On Automorphisms with Derivations on Semiprime Rings

by

Mehsin Jabel Atteya

Mustansiriyah University-College of Education-Department of Mathematics

E-mail:mehsinjabel@yahoo.com

Abstract:

The main purpose of this paper is to investigate automorphisms and identities with derivations on semiprime ring R, we obtain R contains a non-zero central ideal.

Key words:Automorphism,identitie, derivation,semprime ring, central ideal. 1991AMS Mathematics Subject Classification: 16W25, 16U80, 16W60.

1-Introducation

The history of commuting and centralizing mappings goes back to (1955) when Divinsky [1] proved that a simple Artinian ring is commutative if it has a commuting nontrivial automorphism.Tow years later, Posner [2] has proved that the existence of a non- zero centralizing derivation on prime ring forces the ring to be commutative (Posner's second theorem).Luch [3]generalized the Divinsky result, we have just mentioned above, to arbitrary prime ring. Mayne [4] prove that in case there exists a nontrivial centralizing automorphism on a prime ring, then the ring is commutative (Mayne's theorem). Chung and Luh[5] have shown that every semicommuting automorphism of a prime ring is commuting provided that R has either characteristic different from 3 or non- zero center and thus they proved the commutativity of prime ring having nontrivial semicommuting automorphism except in the indicated cases. Mayne[4] has called d centralizing if $[x,d(x)] \in Z(R)$ for all $x \in R$, where $Z(R)$ is the center of R and d an automorphism of R. *Kaya and Koc[6] have shown that let R be a prime ring and d a semicentralizing automorphism of R, then d is a commuting automorphism. A result of Bresar[7] which states that every additive commuting mapping of a prime ring R is of the from* $x \rightarrow \lambda x + \zeta(x)$ *where* λ *is an element of C and* $\zeta: R \rightarrow C$ *is an additive mapping, should be mentioned. A mapping d:* $R \rightarrow R$ *is called skew-centralizing on R if* $d(x)x+xd(x) \in Z(R)$ holds for all $x \in R$, in particular, if $d(x)x+xd(x)=0$ holds for all $x \in R$, then it is called skew- commuting on R . Vukman [8] have shown that let R be

a semiprime ring. Suppose that there exist a derivation $d:R \rightarrow R$ and an *automorphism* α *:* $R \rightarrow R$ *such that* $d(x)$ $x+x(\alpha(x)-x)=0$ *holds for all* $x \in R$ *. In this case, d*=0 *and* α *=I, where I the identity mapping of a ring R. In this paper, we investigate and study the automorphisms and identities with derivations on semiprime ring, we give some results about that.*

2- Preliminaries:

Throughout this paper, R will represent an associative ring with cancellation property. We recall that R is semiprime if $xRx=(0)$ *implies* $x=0$ *and it is prime if* $xRy=(0)$ implies $x=0$ or $y=0$. A prime ring is semiprime but the converse is not true *in general. An additive mapping d: R* \rightarrow *R is called a derivation if d(xy)=d(x)y* $+xd(y)$ holds for all $x, y \in R$. Let α be an automorphism of a ring R. An additive *mapping d: R* \rightarrow *R is called an* α *-derivation if d (xy)=d(x)* α *(y)+xd(y) holds for all pairs x,y* \in *R. Note that the mapping d* $= \alpha$ -*I is an* α *- derivation, where we denote by I the identity mapping of a ring R,of course, the concept of* α *- derivation generalizes the concept of derivation. A mapping d:* $R \rightarrow R$ *is called centralizing of* $[d(x),x] \in Z(R)$ for all $x \in R$, in particular, if $[d(x),x]=0$ for all $x \in R$, then it is called *commuting and called central if* $d(x) \in Z(R)$ *for all* $x \in R$ *, where* $Z(R)$ *the center of R. Every central mapping is obviously commuting but not conversely, in general. We write [x,y] for xy-yx and xoy for xy+yx. We will frequently use the identities* $[xy,z]=x[y,z]+[x,z]y$ and $[x,yz]=y[x,z]+[x,y]z$ for all $x,y,z \in \mathbb{R}$. *To achiever our purpose , we mention the following results.*

Lemma 1 [9: Lemma1]

Let R be a semiprime ring. Suppose that the relation axb+bxc=0 holds for all $x \in R$ and some a, b, $c \in R$. In this case, $(a+c)xb=0$ is satisfied for all $x \in R$. *Lemma2[8 : Lemma3]*

Let R be a semiprime ring and let d: $R \rightarrow R$ be an additive mapping. If either $d(x)x=0$ or $xd(x)=0$ holds for all $x \in R$, then $d=0$.

Lemma3[10: Main Theorem]

Let R be a semiprime ring, d a non-zero derivation of R, and U a non-zero left ideal of R. If for some positive integers t_0 *,* t_1 *, …,* t_n *and all* $x \in U$ *, the identity*[[…[[d(x^{*to*}),x^{*t1*}],x^{*t2*},…],x^{tn}]=0 holds either d(U)=0 or else d(U) and d(R)U *are contained in a non-zero central ideal of R. In particular when R is a prime ring, R is commutative.*

Lemma 3[11:Lemma 3.1]

Let R be a semiprime ring and $a \in \mathbb{R}$ some fixed element. If $a[x,y] = 0$ for all $x, y \in R$, then there exists an ideal U of R such that $a \in U \in Z(R)$ holds.

3-The Main Results Theorem 3.1

Let R be a semiprime ring and U a non- zero ideal of R. Suppose that there exist a derivation d: R \rightarrow *R and an automorphism* α *: R* \rightarrow *R such that* $d(x)x+x(\alpha(x)$ $x=0$ for all $x \in U$. Then R contains a non-zero central ideal. *Proof: We have the relation* $d(x)x+xg(x)=0$ for all $x \in U$. (1) *where* $g(x)$ *stands for* $\alpha(x)$ *-x. The linearization of above relation gives* $d(x)x+d(x)y+d(y)x+d(y)y+xg(x)+xg(y)+yg(x)+yg(y)=0$ for all $x, y \in U$. According to *(1) , we obtain* $d(x)y + d(y)x + xg(y) + yg(x) = 0$ for all $x, y \in U$. (2) *In (2) , replacing y by yx, we obtain* $d(x)$ yx- $d(y)$ $\alpha(x)x+yd(x)x+xg(y)\alpha(x)+xyg(x)+yxg(x)=0$ for all $x, y \in U$. According to *(1),we get* $d(x) \, yx + d(y) \, x^2 + x \, g(y) \, \alpha(x) + x \, y \, g(x) = 0$ for all $x, y \in U$. (3) *Right- multiplying (2) by x, we obtain d(x)* $yx+d(y)x^2+xg(y)x+yg(x)x=0$ for all $x, y \in U$. (4) *Subtracting (3) and (4) , we get* $xg(y) \alpha(x) + xyg(x) - xg(y)x - yg(x)x = 0$ for all $x, y \in U$. $xg(y)(\alpha(x)-x)+xyg(x)-yg(x)x=0$ for all $x, y \in U$. Then $xg(y)g(x)+xyg(x)-yg(x)x=0$ for all $x, y \in U$. (5) *Replacing y by xy, we obtain* $xg(x)\alpha(y)g(x)+x^2g(y)g(x)+x^2yg(x)$ -xyg(x)x=0 for all x,y $\in U$. *According to (5) , we get* $xg(x)\alpha(y)g(x)=0$ forallx, $y \in U$. (6) *Now , since is an automorphism,we obtain* $xg(x)$ yg(x)=0forallx,y $\in U$.Replacing y by rx,we get $xg(x)=0$ forallx $\in U$. Putting this relation in (1)gives $d(x)x=0$ for all $x \in U$. (7) *By Lemma2,the relation (7)with left-multiplying by x ,gives* $xd(x)=0$ for all $x \in U$. (8)

By subtracting (8)and(7)with using Lemma 4,we obtain R contains a non-zero central ideal.

Theorem 3.2

Let R be a semiprime ring and U a non-zero ideal of R. Suppose that there exist a derivation d:R- \rightarrow *R and an automorphism* α *:R-* \rightarrow *R such that* $\alpha(x) + \alpha(x),x=0$ *for all* $x \in U$ *. Then R contains a non-zero central ideal. Proof: The linearization of the relation*

```
[d(x) + \alpha(x), x] = 0 for all x \in U. (9)
We obtain
\int d(x)+\alpha(x),y\}+\int d(y)+\alpha(y),x\} = 0 for all x, y \in U. (10)
Replacing y by yx, we obtain
y[d(x)+\alpha(x),x]+[d(x)+\alpha(x),y]x+[d(y)x+yd(x)+\alpha(y)\alpha(x),x]=0 forall
x, y \in U. According to (9), we obtain
\int d(x)+\alpha(x),y\,x+f\,dy, x\,x+y\,dx, y\,dx+f\,y,x\,dx + \int f(x,x)\,dx + \alpha(y)\int f(x,x)\,dx, x\,dx + \int f(x,x)\,dx + \int f(x,x)\,dxall x, y \in U.
Replacing \lceil d(x)+\alpha(x),y\rceil x+\lceil d(y),x\rceil x by -\lceil \alpha(y),x\rceil x and y\lceil d(x),x\rceil by -y\lceil \alpha(x),x\rceilwhich
gives
-\int \alpha(y), x \, dx-y\int \alpha(x), x \, dx + \int \gamma, x \, dx + \alpha(y) \, dx (x), x + \int \alpha(y), x \, dx = 0 for all x, y \in U. Then
\int \alpha(y), x \, g(x) + g(y) \int \alpha(x), x \, h(x) = 0 for all x, y \in U. (11)
Where g(x) stands for \alpha(x)-x and g(y) stands for \alpha(y)-y.
Putting in above relation xy for y, we get
[\alpha(xy),x]g(xy)[\alpha(x),x]+[xy,x]d(x)=0 for all x,y \in U.
\alpha(x)[\alpha(y),x]g(x)+[\alpha(x),x]\alpha(y)g(x)+g(x)\alpha(y)[\alpha(x),x]+x[g(y)]\alpha(x),x]+x[y,x]d(x)=0for all x, y \in U. (12)
Multiplying (11) from the left sided by x, subtracting the relation so obtained from 
(12) and replacing \alpha(y) by y, we obtain (note that \alpha(x),x]=[g(x),x] for all x \in U).
g(x)[y, x]g(x)+[g(x), x]yg(x)+g(x)y[g(x), x]=0 for all x, y \in U.
Which reduces to 
xg(x)yg(x)+g(x)y(-g(x)x)=0 for all x, y \in U.
By Lemma 1, the above relation gives 
[g(x),x] \, \text{y} \, g(x) = 0 \, \text{for all } x, y \in U. (13)
In (13), replacing y by rg(x)xt[g(x),x] r with rigt-multiplying by x, we get
\int g(x), x \int r g(x) x f(g(x), x) r g(x) x = 0 for all x, y \in U, r, t \in \mathbb{R}. (14)
Since R is semiprime ,we obtain
[g(x),x]rg(x)x=0 for all x \in U, r \in R. (15)
Again from(13),we get
[g(x),x]rxg(x)=0 forall x, y \in U. (16)
Subtacting (15) and (16)we get
[g(x),x]=0 forall x \in U. Since [\alpha(x),x] = [g(x),x] for all x \in U. Then (9) reduced to
[d(x),x]=0 for all x \in U. By Lemma3, R contains a non-zero central ideal.
Theorem 3.3
```
Let R be a semiprime ring and U a non-zero ideal of R. Suppose that there exist a derivation d:R- \rightarrow *R and an automorphism* α *:R-* \rightarrow *R such that*[$d(x)x + x\alpha(x),x$]=0 for all $x \in U$. Then R contains a non-zero central ideal. *Proof: We have the relation*

 $[d(x)x + x\alpha(x),x] = 0$ for all $x \in U$. (17) *Replacing x by x+y , we obtain* $\int d(x)x+d(x)y+d(y)x+d(y)y+x\alpha(x)+x\alpha(y)+y\alpha(x)+y\alpha(y),x+y=0$ for all $x,y\in U$. *According to (17) , we get* $[A(x), y] + [d(x)y + d(y)x + x\alpha(y) + y\alpha(x), x] = 0$ for all $x, y \in U$. (18) *Where A(x) stands for* $d(x)x+x\alpha(x)$ *. Let in above y by yx, we obtain* $[A(x), yx] + [d(x)yx+d(y)x^2 + yd(x)x + x\alpha(y)\alpha(x) + yx\alpha(x),x] = 0$ for all $x, y \in U$. *According to (17), we obtain* $[A(x),y]x+[yA(x),x]+[(d(x)y+d(y)x)x,x]+[x\alpha(y)\alpha(x),x]=0$ for all $x,y\in U$. Then *according to*(17), *above reduces to* $[A(x), y]x+[y,x]A(x)+[d(x)y+d(y)x,x]x+x[\alpha(y)\alpha(x),x]=0$ for all $x, y \in U$. *(19) From (18), we get* $[A(x),y]+[d(x)y+d(y)x,x]=-[x\alpha(y)+y\alpha(x),x]$ *for all* $x,y \in U$ *. (20) Substituting (19) in (20), we obtain* $- [x\alpha(y) + y\alpha(x),x]x + [y,x]A(x) + x[\alpha(y)\alpha(x),x] = 0$ for all $x, y \in U$. Then $-x[\alpha(y),x]x-y[\alpha(x),x]x-[y,x]\alpha(x)x+[y,x]A(x)+x\alpha(y)[\alpha(x),x]+$ $x[\alpha(y),x]\alpha(x)=0$ for all $x \in U$. Then $x[\alpha(y),x]g(x)+[y,x](A(x)-\alpha(x)x)+x\alpha(y)[\alpha(x),x]-y[\alpha(x),x]x=0$ for all $x,y\in U$. Where $g(x)$ denote to $\alpha(x)$ -x, then $x[\alpha(y),x]g(x)+[y,x]B(x)+x\alpha(y)[\alpha(x),x]-y[\alpha(x),x]x=0$ for all $x,y\in U$. *(21) Where B(x) stands for A(x)-* α *(x)x (d(x)x+[x,* α *(x)]), replacing y by xy, we obtain* $x[\alpha(xy),x]g(x)+[xy,x]B(x)+x\alpha(xy)[\alpha(x),x]$ -xy[$\alpha(x),x]x=0$ for all $x,y \in U$. Then $x\alpha(x)[\alpha(y),x]g(x)+x[\alpha(x),x]\alpha(y)g(x)+x[y,x]B(x)+x\alpha(x)\alpha(y)[\alpha(x),x]-xy[\alpha(x),x]x=0$ *for all* $x, y \in U$ *.* (22) *Left-multiplying (21) by x, we obtain* x^2 [α (y),x]g(x)+x[y,x]B(x)+x² α (y)[α (x),x]-xy[α (x),x]x=0 for all x,y $\in U$. *(23) Subtracting (23) with (22) and replacing* $\alpha(y)$ *by y, we get* $(x\alpha(x))$ *-* $\frac{d}{dx}$ x²)[y,x]g(x)+x[α (x),x]yg(x)+x α (x)y[α (x),x]-x²y[α (x),x]=0 for all x,y $\in U$. $xg(x)[y,x]g(x)+xg(x)y[\alpha(x),x]+x[\alpha(x),x]yg(x)=0$ for all $x, y \in U$. Then $xg(x)([y,x]g(x)+y[\alpha(x),x])+x[\alpha(x),x]yg(x)=0$ for all $x, y \in U$. *Note that* $[\alpha(x),x] = [g(x),x]$ for all $x \in U$. Above relation we can write as $xg(x)[yg(x),x]+x[g(x),x]yg(x)=0$ for all $x,y\in U$. Then $xg(x)yg(x)x-x^2g(x)yg(x)=0$ for all $x, y \in U$. Then $xM(x)=0$ *for all* $x \in U$. *Where* $M(x)$ *stands for* $g(x)yg(x)x-xg(x)yg(x)$, by Lemma2, we get

```
M(x)=0 for all x \in U. Thus
g(x)yg(x)x-xg(x)yg(x)=0 for all x, y \in U. (24)
For Appling Lemma1 , we rewrite (24) by
-xg(x)yg(x)+g(x)yg(x)x=0 for all x, y \in U. Then
(g(x)x-xg(x))yg(x)=0 for all x, y \in U.
[g(x),x]yg(x)=0 for all x, y \in U. (25)
By same method in Theorem3.2,we obtain 
\int d(x), x|x=0 for all x \in U.
Now,we have
W(x)x=0 for all x \in U. Where W(x) stands for \left[ d(x),x \right] with using Lemmas(2 and 3),
we obtain R contains a non-zero central ideal.
Theorem 3.4
        Let R be a 2-torsion free semiprime ring and U a non-zero ideal of R. 
Suppose that there exist a derivation d:R \rightarrowR and an automorphism \alpha:R \rightarrowR such
that [d(x)\text{ }(\alpha(x),x]=0 for all x\in U. Then R contains a non-zero central ideal.
Proof: We have[d(x) \circ \alpha(x), x]=0 for all x \in U. Then
\int d(x)\alpha(x),x \int +\int \alpha(x)d(x),x \int =0 for all x \in U. (27)
Putting x by x+y, we obtain 
[d(x)\alpha(x),x]+[d(x)\alpha(y),x]+[d(y)\alpha(x),x]+[d(y)\alpha(y),x]+[d(x)\alpha(x),y]+[d(x)\alpha(y),y]+[d(x)\alpha(y),x]d(y) \alpha(x), y] + [d(y) \alpha(y), y] + [\alpha(x) d(x), x] + [\alpha(y) d(x), x][\alpha(x)d(y),x] + [\alpha(y)d(y),x] + [\alpha(x)d(x),y] + [\alpha(y)d(x),y] + [\alpha(x)d(y),y] + [\alpha(y)d(y),y] =0 for all x,y \in U. (28)
According to (27) , the relation (28) reduces to 
[d(x)\alpha(y),x]+[d(y)\alpha(x),x]+[d(y)\alpha(y),x]+[d(x)\alpha(x),y] + [d(x)\alpha(y),y]+\int d(y)\alpha(x),y]+\int \alpha(y)d(x),x]+\int \alpha(x)d(y),x]+\int \alpha(y)d(y),x]+\int \alpha(x)d(x),y]+\frac{1}{2}[\alpha(y)d(x),y]+[\alpha(x)d(y),y]=0 for all x,y \in U.
Replacing y by yx, we obtain after some calculation.
d(x)\alpha(y)[\alpha(x),x]+d(x)[\alpha(y),x]\alpha(x)+[d(x),x]\alpha(y)\alpha(x)+d(y)x\int \alpha(x),x] + \int d(y),x] x\alpha(x) + yd(x)] \alpha(x),x] + y[d(x),x] \alpha(x) + [y,x]d(x)\alpha(x)+d(y)x\alpha(y)[\alpha(x),x]+d(y)x[\alpha(y),x]\alpha(x)+[d(y),x]x\alpha(x)+yd(x)\alpha(y)[\alpha(x),x]+yd(x)[\alpha(y),x]\alpha(x)+y[d(x),x]\alpha(y)\alpha(x)+[y,x]d(x)\alpha(y)\alpha(x)+yd(x)[\alpha(y),x]+y[d(x),x]\alpha(y)+d(x)(x)[\alpha(x), y]x + [d(x), y]\alpha(x)x + d(x)\alpha(y)y[\alpha(x), x] + d(x)\alpha(y)[\alpha(x), y]x + d(x)y[\alpha(y), x]\alpha(x)\partial+d(x)[\alpha(y),y]x\alpha(x)+y[d(x),x]\alpha(y)\alpha(x)+[d(x),y]x\alpha(y)\alpha(x)+d(y)xy[\alpha(x),x]+d(y)x[\alpha(x), y[x+d(y)[x,y]x\alpha(x)+y[d(y),x]x\alpha(x)+[d(y),y]x<sup>2</sup>\alpha(x)+yd(x)y[\alpha(x),x]+yd(x)[\alpha(x),
\frac{dy}{dx} + y^2 \left[ d(x), x \right] \alpha(x) + y \left[ d(x), y \right] x \alpha(x) + y \left[ y, x \right] d(x) \alpha(x) + \alpha(y) \alpha(x) \left[ d(x), x \right] + \alpha(y) \left[ \alpha(x), x \right]d(x)+[\alpha(y),x]\alpha(x)d(x)+\alpha(x)[d(x),x]x+[\alpha(x),x]d(x)x+\alpha(x)y[d(x),x]+\alpha(x)[y,x]d(x)+[\alpha(x),x] \cdot yd(x)+\alpha(y)\alpha(x)[d(y),x]x+\alpha(y)[\alpha(x),x]d(y)x+[\alpha(y),x]\alpha(x)d(y)x+\alpha(y)\alpha(x)y[
```
 $d(x), x] + \alpha(y)\alpha(x)$ [y,x] $d(x)$

 $+\alpha(y)[\alpha(x),x]yd(x)+[\alpha(y),x]\alpha(x)yd(x)+y\alpha(x)[d(x),x]+y[\alpha(x),x]$ $d(x)+\alpha(x)[d(x),y]x+\alpha(x),y]d(x)x+\alpha(y)\alpha(x)y[d(x),x]+\alpha(y)\alpha(x)[d(x),y]x+\alpha(y)y[\alpha(x)$ α , x $\frac{d(x)+\alpha(y)}{\alpha(x)}$, $y\frac{dx}{x}$ + $y\frac{\alpha(y)}{x}$ $\alpha(x)$ $d(x)+[\alpha(y),y]x\alpha(x)d(x)+\alpha(x)d(y)[x,y]x+\alpha(x)y[d(y),x]x+\alpha(x)$ $\left[d(y),y\right]x^2+y\left[\alpha(x),x\right]d(y)x+\left[\alpha(x),y\right]xd(y)x+\alpha(x)y^2\left[d(x),x\right]+\alpha(x)y\left[d(x),y\right]x+\alpha(x)y\left[y\right],$ $x\,dx + \int \alpha(x), x\,y\,dx + \int \alpha(x), y\,lxy\,dx = 0$ for all $x, y \in U$. *(29)*

In (29) replacing $\alpha(x)$ *and y by x, we obtain* $4[d(x),x]x^2+4x[d(x),x]x+5x[d(x),x]x^2+3[d(x),x]x^3+5x^2[d(x),x]x+3x^3[d(x),x]+2x^2[d(x),x]x+3x^3$ $(x), x$]=0 for all $x \in U$. (30)

Replacing x by -x and subtracting with (30), we obtain $4[d(x),x^3]=0$ *for all* $x \in U$ *. Since R is 2-torsion free with using Lemma3 , we obtain R contains a non-zero central ideal.*

Theorem 3.5

Let R be a 2-torsion free semiprime ring and U a non-zero ideal of R. Suppose that there exist a derivation d:R \rightarrow *R and an automorphism* α *:R* \rightarrow *R such that* $\left[\frac{d(x)}{dx}, \alpha(x)\right]$, x]=0 for all $x \in U$. Then R contains a non-zero central ideal.

Proof: We have $\left[\frac{d(x), a(x)}{x}\right] = 0$ *for all* $x \in U$ *. (31)*

Putting x by x+y in above equation and according to (31), we obtain

 $[[d(y), a(x)], x] + [d(x), a(y), y] + [d(y), a(y)], x] + [d(x), a(x), y] + [d(y), a(x)], y] + [d(z), a(x), y]$ *x*), $\alpha(y), y$ = 0 for all $x, y \in U$. (32)

In (32) replacing y by yx with using (31), we obtain

 $[d(y)[x, \alpha(x)], x] + [[d(y), \alpha(x)], x]x + [y[d(x), \alpha(x)], x] + [[y, \alpha(x)]d(x), x] + [\alpha(y), x][d(x), x]$ $(\alpha(x) + [d(x), \alpha(y)][\alpha(x),x] + [[d(x), \alpha(y)],x]\alpha(x) + [d(y)]x, \alpha(yx)]$,x]+[[d(y), $\alpha(yx)$],x]x $+x/[d(y), \alpha(yx),x]+$

 $[x, \alpha(yx)][d(y),x]+[[x, \alpha(yx)]$, $x]d(y)+[[d(x), \alpha(x)]$, $y]x+ [d(y)]x$,

 $\alpha(x)$, yx] + [[d(y), $\alpha(x)$]x, yx] + [y[d(x), $\alpha(x)$], yx] + [[y, $\alpha(x)$]d(x)

 α , yx $+ \alpha$ (y)[[d(x), α (x)], yx $] + [\alpha$ (y), yx][d(x), α (x)]+[d(x), α (y)][α (x), yx]+[[d(x) α (y)], y $x/\alpha(x)=0$ for all $x, y \in U$. After some calculation, we obtain

 $d(y)[[x, \alpha(x)],x]+[d(y),x][x, \alpha(x)]+[d(y),\alpha(x)],x]x+y[[d(x),\alpha(x)],x]+[y,x][d(x),\alpha(x)]$ $)$]+[y, $\alpha(x)$][d(x),x]+[[y, $\alpha(x)$],x]d(x)+[$\alpha(y)$,x][d(x), $\alpha(x)$]+[d(x), $\alpha(y)$][$\alpha(x)$,x]+[[d($x)$, $\alpha(y)$], x] $\alpha(x) + d(y) \alpha(y)$ [[x, $\alpha(x)$], x] +d(y)[$\alpha(y)$, x][x, $\alpha(x)$] +d(y)[x, $\alpha(y)$][$\alpha(x)$, x] +d $(y)[[x, \alpha(y),x]\alpha(x) + [d(y),x]\alpha(y)[x,\alpha(x)] + [d(y),x][x,\alpha(y)]\alpha(x) + \alpha(y)[[d(y),\alpha(x)]$,*x*]*x* $+[\alpha(y),x][d(y),\alpha(x)]x+ [d(y),\alpha(y)][\alpha(x),x]x+ [d(y),\alpha(y)]$, $x[\alpha(x)x+x\alpha(y)][d(y),\alpha(x)$ $\alpha(x) = \frac{1}{x}x^2 + \frac{x}{\alpha(y)}, \frac{x}{\alpha(x)}, \frac{x}{\alpha(x)} + \frac{x}{\alpha(y)}, \frac{x}{\alpha(x)}, \frac{x}{\alpha(x)}, \frac{x}{\alpha(x)} + \frac{x}{\alpha(x)}, \frac{x}{\alpha(x)}$ $\int [d(y),x] + [x, \alpha(y)]\alpha(x)[d(y),x] + \alpha(y)[[x, \alpha(x)],x]d(y) + [\alpha(y),x][x, \alpha(x)]d(y) + [x, \alpha(y)]$ $[\alpha(x),x]d(y)+[\int x,\alpha(y),x]\alpha(x)d(y)+[\int d(x),\alpha(x)]$, $y[x+d(y)y][x,\alpha(x),x]+d(y)[\int x,\alpha(x)]$, *y]x+y[d(y),x][x,(x)]+[d(y),y]x[x,(x)]+[d(y),(x)][x,y]x+y[[d(y),(x)],x]x+[[d(*

 $y)$, $\alpha(x)$], y] x^2+y^2 [[d(x), $\alpha(x)$], x]+ y [[d(x), $\alpha(x)$], y] $x+y$ [y, x][d(x) $\alpha(x)$]+[y, $\alpha(x)$]y[d(x), x]+[y, $\alpha(x)$][d(x),y]x+y[[y, $\alpha(x)$],x]d(x)+[[y, $\alpha(x)$],y]xd(x)+ $\alpha(y)$ y[[d(x), $\alpha(x)$],x]+ $\alpha($ y [[d(x), α (x)], y]x+y[α (y),x][d(x), α (x)]+[α (y), y]x[d(x), α (x)]+[d(x), α (y)]y[α (x),x] $+$ [d(x), α (y)][α (x),x]y+y[[d(x), α (y)],x] α (x)+[[d(x), α (y)],y]x α (x)=0 for all x,y $\in U$. *(33)*

Replacing $\alpha(U)$ *by U,y by x and x by by -x with using (31), we get* $2[[d(x),x],x]x=0$ for all $x \in U$. Since R is 2-torsion free with using Lemma 3, we *obtain R contains a non-zero central.*

Theorem 3.6

Let R be a semiprime ring and U anon-zero ideal of R. Suppose that there *exist a derivation d:R* \rightarrow *R and an automorphism* α *:R* \rightarrow *R suchthat [d(x)* $x(x) + x\alpha(x)$, $x = 0$ for all $x \in U$. Then R contains a non-zero central ideal.

Proof: We have $[g(x)x+x\alpha(x)]=0$ for all $x \in U$.

Where g(x) stands for d(x)-x, then

 $[g(x),x]x+x[\alpha(x),x]=0$ for all $x \in U$. (34)

Putting in the above relation xy for x, gives

 $g(x)[y,x]yxy+x[g(x),y]yxy+[g(x),x]y^2xy+x^2[g(y),y]xy+x[g(y),x]yxy+x[x,y]g(y)xy+x$ $y\alpha(x)x[\alpha(y),y]+xy\alpha(x)[\alpha(y),x]y+xyx[\alpha(x),y]\alpha(y)+xy[\alpha(x),x]y\alpha(y)=0$ for all $x, y \in U$. Replacing $\alpha(y)$ by y, we obtain

 $g(x)[y,x]$ yxy+x[g(x),y]yxy+[g(x),x]y²xy+x²[g(y),y]xy+x[g(y),x]yxy+x[x,y]g(y)xy+x $y\alpha(x)[y, x]/y+xyx[\alpha(x), y]/y+xy[\alpha(x), x]/y^2=0$ for all $x, y \in U$. Replacing y by x, we *obtain*

 $x[g(x),x]x^{3} + [g(x),x]x^{4} + x^{2}[g(x),x]x^{2} + x[g(x),x]x^{3} + x^{3}[g(x),x]x + x^{2}[g(x),x]x^{2} = 0$ for *all* $x \in U$.(33)

From(34),the relation (33)reduces to

x[g(x),x] $x^3 +$ [g(x),x] $x^4 =$ 0 for all $x \in U$.Then

 $[g(x), x^2]$ $x^3 = 0$ for all $x \in U$. Thus, we have

[d(x), x^2 *]* $x^3 = 0$ *for all* $x \in U$ *. Now,we have*

 $W(x)x=0$ *for all* $x \in U$ *. Where* $W(x)$ *stands for*[$d(x), x^2$] x^2 *with using Lemmas*(2 *and 3), we obtain R contains a non-zero central ideal.*

Similary for $\left[d(x)-x\right]x-x\alpha(x),x=0$ *for all* $x\in U$ *.*

Theorem 3.7

Let R be a semiprime ring and U a non-zero ideal of R. Suppose that there exist a derivation d:R \rightarrow *R and an automorphism* α *:R* \rightarrow *R such that* $[x/d(x)]$ $x \neq \alpha(x)x, x]=0$ for all $x \in U$. Then R contains a non-zero central ideal. *Proof: We have* $x[g(x),x] + [\alpha(x),x]x=0$ *for all* $x \in U$ *. (36) Where* $g(x)$ *stands for* $d(x)$ *-x, then replacing x by xy, we obtain* $xyz(x)[y, x]y+xyz[g(x), y]y+xy[g(x), x]y^{2}+xyz^{2}[g(y), y]+xyz[g(y), x]y+xyz[x, y]g(x)+\alpha$

$$
(x)x[\alpha(y),y]xy + \alpha(x)[\alpha(y),x]xy + x[\alpha(x),y]\alpha(y)xy + [\alpha(x),x]y\alpha(y)xy = 0 \text{ for all } x, y \in U.
$$

\nReplacing $\alpha(y)$ by y and y by x, we obtain
\n $x^3[g(x),x]x + x^2[g(x),x]x^2 + x^4[g(x),x] + x^3[g(x),x]x + x[\alpha(x),x]x^3 + [\alpha(x),x]x^4 = 0 \text{ for all } x \in U.$
\n $x^2[y(x),x]x + x^2[g(x),x]x^2 + x^4[g(x),x] + x^3[g(x),x]x = 0 \text{ for all } x \in U.$
\n(38)
\nSubstituting (38) in (37), we obtain
\n $x[\alpha(x),x]x^3 + [\alpha(x),x]x^4 = 0 \text{ for all } x \in U.$
\n(39)
\n $[\alpha(x), x^2] x^3 = 0 \text{ for all } x \in U.$
\n $[(\alpha(x), x^2] x^3 = 0 \text{ for all } x \in U.$
\nWhere $M(x)$ stands for $[\alpha(x), x^2] x^2$, by Lemma2, we get
\n $M(x)=0 \text{ for all } x \in U.$
\n(41)
\nFrom (36), we obtain according to (41)
\n $xA(x)=0 \text{ for all } x \in U.$
\nWhere $A(x)$ stands for $[g(x),x] -[\alpha(x),x] = 0 \text{ for all } x \in U.$, by Lemma2, we get
\n $A(x)=0 \text{ for all } x \in U.$
\nWhere $A(x)$ stands for $[g(x),x] -[\alpha(x),x] = 0 \text{ for all } x \in U.$, by Lemma2, we get
\n $A(x)=0 \text{ for all } x \in U.$
\nSubstituting (42) in (36), we obtain
\n $[\alpha(x),x^2] = 0 \text{ for all } x \in U.$ By applying Lemma3, we get
\nR contains a non-zero central ideal.
\nSimilarly for $[x(\alpha(x),x), x] = 0 \text{ for all } x \in U.$

Theorem 3.8

Let R be a semiprime ring and U a non-zero ideal of R. Suppose that there exist a derivation d:R \rightarrow *R and an automorphism* α *:R* \rightarrow *R such that* $[xd(x) \pm x(\alpha(x))$ x , x]=0 for all $x \in U$. Then R contains a non-zero central ideal. *Proof:* We have $xM(x)=0$ for all $x \in U$.

Where M(x) stands for $[d(x)+(a(x)-x),x]$ *, then by using Lemma2, above relation gives*

 $[d(x),x] + [g(x),x] = 0$ for all $x \in U$. (43) *Where* $g(x)$ *stands for* $(\alpha(x)-x)$ *, the linearization of the relation (43) gives* $[d(x),y]+[d(y),x]+[g(x),y]+[g(y),x]=0$ for all $x, y \in U$, which means that we have $\int d(x)+g(x),y\}+\int d(y)+g(y),x\} = 0$ for all $x, y \in U$. (44) *Replacing y by yx with using (43), we obtain*

 $[d(x)+g(x),y]x+[d(y)+g(y),x]x+y[d(x)+g(x),x]+[y,x](d(x)+g(x)=0$ for all $x \in U$, *y* \in *R. According to (43)and (44),we obtain [y,x]B(x) =0 for all x, y* \in *U.Where* $B(x)$ stands for $(d(x)+g(x))$, by using Lemma 4, we get R contains a non-zero *central ideal.*

Similary for $[x/d(x)-x(\alpha(x)-x),x]=0$ *for all* $x \in U$ *.*

By same method we can be prove the following theorem.

Theorem 3.9

Let R be a semiprime ring and U a non-zero of R . Suppose that there exist a derivation d:R- \rightarrow *R and an automorphism* α *:R-* \rightarrow *R such that*

 $\int x d(x) \pm x(\alpha(x)-x), x] = 0$ for all $x \in \mathbb{R}$. Then R is commutative.

Theorem 3.10

Let R be a 2-torsion free semiprime ring and U a non-zero of R . Suppose that there exist a derivation d:R \rightarrow *R and an automorphism* α *:R* \rightarrow *R such that* $\int [d(x),x] \pm \alpha(x),x] = 0$ for all $x \in U$. Then R contains a non-zero central ideal.

Proof: We have

 $\int [d(x),x],x] + [\alpha(x),x] = 0$ for all $x \in U$. (45)

The linearization of the above relation gives

 $\left[\left[d(x),x\right],x\right]+\left[\left[d(x),y\right],x\right]+\left[\left[d(x),x\right],y\right]+\left[\left[d(x),y\right],y\right]+\left[\left[d(y),x\right],x\right]+\left[\left[d(y),y\right],x\right]+\left[\left[d(y),x\right],y\right]$ $|f(x,y)| + [d(y),y],y] + [\alpha(x),x] + [\alpha(x),y] + [\alpha(y),x] + [\alpha(y),y] = 0$ for all $x \in U, y \in \mathbb{R}$. *Replacing y by x and according to (45),we get*

 $4/[d(x),x],x]=0$ for all $x \in U$. Applying that R has a 2-torsion free with using Lemma *3, we completes the*

proof of the theorem.

Similary for $\left[\frac{d(x),x}{\alpha(x),x}\right]=0$ *for all* $x \in U$ *.*

Theorem 3.11

Let R be a 2-torsion free semiprime ring and U a non-zero ideal of R . Suppose that there exist a derivation d:R \rightarrow *R and an automorphism* α *:R* \rightarrow *R such that* $\lceil d(x) \pm \lceil \alpha(x), x \rceil$, $x \equiv 0$ for all $x \in U$. Then R is contains a non-zero central ideal. *Proof: We have*

 $\left[d(x), x \right] + \left[\left[\alpha(x), x \right], x \right] = 0$ for all $x \in U$. Which means that we have

 $\int d(x), x \, d\mu = \int d(x), x \, dx \, d\mu = 0$ *for all* $x \in U$ *.* (46)

The linearization of the above relation with using (46) after some calculation gives $\left[\frac{d(x),y}{+}\right]$ $\left[\frac{d(y),x}{+}\right]$ $\left[\frac{\alpha(x),y}{y+}\right]$ $\left[\frac{\alpha(x),y}{x+y}\right]$ $\left[\frac{\alpha(y),x}{x+y}\right]$ $\left[\frac{\alpha(y),y}{y+x}\right]$ $\gamma[\alpha(x),x]$ -x[$\alpha(x),y$]- $\gamma[\alpha(x),y]$ -x[$\alpha(y),x$]- $\gamma[\alpha(y),x]$ -x[$\alpha(y),y$]=0 for all $x \in U$, $y \in R$. *Replacing y by x, we obtain*

 $2\left(\frac{d(x)}{x} + \frac{d(x)}{x}\right) + \frac{d(x)}{x}x - x\right] \alpha(x),x) + 4\left(\frac{d(x)}{x}x\right) + x\alpha(x),x) + 2\alpha(x) + 2\alpha(x) + x\alpha(x) + x$ *to (46) the above relation reduce to*

 $4([a(x),x]x-x[a(x),x])=0$ for all $x \in U$. (47)

Applying that R has a2-torsion free on (47) and subtituting the results in (46), gives $[d(x),x]=0$ for all $x \in U$. Applying Lemma 3, we completes the proof of theorem. *Similarly for* $\left[d(x) - \frac{\alpha(x),x}{x}\right] = 0$ *for all* $x \in U$ *.*

10

Theorem 3.12

Let R be a 2-torsion free semiprime ring and U a non-zero ideal of R . Suppose that there exist a derivation d:R \rightarrow *R and an automorphism* α *:R* \rightarrow *R such that* $\left[\frac{d(x) \pm \alpha(x), x}{x}\right] = 0$ for all $x \in U$. Then R is contains a non-zero central ideal. *Proof:* We have $\iint d(x) + \alpha(x),x$, x , $\iint d(x) = 0$ for all $x \in U$. Then $\iint d(x), x] x + \iint \alpha(x), x] x = 0$ for all $x \in U$. (48) *Putting x by x+y , we obtain after some calculation,* $\left[\left[d(x),x\right],x\right]+\left[\left[d(x),x\right],y\right]+\left[\left[d(x),y\right],x\right]+\left[\left[d(x),y\right],y\right]+\left[\left[d(y),x\right],x\right]$ $\left[\frac{d(y),x]}{y}+\left[\frac{d(y),y]}{x}\right]+\left[\frac{d(y),y]}{y},y\right]+\left[\frac{d(x),x]}{x}\right]+\left[\frac{d(x),x]}{y}\right]+\left[\frac{d(x),y}{x}\right]$ x ,y],y]+[[α (y),x],x]+[[α (y),x]+[[α (y),y],x] +[[α (y),y],y]=0 for all $x, y \in U$. According to (48), replacing $\alpha(y)$ by y and y by x, we obtain $3/[d(x),x],x]=0$ for all $x \in U$. Since R is a2-tosion free with applying Lemma3, we *completes the proof.*

Similarty for $[[d(x)-\alpha(x),x],x]=0$ *for all* $x \in U$.

References:

[1] N. Divinsky,On commuting automorphisms of rings, Trans. Roy . Soc. Canada. Sect.III.(3)49(1955), 19-22.

[2]E.C.Posner,Derivations in prime rings. Proc. Amer. Math. Soc.8(1957),1093- 1100.

[3] J. Luch. A note on commuting automorphisms of rings, Amer. Math. Monthly77(1970),61-62.

[4] J. H. Mayne , Centraliziting automorphisms of prime rings, Canada. Math. Bull.19(1976), No.1, 113-115.

[5] L.O.Chung and J.Luh,On semicommuting automorphisms of rings, Canad. Math. Bull.21(1)(1978),13-16.

[6] A. Kaya and C. Koc, Semicentralizing automorphisms of prime rings, Acta Mathematica Academiae Scientiarum,Hungaricae Tomus 38(1-4)(1981),53-55. [7] M. Bresar,Centralizing mappings and derivations in prime rings, J. Algebra 156(1993), No.2, 385-394.

[8] J. Vukman, Identities with derivations and automorphisms on semiprime rings, International Journal of Mathematics and Mathematical Sciences 2005: 7(2005), 1031-1038.

[9] J.Vukman , Centralizers on semiprime rings, Comment. Math. Univ. Carolin. 42(2001), No.2, 237-245.

[10] C. Lanski, An Engel condition with derivation for left ideals,Proc. Amer.Math.Soc.125(2)(1997), 339-345.

[11] Zalar , B., On centralizers of semiprime rings , Comment . Math. Univ. Carolinae ,32(4)(1991): 609-614.

حول الاوتومورفزمات مع الاشتقاقات على الحلقات شبة الاولية

محسن جبل عطٍة الجامعة المستنصرية-كلية التربية-قسم الرياضيات *Email: mehsinjabel@yahoo.com*

الملخص:الغرض الرئيسي من البحث تحري الاوتومور فزمات والاحادية مع الاشتقاقات على الحلقات شبة الاولية *R ,* وسوف نحصل على *R* تحوي على مثالً مركزي غٍر صفري *.*