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A B S T R A C T 

One of the characteristics of 5G networks is their ability to create multiple virtual networks 
across a shared infrastructure, with resources dynamically allocated to meet the needs of 
different applications. However, managing these partitions in real-time remains a challenge 
due to their dynamic and heterogeneous nature. To overcome this challenge, this paper 
proposes an incremental learning model (ILM) that gradually learns from changing network 
data, seeking to improve the accuracy of partition selection. Unlike traditional models trained 
from static datasets, the ILM continuously updates its knowledge without the need to retrain 
from scratch. The results demonstrate the effectiveness of the proposed method, with an 
accuracy rate of 94.7%, while also demonstrating the ability to train using new traffic 
patterns and environments. 
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1. Introduction 

5G networks represent a transformation in wireless communication, providing high speeds, low latency, and the 
ability to accommodate a larger number of connected devices [1][2][3]. To achieve this, careful management of 
available resources is required [1][4]. One of the issues in 5G networks is the number of connected devices and 
applications that require varying quality types of service, therefore dynamic resource allocation is a need to achieve 
network performance [5][6]. Different requirements are demanded by applications. For example, applications such 
as remote surgery require very low latency (URLLC), while others such as 4K and 8K video streaming require high 
bandwidth (eMBB). Thus, network slicing techniques form a useful resource scheduling tool. Through these, 
multiple virtual networks can be created over the same physical infrastructure such that each of them is reserved 
for functioning with a specific type of application [7][8][9]10]. 

Despite the significant benefits that have been brought about by slicing approaches, dynamic resource allocation is 
faced with various challenges. One of them is adapting to dynamic requests and network changes, thereby future 
demands are difficult to forecast. Another one is maintaining operational and network costs, especially with 
resource-hungry applications [11][12]. On the other hand, network flexibility is an important aspect to ensure 
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extended high performance, as the network needs to accommodate changing loads by adapting quickly. To 
overcome these challenges and provide the appropriate slices for each application, researchers have proposed using 
machine learning techniques to classify traffic and make appropriate slice decisions [13][14][15][16]. Others have 
proposed using deep learning algorithms to optimize resource allocation. Such algorithms, such as deep 
reinforcement learning, have shown the ability to find a compromise between latency and bandwidth while 
ensuring maximum resource utilization [17][18][19]. However, such algorithms face computationally intensive 
obligations with long training times. Other works have trained predictive models using neural networks to predict 
the future state of the network based on historical data with the aim of detecting future patterns and demands, thus 
improving the efficiency of resource allocation. However, these models depend on the quality of historical data. In 
some cases, this may affect their accuracy and performance. In this paper, the use of incremental learning is 
proposed to optimize resource allocation within 5G networks. The goal of the model is to find an architecture that 
adapts to sudden changes in the network as well as the time requirements of users. Finally, the performance of 
different deep learning models including SimpleNN, Recurrent Neural Networks (RNN), and Convolutional Neural 
Networks (CNN) is further evaluated for comparison.          

2. Related Works 

A number of intelligent techniques for resource allocation in a 5G context using machine learning, deep learning, 
and deep reinforcement learning have been proposed. In [23], the authors proposed a multilayer network-slicing 
and resource allocation model for SDN and 5G networks based on NFV. Results indicated that such integration with 
machine learning models enhanced the network's scalability, resilience, and real-time adaptability, thus qualifying it 
to manage heterogeneous applications in 5G. In [25], a machine-learning approach was proposed to model 5G 
network slicing, with a focus on the design of an intelligent controller that can allocate network slices based on 
predicting traffic. Using supervised learning algorithms, they design an optimized slice allocation for various 
applications, thus ensuring improved bandwidth management and service quality in high-demand scenarios. In [22], 
the authors proposed machine learning algorithms as a way to monitor traffic in dynamic network slicing and allow 
real-time, on-demand variation in resource allocation. Predictive analytics results showed that several machine 
learning models could achieve better efficiency of the networks while decreasing congestion due to high bandwidth 
utilization. In [24], the authors made use of DRL in a relationship-based resource allocation strategy, where user-
device relationships were harnessed to drive allocation decisions. Whereby DRL-based resource allocation provided 
a much better efficiency of the network under a dynamic environment, reducing handoff failures while ensuring 
seamless connectivity, compared to the traditional reinforcement learning algorithms. In [26], another inter-slice 
resource management model for 5G-RAN based on the markov decision process was used in order to balance the 
resource allocation across multiple slices. The results showed MDP-based optimization outperforms static 
allocation, especially with variable traffic loads. In [21], the authors presented a GCN and LSTM model-based 
resource allocation scheme for 5G networks. In doing so, this study tackled the intricate task of sufficiently 
capturing the inherent spatial and temporal dependencies of network traffic, which is an important feature for 
effective resource allocation. Where GCN focused on mining spatial correlations of the network nodes, LSTM was 
employed to model long-term temporal variations in traffic demand. Results showed higher predictive accuracy of 
resource and decreased latency. DRL-based techniques to optimize a resource in massive MIMO environments were 
studied in [27] and [28]. The results of their study revealed that DRL can effectively manage large-scale network 
deployments, increase spectral efficiency, and reduce interference in multi-tenant 5G networks. Still, the difficulties 
of training the DRL models were raised in both studies, thus the importance of efficient learning strategies for 
complexity reduction and real-time adjustment. In references [29] and [30] AI-based automation of network slicing 
and fault recovery in 5G networks are studied. Their studies reported the advantages of using machine learning in 
predicting potential network failures, allowing resource allocation to be adjusted to prevent service outages. By 
incorporating anomaly detection algorithms, their frameworks increased network resilience and reduced 
downtime. These works assume an increasing role of AI-based models with respect to resource allocation 
optimization and network slicing in 5G networks. While these techniques offer considerable advancements in 
network efficiency, scalability, and automation, challenges such as computational complexity, real-time adaptability, 
and model interpretability remain under-explored. 

 

3. Proposed Method and Experiments 

In 5G networks, a new model proposed an Incremental Learning Model (ILM) to classify segments of network traffic. 
The new model dealt with scalability, sustainable modeling, and reasonable classification accuracy apart from being 
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able to adapt to continuous change in the network without complete retraining. It is based on an Adaptive Attention 
Mechanism. which allow resource allocation improvement and increased prediction accuracy by learning hidden 
layer relationships dynamically (See Figure 1). 

In the proposed multi-layer deep neural network model, shallow networks are firstly trained to extract main 
features and then deep representations are utilized to further ensure prediction accuracy. Thus, predictive power of 
the model may be increased and computational complexity decreased in comparison with traditional methods. The 
proposed model consists of the ILM of hidden layers where each layer is assigned a different level of abstraction and 
incremental learning.  lnU n  atda a lndU n a ltno aida t Uk lnUk ln ai    ndU l at ae ai  hla U t U  o ln dadta o  
daa na ln -based pooling  e i si a oat l a o    miao dstloo dUU i aa n Udk to al  ratdsa hlt  slhtU r   da t o 
 tlh ai  adadt ei  tt a sa ln   nsa ln sdn l  t tt o na a do  lUUl o : 

 ( )  ∑   
 
     ( )                                        (1) 

W here    ( )Represents Classifier Document to Features Layer Hidden  . ta   is the attention weight, learned by a 
shallow neural network that calculates the relative importance of each layer. 

It is done to update weights are added during the learning process to ensure that performance is gradually 
improved. This is done using an enhanced backpropagation algorithm, where the computational error is distributed 
across all hidden layers instead of just the last layer, enhancing the model's ability to gradually adapt to new data. 
The weights are updated according to the following equation: 

    
    

                                                  (2) 

Where   
  the weight Layer  in Time. and represents  an  average Learning. And   It is the error rate calculated 

during training. 
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Figure (1): Architecture of Incremental Learning Model (ILM) 

3.1. Dataset 

To analyze the effectiveness of the proposed ILM model in dynamic resource allocation in 5G networks, the 
CRAWDAD dataset [31], which covers LTE and 5G technologies, across a range of use cases, was used. The dataset 
consists of a number of input and output features. These input features include the type of use case or application, 
LTE/5G user equipment classes, supported cellular technologies, days of the week, data collection times, and the 
distinction between guaranteed and non-guaranteed bit rate services. Moreover, the dataset captures metrics for 
assessing network reliability, such as packet loss rate, as well as latency metrics, in particular packet delay budget, 
which defines acceptable latency thresholds in milliseconds. The output feature indicates the type of network slice 
corresponding to each use case, with categories including enhanced mobile broadband (eMBB), ultra-reliable low-
latency communications (URLLC), and massive machine-type communications (mMTC). This dataset demonstrates 
its value in evaluating and optimizing cellular network performance, especially in the context of diverse use cases 
and their QoS requirements. The data was split into 80% for training and 20% for testing, where data processing 
operations were applied to ensure consistency of the inputs, including normalization. 
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3.2. lertmedesrporrteptpgreraperP  

ei  hla U  do  htU h na a  o nm hdsi n  U dtn nm U ltdt  o o si do TensorFlow dna  PyTorch  dna ai  atd n nm 
 configurations.  The variables were defined as  n table 1. 

Table 1 - Training configurations. 

Pmemarpreg emPar nrgtedtpdpe 

g hl t l  atd n nm 
epochs 

50 g hl t l  slhtU a   a tda lno ln ai  atd n nm adad 

Batch e i  64 ei  n hl t l  odhtU o tdoo a al ai  hla U  n  dsi atd n nm sksU   

g dtn nm Rate 0.001 ta  o d alhda sdUUk daa oa a  o nm uadta o  Learning Rate (ALR) 
technology 

Loss n nsa ln Cross-Entropy 
gloo 

lo a al  odU da  ai  t t lthdns  l  ai  hla U a t nm atd n nm 

ei  t t lthdns  l  ai  hla U  do slhtdt a   ai o o tdU dUmlt aiho  o a  n t ol ts  dUUlsda ln   ai n 5G 
networks e etda a lndU n  tdU n a ltno ( SimpleNN )  eslnolU a lndU n  tdU n a ltno (CNN)  edna t s tt na n  tdU 
n a ltno (RNN) ei  hla U  do  odU da a ldo a ln d n hl t l  st a t d :  ndU dss tdsk  edo tdm  ldasi  dss tdsk 

 edo tdm  Uloo  edna atd n nm a h  (o slnao)t 

4. srgaPpg 

The performance of the proposed (ILM) was evaluated and compared with several algorithms, including traditional 
neural networks (SimpleNN), convolutional neural networks (CNN), and recurrent neural networks (RNN). Table 2 
compares the models for performance across batches, final accuracy, average batch accuracy, average loss, and 
training time (in seconds). 

Table 2. Comparison of Model Performance Across Training Batches. 

lorraperP ydemPrmttaemtF 

% 

 hremsrrgmptor

mttaemtF% 

 hremsrrPpgg lemdedesr

pdar(sec) 

IncrementalNN 94.7 94.4 0.056 12.34 

SimpleNN 91.5 91.0 0.089 9.56 

CNN 89.4 88.9 0.102 15.67 

RNN 87.6 87.0 0.110 14.23 

As shown in table 2 Incremental achieves the highest accuracy across epochs. The  dss tdsk  olU a ln l   dsi 
hla U  do dndUki a lo t   o  training batch. ei  Figure 2 shows ai  dss tdsk slhtdt oln l a   n ai   l t 

modelst 
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Fdsure (2): Accuracy  slhtdt oln l a   n hla Uo lo t   o  training batch. 

Figure 2 illustrates the accuracy and stability of the model performance. The IncrementalNN and CNN models show 
stable accuracy gains across epochs, starting at over 90% in epoch 1 and gradually improving to around 94.7% at 
epoch 50. SimpleNN shows a slower, gradual improvement, starting at 87.5% and only reaching just under 89.5%. 
RNN, since it starts with a lower accuracy (around 81.8%), progresses rapidly in earlier epochs but remains below 
90%. 

5. Discussion  

An ILM was designed to improve dynamic resource allocation in 5G networks. The proposed model's performance 
was experimented and compared with current models such as SimpleNN, CNN, and RNN, and the The proposed 
model demonstrated superior accuracy compared to baseline methods , efficiency, and adaptability with respect to 
changing networks dynamically. The ILM model achieved the highest final accuracy (94.7%) among current models. 
The proposed model was also distinguished by its ability to dynamically reconfigure to adapt to changes in the 
network without the requirement of complete retraining, hence reducing computational expense and improving 
performance in dynamic scenarios. Though Slightly More than for SimpleNN, Training Time for the ILM Model Was 
Lesser than for CNN and RNN with Higher Accuracy. The proposed model achieved the most reduced average loss of 
0.056, demonstrating that it can more accurately predict and mitigate errors during resource allocation. However, 
though the proposed model has shown extremely positive results, the computational burden involved for 
incremental learning is a limiting factor for large and complicated networks. The quality of data available is very 
critical for training the model, representing high-quality and representative network data streams. Despite the 
potential of the proposed model, further tuning is required to meet the requirements of various 5G applications, 
such as URLLC, eMBB, and mMTC. Further research is also needed to reduce the computational complexity of the 
model using pruning or quantization on neural networks. Additional reinforcement learning methodologies could be 
applied to the proposed model to make it more dynamic and adapt to network modifications. More accurate 
representative data collection techniques could also be designed to improve model performance in heterogeneous 
network environments. 
Conclusions 
This paper proposes an Information Lifecycle Management (ILM) model to improve dynamic resource allocation in 
5G networks. Comparative evaluation and analysis of performance metrics indicate that the proposed model 
performed better in terms of complexity, accuracy, and responsiveness to dynamic network changes. The proposed 
model achieved remarkable success in terms of resource allocation accuracy, making it an ideal candidate for 
improving network performance. Furthermore, the model can learn from dynamic and constantly changing 
networks without the need for a full retraining process, saving computational resources and improving performance 
in dynamic environments. Despite achieving the desired performance, there are still major drawbacks worth noting, 
such as the computational cost of training the model and the sensitivity of its output to the quality of the input data. 
These challenges can be addressed with improved algorithms and high-quality data collection techniques. Future 
research could improve this research model by incorporating reinforcement learning techniques for greater 
flexibility, or using compression and segmentation schemes to reduce computational complexity. The proposed 
model could serve as an intelligent controller at the network edge for real-time traffic analysis and resource 
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allocation decisions. The proposed model can be integrated with existing network management systems (SDN/NFV) 
using APIs or deployed at the edges as a controller to make resource allocation decisions. 
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