³+ x³yx) = 3T(x)θ(x²y+yx²)θ(x) + 3θ(x)T(x²y+yx²)θ(x) +3θ(x) θ(x²y+yx²) T(x) = $3T(x)\theta(x^2y+yx^2)\theta(x) + \theta(x)(T(x)\theta(xy) + T(y)\theta(x^2) + \theta(x)T(x)\theta(y) + \theta(y)T(x)\theta(x) + \theta(x^2)T(y)$ + θ (yx)T(x)) θ (x) + 3 θ (x) θ (x²y+yx²) T(x) = 3T(x) θ (x²yx) + 3T(x) θ (yx³) + θ (x)T(x) θ (xyx) + θ(x) T(y) $\theta(x^3) + \theta(x^2)T(x)\theta(yx) + \theta(xy)T(x)\theta(x^2) + \theta(x^3)T(y)\theta(x) + \theta(xyx) T(x)\theta(x)$ $+3\theta(x^3y)T(x) + 3\theta(xyx^2)$ for all $x, y \in U$ (6)

```
Subtracting (6) from (5), we obtain
```

$$
T(x)\theta(x^2yx) + \theta(xyx^2)T(x) - \theta(x^3)T(y)\theta(x) - \theta(x)T(y)\theta(x^3) = 0, \text{ for all } x, y \in U
$$
 (7)
Replacing y by 6xyx in (4), we obtain

$$
9T(x3yx+xyx3) = 3T(x)\theta(x2yx) + T(x)\theta(yx3) + \theta(x)T(y)\theta(x3) + \theta(xy)T(x)\theta(x2) + 3\theta(x)T(x)\theta(xyx) + 3\theta(xyx)T(x)\theta(x) + \theta(x2)T(x)\theta(yx) + \theta(x3)T(y) \theta(x) + \theta(x3y)T(x) + 3\theta(xyx2)T(x)
$$
 for all x,y \in U (8)

On the other hand by replacing z by $6x^3$ in (3), we obtain

$$
9T(x3yx+xyx3) = 3T(x)\theta(yx3) + T(x)\theta(x2yx) + \theta(x)T(x)\theta(xyx) + \theta(x2)T(x)\theta(yx) + 3\theta(x)T(y)\theta(x3) + 3\theta(x3)T(y)\theta(x) + \theta(xy)T(x)\theta(x2) + \theta(xyx)T(x)\theta(x) + \theta(xyx2)T(x) + 3\theta(x3y)T(x) \text{ for all } x, y \in U
$$
\n(9)

Comparing (8) and (9), we arrive at

$$
T(x)\theta(yx^3) - T(x)\theta(x^2yx) + \theta(x)T(y)\theta(x^3) - \theta(x)T(x)\theta(xyx) - \theta(xyx^2)T(x) + \theta(x^3y)T(x) - \theta(xyx)T(x)\theta(x) + \theta(x^3)T(y)\theta(x) = 0 \quad \text{for all } x, y \in U
$$
\n(10)

From (7) and (10) , we obtain

 $T(x)\theta(yx^3) - \theta(x)T(x)\theta(xyx) + \theta(x^3y)T(x) - \theta(xyx)T(x)\theta(x) = 0$ for all $x, y \in U$ (11) Replacing y by 2yx in the above relation gives

$$
T(x)\theta(yx^4) - \theta(x)T(x)\theta(xyx^2) + \theta(x^3yx)T(x) - \theta(xyx^2)T(x)\theta(x) = 0, \qquad \text{for all } x, y \in U \quad (12)
$$

On the other hand right multiplication of (11) by $\theta(x)$ gives

$$
T(x)\theta(yx^4) - \theta(x)T(x)\theta(xyx^2) + \theta(x^3y)T(x)\theta(x) - \theta(xyx)T(x)\theta(x^2) = 0, \text{ for all } x, y \in U
$$
 (13)
Subtracting (13) from (12) gives

$$
\theta(x^3y)[T(x), \theta(x)] - \theta(xyx)[T(x), \theta(x)]\theta(x) = 0 \text{ for all } x, y \in U
$$
 (14)

Left multiplication of (14) by T(x) gives

$$
T(x)\theta(x^3y)[T(x),\theta(x)]-T(x)\theta(xyx)[T(x),\theta(x)]\theta(x)=0 \text{ for all } x, y \in U. \tag{15}
$$

Replacing $\theta(y)$ by $2T(x)\theta(y)$ in (14) gives,

 $θ(x^3)T(x)θ(y)[T(x),θ(x)]-θ(x)T(x)θ(yx)[T(x),θ(x)]θ(x)=0$ for all x, y ∈ U (16) After subtracting (16) from (15), we arrive at

$$
[T(x),\theta(x^3)]\theta(y)[T(x),\theta(x)]-[T(x),\theta(x)]\theta(yx)[T(x),\theta(x)]\theta(x)=0 \quad \text{ for all } x,y \in U \quad (17)
$$

In the above relation let

 $a = [T(x),\theta(x^3)], b = [T(x), \theta(x)], c = -\theta(x)[T(x), \theta(x)]\theta(x)$ and $z = \theta(y)$

From the above substitutions, we have

$$
azb + bzc = 0.
$$

We apply Lemma 2 to the above relation to obtain

$$
\{[T(x),\theta(x^3)]-\theta(x)[T(x),\theta(x)]\theta(x)\}\theta(y)[T(x),\theta(x)]=0, \text{ for all } x, y \in U,
$$

this reduces to

$$
\{ [T(x), \theta(x)]\theta(x^2) + \theta(x^2)[T(x), \theta(x)]\} \theta(y)[T(x), \theta(x)] = 0, \text{ for all } x, y \in U
$$
 (18)

Right multiplication of the above relation by $\theta(x^2)$ gives

$$
\{ [T(x),\theta(x)]\theta(x^2) + \theta(x^2)[T(x),\theta(x)]\} \theta(y)[T(x),\theta(x)]\theta(x^2) = 0 \text{ for all } x, y \in U
$$
 (19)
After replacing $\theta(y)$ by $2\theta(y)\theta(x^2)$ in (18), we get

$$
\{ [T(x),\theta(x)]\theta(x^2) + \theta(x^2)[T(x),\theta(x)]\} \theta(y)\theta(x^2)[T(x),\theta(x)] = 0 \text{ for all } x, y \in U
$$
 (20)

Adding (19) to (20) , we obtain

 $\{ [T(x),\theta(x)]\theta(x^2)+\theta(x^2)[T(x),\theta(x)]\}\theta(y)\{ [T(x),\theta(x)]\theta(x^2)+\theta(x^2)[T(x),\theta(x)]\}=0$ for all $x,y\in U$ By the surjectivity of $θ$ and Lemma 1, we get

$$
[T(x),\theta(x)]\theta(x^2) + \theta(x^2)[T(x),\theta(x)] = 0 \qquad \text{for all } x \in U \tag{21}
$$

Replacing y by 2yx in (14) gives

$$
\theta(x^3yx)[T(x), \theta(x)] - \theta(xyx^2)[T(x), \theta(x)]\theta(x) = 0 \text{ for all } x, y \in U \tag{22}
$$

Replacing $\theta(y)$ by $2[T(x), \theta(x)]\theta(y)$ in the above relation gives

 $\theta(x^3)[T(x),\theta(x)]\theta(yx)[T(x),\theta(x)] - \theta(x)[T(x),\theta(x)]\theta(yx^2)[T(x),\theta(x)]\theta(x) = 0$ for all $x,y \in U(23)$ In the above relation let

$$
a = \theta(x^3) [T(x), \theta(x)], b = \theta(x) [T(x), \theta(x)], c = -\theta(x^2) [T(x), \theta(x)] \theta(x) \text{ and } z = \theta(y)
$$

From the above substitutions, we have

$$
azb + bzc = 0.
$$

We apply Lemma 2 to the above relation to obtain

$$
\{\theta(x^3)[T(x),\theta(x)]-\theta(x^2)[T(x),\theta(x)]\theta(x)\}\theta(yx)[T(x),\theta(x)]=0 \quad \text{for all } x, y \in U
$$
 (24)

Replacing y by $2yx^2$ in the above relation gives

 ${\theta(x^3)[T(x),\theta(x)]-\theta(x^2)[T(x),\theta(x)]\theta(x)}$ θ(yx³)[T(x),θ(x)]=0 for all x,y
u (25) On the other hand replacing y by 2yx in relation (24) and right multiplying of this relation by $\theta(x)$ gives

 ${\theta(x^3)[T(x),\theta(x)] - \theta(x^2)[T(x),\theta(x)]\theta(x)}\theta(yx^2)[T(x),\theta(x)]\theta(x) = 0$, for all x, y $\in U$. (26) Subtracting (26) from (25) gives

$$
\{\theta(x^3)[T(x),\theta(x)]-\theta(x^2)[T(x),\theta(x)]\theta(x)\}\theta(y)\{\theta(x^3)[T(x),\theta(x)]-\theta(x^2)[T(x),\theta(x)]\theta(x)\}=0
$$
 for all $x,y \in U$

By the surjectivity of $θ$ and Lemma 1, we get

$$
\theta(x^3)[T(x),\theta(x)] - \theta(x^2)[T(x),\theta(x)]\theta(x) = 0, \quad \text{for all } x \in U \tag{27}
$$

Right multiplication of (21) by $\theta(x)$ gives

$$
[T(x),\theta(x)]\theta(x^3) + \theta(x^2)[T(x),\theta(x)]\theta(x) = 0, \text{ for all } x \in U
$$
 (28)

According to (27) and (28), we have

$$
[T(x),\theta(x)]\theta(x^3) + \theta(x^3)[T(x),\theta(x)] = 0, \qquad \text{for all } x \in U
$$
 (29)

Left multiplication of (22) by $[T(x), \theta(x)]$ gives

 $[T(x),\theta(x)]\theta(x^3yx)[T(x),\theta(x)] - [T(x),\theta(x)]\theta(xyx^2)[T(x),\theta(x)]\theta(x) = 0$, for all x, y $\in U$ (30) Adding relations (23) and (30) and using (29), we obtain

$$
\{ [T(x),\theta(x)]\theta(x)+\theta(x)[T(x),\theta(x)]\} \theta(yx^2)[T(x),\theta(x)]\theta(x) = 0 \text{ for all } x, y \in U
$$
 (31)

Using (27) we obtain from the above relation

 $\{ [T(x),\theta(x)]\theta(x)+\theta(x)[T(x),\theta(x)]\}\theta(yx^3)[T(x),\theta(x)]=0$ for all $x,y \in U$ (32) Left multiplication of (32) by $\theta(x^2)$ gives

$$
\{\theta(x^2)[T(x),\theta(x)]\theta(x)+\theta(x^3)[T(x),\theta(x)]\}\theta(yx^3)[T(x),\theta(x)]=0 \text{ for all } x, y \in U
$$

According to (27) one can replace $\theta(x^2)[T(x),\theta(x)]\theta(x)$ by $\theta(x^3)[T(x),\theta(x)]$ in the above relation. Thus, we have

$$
\theta(x^3)[T(x),\theta(x)]\theta(y)\theta(x^3)[T(x),\theta(x)]=0, \qquad \text{for all } x, y \in U
$$

By the surjectivity of $θ$ and Lemma 1, we get

$$
\theta(x^3)[T(x),\theta(x)] = 0, \qquad \text{for all } x \in U \tag{33}
$$

Because of (29), we have

$$
[T(x), \theta(x)]\theta(x^3) = 0, \qquad \text{for all } x \in U \tag{34}
$$

Replacing $\theta(y)$ by $2[T(x), \theta(x)]\theta(y)$ in (14) gives

$$
\theta(x^3)[T(x),\theta(x)]\theta(y)[T(x),\theta(x)]-\theta(x)[T(x),\theta(x)]\theta(yx)[T(x),\theta(x)]\theta(x)=0, \text{ for all } x,y \in U \qquad (35)
$$

Using (33) the above relation reduces to

$$
\theta(x)[T(x),\theta(x)]\theta(yx)[T(x),\theta(x)]\theta(x) = 0 \text{ for all } x, y \in U
$$
\n(36)

Replacing y by 2xy in (36) gives

$$
\theta(x)[T(x), \theta(x)]\theta(x)\theta(y)\theta(x)[T(x), \theta(x)]\theta(x) = 0 \text{ for all } x, y \in U
$$

By the surjectivity of $θ$ and Lemma 1, we get

$$
\theta(x)[T(x), \theta(x)]\theta(x) = 0, \qquad \text{for all } x \in U \tag{37}
$$

Putting $x + y$ for x in (37), we obtain

$$
\theta(x)[T(x),\theta(x)]\theta(y) + \theta(x)[T(x),\theta(y)]\theta(x) + \theta(x)[T(y),\theta(x)]\theta(x) + \theta(y)[T(x),\theta(x)]\theta(x) + \theta(x)[T(x),\theta(y)]\theta(y) + \theta(x)[T(y),\theta(x)]\theta(y) + \theta(y)[T(x),\theta(x)]\theta(y) + \theta(x)[T(y),(y)]\theta(x) +
$$

$$
\theta(y)[T(x), \theta(y)]\theta(x) + \theta(y)[T(y), \theta(x)]\theta(x) + \theta(x)[T(y), \theta(y)]\theta(y) + \theta(y)[T(x), \theta(y)]\theta(y) + \theta(y)[T(y), \theta(x)]\theta(y) + \theta(y)[T(y), \theta(y)]\theta(x) = 0 \text{ for all } x, y \in U
$$
(38)

Putting −x for x in the above relation and combining the relation so obtained with (38), we obtain

$$
\theta(x)[T(x),\theta(y)]\theta(y) + \theta(x)[T(y), \theta(x)]\theta(y) + \theta(y)[T(x), \theta(x)]\theta(y) + \theta(x)[T(y), \theta(y)]\theta(x) + \theta(y)[T(x), \theta(y)]\theta(x) + \theta(y)[T(y), \theta(x)]\theta(x) = 0, \text{ for all } x, y \in U
$$
(39)

After comparing (38) and (39), we have

$$
\theta(x)[T(x), \theta(x)]\theta(y) + \theta(x)[T(x), \theta(y)]\theta(x) + \theta(x)[T(y), \theta(x)]\theta(x) + \theta(y)[T(x), \theta(x)]\theta(x) \n+ \theta(x)[T(y), \theta(y)]\theta(y) + \theta(y)[T(x), \theta(y)]\theta(y) + \theta(y)[T(y), \theta(x)]\theta(y) + \theta(y)[T(y), \n\theta(y)]\theta(x) = 0, \text{ for all } x, y \in U
$$
\n(40)

Replacing x by 2x in the above relation and subtracting the relation so obtained from the above relation multiplied by 8, we obtain

$$
\theta(x)[T(y),\theta(y)]\theta(y) + \theta(y)[T(x),\theta(y)]\theta(y) + \theta(y)[T(y),\theta(x)]\theta(y) + \theta(y)[T(y),\theta(y)]\theta(x) = 0
$$

for all x, y \in U (41)

Comparing (40) and (41), we obtain

$$
\theta(x)[T(x),\theta(x)]\theta(y)+\theta(x)[T(x),\theta(y)]\theta(x)+\theta(x)[T(y),\theta(x)]\theta(x)+\theta(y)[T(x),\theta(x)]\theta(x)=0
$$
 for all x, y \in U (42)

Right multiplication of (42) by $\theta(x^2)[T(x), \theta(x)]$ and using (33) gives

$$
\theta(x)[T(x),\theta(x)]\theta(y)\theta(x^2)[T(x),\theta(x)] = 0 \text{ for all } x, y \in U
$$
\n(43)

Left multiplication of (43) by $\theta(x)$ gives

$$
\theta(x^2)[T(x), \theta(x)]\theta(y)\theta(x^2)[T(x), \theta(x)] = 0 \quad \text{for all } x, y \in U
$$

By the surjectivity of θ and Lemma 1, we get

$$
\theta(x^2)[T(x), \theta(x)] = 0, \qquad \text{for all } x \in U \tag{44}
$$

Because of (21), we also have

$$
[T(x), \theta(x)]\theta(x^2) = 0, \qquad \text{for all } x \in U \tag{45}
$$

Right multiplication of (42) by $\theta(x)[T(x), \theta(x)]$ gives because of (44)

$$
\theta(x)[T(x), \theta(x)]\theta(y)\theta(x)[T(x), \theta(x)] = 0, \text{ for all } x, y \in U
$$

By the surjectivity of $θ$ and Lemma 1, we get

$$
\theta(x)[T(x), \theta(x)] = 0, \qquad \text{for all } x \in U \tag{46}
$$

Left multiplication of (42) by $[T(x), \theta(x)]\theta(x)$ and use of (45) gives

$$
[T(x), \theta(x)]\theta(x)\theta(y)[T(x), \theta(x)]\theta(x) = 0 \quad \text{for all } x, y \in U
$$

By the surjectivity of $θ$ and Lemma 1, we get

$$
[T(x),\theta(x)]\theta(x) = 0 \quad \text{for all } x \in U \tag{47}
$$

Replacing x by $x + y$ in (47) and then using (47) gives

$$
[T(x),\theta(x)]\theta(y) + [T(x),\theta(y)]\theta(x) + [T(x),\theta(y)]\theta(y) + [T(y),\theta(x)]\theta(x) + [T(y),\theta(y)]\theta(y) + [T(y),\theta(y)]\theta(x) = 0
$$
 for all $x, y \in U$

Putting −x for x in the above relation and comparing the relation so obtained with the above relation gives:

$$
[T(x),\theta(y)]\theta(x) + [T(y),\theta(x)]\theta(x) + [T(x),\theta(x)]\theta(y) = 0 \text{ for all } x, y \in U
$$
 (48)

Right multiplication of the above relation by $[T(x), \theta(x)]$ use of (46) gives

$$
[T(x), \theta(x)]\theta(y)[T(x), \theta(x)] = 0 \quad \text{for all } x, y \in U
$$

By the surjectivity of $θ$ and Lemma 1, we get

$$
[T(x), \theta(x)] = 0, \qquad \text{for all } x \in U \tag{49}
$$

Now, we will prove that

$$
T(xy + yx) = T(y)\theta(x) + \theta(x)T(y) \text{ for all } x, y \in U
$$
\n(50)

In order to prove the above relation, we need to prove the following relation

 $[A(x, y), \theta(x)] = 0$ for all $x, y \in U$ (51)

where A(x, y) stands for $T(xy + yx) - T(y)\theta(x) - \theta(x)T(y)$. With respect to this notation equation (2) can be rewritten as,

$$
\theta(x)A(x, y)\theta(x) = 0 \text{ for all } x, y \in U
$$
 (52)

Replacing x by $x + y$ in relation (49) gives

$$
[T(x), \theta(y)] + [T(y), \theta(x)] = 0 \qquad \text{for all } x, y \in U \tag{53}
$$

After replacing y by $xy + yx$ in (53) and using (49), we obtain

$$
\theta(x)[T(x),\theta(y)] + [T(x),\theta(y)]\theta(x) + [T(xy+yx),\theta(x)] = 0 \qquad \text{for all } x,\, y \in U
$$

According to (53) we can replace in the above relation $[T(x), \theta(y)]$ by $-[T(y), \theta(x)]$. We then have

$$
[T(xy+yx),\theta(x)] - \theta(x)[T(y),\theta(x)] - [T(y),\theta(x)]\theta(x) = 0 \text{ for all } x, y \in U
$$

This can be written in the form

$$
[T(xy+yx) - T(y)\theta(x) - \theta(x)T(y), \theta(x)] = 0, \text{ for all } x, y \in U
$$

The proof of relation (51) is therefore complete. Replacing x by $x + z$ in (52) and using (52) gives

$$
\theta(x)A(x,y)\theta(z) + \theta(x)A(z, y)\theta(x) + \theta(z)A(x, y)\theta(x) + \theta(z)A(z, y)\theta(x) + \theta(z)A(x, y)\theta(z) +
$$

$$
\theta(x)A(z, y)\theta(z) = 0
$$
 for all x, y, z \in U

After replacing x for −x in the above relation and adding the relation so obtained to the above relation, we arrive at:

$$
\theta(x)A(x,y)\theta(z)+\theta(x)A(z,y)\theta(x)+\theta(z)A(x,y)\theta(x)=0 \quad \text{ for all } x,y,z \in U
$$

Right multiplication of the above relation by $A(x, y)\theta(x)$ and using (52) gives

$$
\theta(x)A(x, y)\theta(z)A(x, y)\theta(x) = 0 \quad \text{for all } x, y, z \in U \tag{54}
$$

Using (54), the above relation can be written in the form

$$
\theta(x)A(x, y)\theta(z)\theta(x)A(x, y) = 0 \qquad \text{for all } x, y, z \in U \tag{55}
$$

By the surjectivity of $θ$ and Lemma 1, we get

$$
\theta(x)A(x, y) = 0 \qquad \text{for all } x, y \in U \tag{56}
$$

From (51) and (56), we also get

$$
A(x, y)\theta(x) = 0 \qquad \text{for all } x, y \in U \tag{57}
$$

Replacing x by $x + z$ in (57) gives

$$
A(x, y)\theta(z) + A(z, y)\theta(x) = 0 \text{ for all } x, y, z \in U
$$

Right multiplication of the above relation by $A(x, y)$ and using (56) gives

A(x, y) $\theta(z)A(x, y) = 0$ for all x,y, $z \in U$

By the surjectivity of θ and Lemma 1, we get

$$
A(x, y) = 0 \t\t for all \t x, y \in U
$$

The proof of (50) is therefore complete.

(ii) If $U \subset Z(R)$

Right multiplication of relation(2) by r A(x, y), r \in R and by primness of R, we get

 $\theta(x)A(x, y) = 0$ for all $x, y \in U$

Replacing x by $x + z$ in above relation gives

$$
\theta(z)A(x, y) + \theta(x)A(z, y) = 0 \text{ for all } x, y, z \in U
$$

Left multiplication of the above relation by $A(x, y)$, we get

 $A(x, y)\theta(z)A(x, y) = 0$ for all x, y, z $\in U$

Right multiplication of the above relation by r $\theta(z)$, r \in R and by primness of R, we get

 $A(x, y)\theta(z) = 0$ for

or all
$$
x, y, z \in U
$$

By the surjectivity of θ and primness of R, we get (50)

In particular when $y = x (50)$ reduces to

 $2T(x^2) = T(x)\theta(x) + \theta(x)T(x)$ for all $x \in U$

By Theorem.1.1 in [11] it follows that $T(xy) = T(x)\theta(y) = \theta(x)T(y)$ for all $x,y \in U$, which completes the proof. \square

Corollary 1.

Let R be a 2-torsion free prime ring, U a square closed Lie ideal, and let T: $R\rightarrow R$ an additive mapping. Suppose that $3T(xyx) = T(x)yx + xT(y)x + xyT(x)$ and $xT(xy+yx)x =$ $xT(y)x^2 + x^2T(y)x$ holds for all pairs x, $y \in U$, where $T(u) \in U$, for all $u \in U$, then $T(xy) =$ $T(x)y = xT(y)$ for all $x,y \in U$.

References

- [1] J. Bergen, I.N. Herstein, and J.W. Ker,: Lie ideals and derivation of prime rings , J. Algebra 71 (1981) , 259-267.
- [2] M. BreŠar, J. Vukman: Jordan derivations on prime rings, Bull. Austral. Math. Soc. 37(1988), 321- 322.
- [3] M. BreŠar: Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), 1003-1006.
- [4] M. BreŠar: Jordan mappings of semiprime rings, J. Algebra 127 (1989), 218-228.
- [5] J. Cusack: Jordan derivations on rings, Proc. Amer. Math. Soc. 53 (1975), 321-324.
- [6] M.N.Daif, M.S.Tammam El-Sayiad, N.M.Muthana: An Equation Related to θ-Centralizers in Semiprime Rings , International mathematical forum , 3,2008. no. 24, 1165 – 1177.
- [7] I.N. Herstein: Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104-1110.
- [8] A.H.Majeed, M.I.Meften: Jordan θ-Centralizers of Prime and Semiprime Rings. (preprint).
- [9] A.H.Majeed, M.I.Meften: On θ -Centralizers of Prime and Semiprime Rings. (preprint).
- [10] A.H.Majeed, M.I.Meften: Lie Ideals and Jordan θ -Centralizers Of Prime Rings. (preprint).
- $[11]$ A.H.Majeed, M.I.Meften: Lie Ideals and θ -Centralizers of Prime Rings. (preprint).
- [12]A.H.Majeed, M.I.Meften: An Identity on θ-Centralizers of Prime and Semiprime Rings. (preprint).
- $[13]A.H.Majeed, M.I.Meften: θ -Centralizers of Lie Idealis in Prime Rings. (preprint).$
- [14] J. Vukman and I. Kosi-Ulbl, On centralizers of semiprime rings, Aequationes Math. 66, 3 (2003) 277 - 283.
- [15] J.Vukman: An identity related to centralizers in semiprime rings, Comment. Math. Univ. Carolinae 40 (1999), 447-456.
- [16] J.Vukman: Centralizers on semiprime rings, Comment. Math. Univ. Carolinae 42(2001),237-245.
- [17] B. Zalar: On centralizers of semiprime rings, Comment. Math. Univ. Carolinae 32 (1991), 609- 614