
Journal of Al-Qadisiyah  for Computer Science and Mathematics Vol.17.(2) 2025,pp.Math 66–74 
 
 
 
 
 
 
 
 
 
 
 
 

 

∗Corresponding author: Maha Alaa Hussin 

Email addresses: maha88alaa@gmail.com 

Communicated by ‘sub etitor’ 

Implications of Extended (A, m)-Isometries  

Maha Alaa Hussina 

aUniversity of Kirkuk, Kirkuk, Iraq. Email: maha88alaa@gmail.com 

 

A R T I C L E  I N F O 

Article history: 

Received: 03/03/2025 

Rrevised form: 14/04/2025 

Accepted : 23/04/2025 

Available online: 30/06/2025 
 

Keywords: 

      Isometries; Spectral 
properties;  
dynamical systems; 
  ∗-algebras.  

 

A B S T R A C T 

This paper aims to generalize the concept of      -isometry to Hilbert spaces and explore 
new properties of these operators. We introduce new definitions such as         -isometries 
and fractional isometries, and study their spectral and dynamical properties. In addition, we 
investigate the relationship between these operators and other concepts in operator theory, 
such as  ∗-algebras and representation theory. We also present potential applications in 
signal processing and quantum mechanics. 

https://doi.org/10.29304/jqcsm.2025.17.22208 

1. Introduction 

    Operator theory is an important branch of functional analysis, and it plays a vital role in many fields of 

mathematics and physics, including quantum mechanics and signal processing [1], [2]. One of the fundamental 

concepts in operator theory is the notion of isometry, which is a transformation that preserves distances between 

points. In recent years, various generalizations of the notion of isometry have been introduced to study broader 

properties of linear operators on Hilbert spaces. One such generalization is the notion of "m-isometry", first 

introduced by Agler and Stankus. An operator   on a Hilbert space H is an m-isometry if the following condition is 

satisfied: 

∑         
   (

 
 ) ∗                                

Where  ∗ is the Hermitian adjoint of the operator  .  

Agler first proposed the idea of the m-isometric operator in [1], and Agler and Stankus conducted a comprehensive 

analysis of it in [3],[4],[5]. One of the extensions of isometry is that description. 

                  ∑         
   (

 
 ) ‖𝑥  ‖

 
    𝑥                                       
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Suppose that m is a positive integer and take          represent a positive operator. 

It is claimed that an operator          is a       -isometry if 

                        ∑         
   (

 
 ) ∗                                        

If an operator   is a      -isometry and not a         -isometry, then it is considered a strict      -isometry. It 

is referred to as  -isometry if      , meaning that T represents  -isometry if  ∗    . Other scholars have 

examined the category of      -isometries, which was first shown as Sid Ahmed and Saddi [6] also, check out 

[7],[8],[9],[10],[11],[12],[13],[14],[51]. The        and        represent the range and null area of  , respectively, 

for every           

Here are a few simple instances of this class. 

 Each operator of the type                represents an   isometry whenever   was an   isometry. 

 If      , then any operator on      is an   isometry.  

The present study will expand on the theory of isometries by introducing the concept of       isometries and 

exploring its unique properties. The study will focus in particular on spectral properties and supercyclicity, as well 

as the relationship with other factors. 

1.1. Structure 

1. New generalizations of  𝑨 𝒎 -isomers 

In this section, we will present new generalizations properties of       isomers. 

Definition 2.1.  Let   be a Hilbert space, and let  ,   be two finite linear operators on  . We say that   is 

an        -isometry if the following condition is satisfied: 

∑     
 

   

(
 
 )    ∗   ∗      

Where  ∗  is the Hermitian conjugate of the operator  , and   and   are positive integers. 

Specific examples: 

 Zero operator: If   is a zero operator, then any operator   is a        -isometry. 

 Periodic operator: If   is a periodic operator such that    𝐼, then   is a         isometry for 

any operator   and an integer  . 

 Weighted operator: Let   be a weighted operator on 𝑙  𝑍  defined by    𝑘   𝑘𝑤𝑘+1. It can be 

verified that   is an        -isometry if the weights 𝑤𝑘  satisfy certain conditions that depend on    , 

and  . 

Theorem 2.2.  Let   be a factor on a Hilbert space  , A be another factor on  , and   and n be positive 

integers. If   is a         isometry, then: 

∑     
 

   

(
 
 )    ∗   ∗      

Proof: Using the basic definition of the         isometry, we obtain the result.  

Theorem 2.3.  If   is an         isometry and   is an invertible operator, then 

    1   is also an         isometry. 

Proof: Since   is         isometry, then  
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∑     
 

   

(
 
 )    ∗   ∗      

Now, let's consider the factor 𝑆      1   . We want to prove that 𝑆 is         isometric, that is:  

∑     
 

   

(
 
 )   𝑆∗  𝑆∗      

Set 𝑆∗       1    ∗      1 ∗ ∗ ∗   ∗ ∗ ∗ 1. Hence: 

 𝑆∗   ( ∗ ∗ ∗ 1)
  

   ∗ ∗   ∗     

 𝑆        1                 

Substituting into the equation above, we get: 

∑     
 

   

(
 
 ) (     ∗     )(  ∗     ∗   ∗)

∗ 
   ∑     

 

   

(
 
 )                ∗ ∗   ∗ ∗    

  ∗  1     1 

This expression can be simplified to: 

∑     
 

   

(
 
 )    ∗   ∗    

Since   is         isometry, this sum is zero. So, S is         isometry. 

Theorem 2.4.  If   is an         isometry and   is an invertible factor, then the spectrum of   is a 

subset of the unit disk. 

Proof: Since   is         isometry, then ∑       
   (

 
 )    ∗   ∗     . 

Let 𝜆 be an eigenvalue of  , i.e.  𝑥  𝜆𝑥 for some vector 𝑥. Applying this to the above equation we obtain,  

∑       
   (

 
 ) (𝜆  )(𝜆∗  )

∗ 
    . This means that:  ∑       

   (
 
 ) | ∗  ∗   |𝜆   . Since   is an 

invertible factor, so,  ∗  is a positive operator. Thus, if |𝜆| >  , the above sum is positive, which 

contradicts it being zero. So, 𝜆 ≤  , i.e. the spectrum of   is a subset of the unitary disc. 

Theorem 2.5. If   is         isometric and   is an invertible operator, then   is supercyclic if and only 

if   1   supercyclic. 

Proof: Since   is         isometry, then   1   is also an          

isometry (from Theorem 2.2). If   is supercyclic, then there exists a vector 𝑥 such that the set 

{𝑥  :  ≥  } is a dense set in Hilbert space. Let  𝑦    1𝑥. Then, 

  1   is supercyclic because: 

{  1𝑥  :  ≥  }  {𝑦    1𝑥   :  ≥  } 

This set is dense in Hilbert space because   is invertible. 

The converse is also true, since if   1   is supercyclic, then   is supercyclic because   is invertible. 
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Theorem 2.6. If   is         isometry, then the commutator between   and  , i.e. [   ]        , 

is a zero factor if and only if   is invertible. 

Proof: Since   is         isometry, we have: 

∑     
 

   

(
 
 )    ∗   ∗      

Suppose [   ]   . Then,      . Substituting into the equation above, we get: 

∑     
 

   

(
 
 )    ∗      ∗      

Thus,  

∑     
 

   

(
 
 ) ∗        ∗       

If   is invertible, then     ∗    is a nonzero factor, which means that  ∗      

must be zero for all  . This means that   is a zero factor, which is a special case. 

The converse is also true, since if   is a zero factor, then [   ]     

Theorem 2.7. If   is an         isometry and   is a periodic operator such that  𝑚  𝐼, then the 

spectrum of   is a subset of the unit disk with spectral gaps at places corresponding to values of  . 

Proof: Since   is a periodic factor,  𝑚  𝐼. If   is         isometric, then: 

∑     
 

   

(
 
 )    ∗   ∗      

Let 𝜆 be an eigenvalue of  , i.e.  𝑥  𝑥𝜆 for some vector 𝑥. Applying this to the above equation, we get: 

∑     
 

   

(
 
 )  (𝜆  )(𝜆∗  )

∗ 
     

This means that,  

∑     
 

   

(
 
 ) | ∗     |𝜆    

Since   is a periodic factor,  𝑚  𝐼, and hence  ∗𝑚  𝐼. This means that the spectrum of   contains gaps 

in places that correspond to the values of  . 

Theorem 2.8. If   is         isometric and   is a reversible operator, then   is supercyclic if and only 

if   1   is supercyclic and   is a periodic operator. 

Since   is an         isometry,   1   is also an         isometry (from Theorem 2.1). If   is 

supercyclic, then there exists a vector 𝑥 such that the set {  𝑥:  ≥  } is a dense set in Hilbert space. Let 

𝑦    1𝑥. Then,   1   is supercyclic because: 

{𝑦    1   :  ≥  }  {  1  𝑥:  ≥  }, 

This set is dense in Hilbert space because   is invertible. If   is periodic, then   𝑚  𝐼, which means that 

  1   supercyclic leads to   supercyclic. The converse is also true, since if   1   supercyclic and   is 

periodic, then   is supercyclic. 
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                    3. Spectral and dynamic properties, relation to C*-algebras and representation theory 

In this section, we will present some improved spectral properties of         isomers. Firstly, we began 

with the following theorem:  

Theorem 3.1. The spectrum of   is made up of isolated eigenvalues with  

limited multiplicity if   represents a finite-rank operator and   is a (       )   

isometry. 

Proof: Since   is of finite rank, it can be written as 

  ∑ |𝜆𝑖|
𝑘
𝑖 1 〈𝑥𝑖  𝑦𝑖〉, where 𝑥𝑖  and 𝑦𝑖 are vectors, 𝜆𝑖 are constants, and   is the rank of  . Using the 

definition of the         isometry: 

∑     
 

   

(
 
 )    ∗   ∗      

By substituting for   its finite-order expression, we can analyze the spectral equation for  . Since   is 

finite-order, its effect on the spectrum of   is finite, leading to isolated eigenvalues of finite multiplicity. 

Theorem 3.2. If   is a fractional isometry of order 𝛼, then any orbit of   lies on a sphere in Hilbert space. 

Proof: Since   is a fractional isometry of order 𝛼,  ∗  𝐼. This means that   preserves the length of the 

vectors. Thus, for any vector 𝑥, we have:‖ 𝑥‖  ‖ ‖. So, any orbit of   lies on a sphere in Hilbert space. 

Definition 3.3. On the Hilbert space  𝑙  𝑍 , the transformation operator   is defined as follows: 

 (  )    +1where    is the standard norm of 𝑙  𝑍 , i.e.     …            …   

where   is at position  . 

Example 3.4. Let   be the shift operator on 𝑙  𝑍  and   be the multiplication operator. We want to check 

that   is         isometric if the weights satisfy certain conditions. Checking the         isometry 

condition: 

The following condition must be met: 

∑     
 

   

(
 
 ) ∗  ∗          

Let's calculate   (  ):  

 (  )    +1 . Hence,  ∗ (  ). Now, let's calculate    (  ) as follows: 

    (  )  (  )
  

  . Thus,  ∗  (  )   𝑤 ̅̅ ̅̅      . Now, compute   ∗  ∗            as follows: 

 ∗  ∗       (  )   ∗  ∗     ( 𝑘+ )   ∗  ∗  ((𝑤𝑘+ )
  

 𝑘+ )   ∗ ((𝑤𝑘+ )
  

(𝑤𝑘+ )
  

 𝑘+ )

  ∗ (∣ 𝑤𝑘+ ∣    𝑘+ )  ∣ 𝑤𝑘+ ∣    𝑘   

Now, let's substitute in the         isometry condition: 
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∑     
 

   

(
 
 ) ∣ 𝑤𝑘+ ∣    𝑘    

For this condition to be met, it must be: 

∑     
 

   

(
 
 ) ∣ 𝑤𝑘+ ∣      

Therefore, this condition specifies the weights 𝑤𝑘 that make   an         isometric. 

Theorem 3.5. If   is an         isometry and   is an invertible operator, then the  ∗-algebra 

generated by   and   contains the  ∗-algebra generated by   only. 

Proof: To prove that  ∗      ⊇   ∗   , we must prove that any factor in  ∗    is also in  ∗     . In 

other words, we must prove that  ∗     ⊆  ∗        

 ∗    consists of all linear combinations and products of   and its conjugates 

 ∗ and is closed in the factor norm. Any factor in  ∗    has the following form: 

𝑋  lim →∞ Ψ     ∗  where Ψ     ∗   is a polynomial in   and  ∗. Since   is         isometry, then:  

∑     
 

  1

(
 
 )    ∗   ∗      

This equation can be rearranged to express   in terms of   and  ∗: 

 ∗  ∗      ∑     +1

 

  1

(
 
 ) ∗  ∗        

Thus, 𝐼  ∑      +1 
   (

 
 ) ∗  ∗       . Since   is invertible,   1 exists. Now, let's multiply both sides 

of the equation by   1on the left and  ∗ 1on the right: 

  1𝐼 ∗ 1    1 (∑     +1

 

  1

(
 
 ) ∗  ∗       ) ∗ 1 

So,  

  1𝐼 ∗ 1  ∑     +1

 

  1

(
 
 ) 𝑘       ∗    1 ∗ 1 

Since   is invertible,   1 and  ∗ 1 are in  ∗       Since   is         isometric, we can express  ∗ in 

terms of   and  . This means that  ∗ can be expressed as a function of   and  . Hence,  ∗ exists in 

 ∗       

Since any polynomial Ψ     ∗   can be expressed in terms of   and  , lim →∞ Ψ     ∗  also exists in 

 ∗       So, any factor of 𝑋 in  ∗    is also in  ∗     . Therefore,   ∗    ⊆  ∗       

Theorem 3.6. If   is         isometric, then the set generated by   and   is a representation of a 

given set. 

Proof: Let 𝜒      be the set generated by   and  . This means that 𝜒      consists of all elements that 

can be obtained by multiplication, adjoint, and various combinations of   and  . To prove that 𝜒       is 

a representation of a given set, we must find a set 𝜒 and a homomorphism 𝜔: 𝜒 →  𝜒     such that the 



Maha Alaa Hussin, Journal of Al-Qadisiyah  for Computer Science and Mathematics  Vol.17.(2) 2025,pp.Math 66–74                    7 

 

image of 𝜔 is 𝜒     . In other words, we must determine the relations that satisfy   and  , and then find 

a set 𝜒 that satisfies the same relations. Since   is         isometry, it satisfies the condition: 

∑     
 

   

(
 
 )    ∗   ∗      

This equation defines a relation between   and  . Now, let us try to find a set 𝜒 that satisfies this relation. 

Let 𝜒 be the set generated by two elements 𝜉 and 𝜈, where 𝜉 corresponds to   and 𝜈 corresponds to  . 𝜉 

and 𝜈 must satisfy the following relation: 

∑     
 

   

(
 
 )𝜈  𝜉∗  𝜉∗ 𝜈    

Now, the homomorphism 𝜔: 𝜒 →  𝜒    must be defined such that: 

𝜔 𝜉       and 𝜔 𝜈     . It must be verified that 𝜔 preserves group operations, i.e.:  

𝜔 𝜉1𝜉     𝜔 𝜉1 𝜔 𝜉   

                            𝜔 𝜉^   𝜔 𝜉 ^ 

Since 𝜒 is the set generated by g and h with the given relation, and 𝜔 𝜉        and 𝜔 𝜈      satisfy the 

same relation, 𝜔 is a homomorphism. Thus, 𝜒      is the image of 𝜔, and hence a representation of the 

set 𝜒. 

 

Theorem 3.7. Let   be the       isometry on the Hilbert space H, and let   be a compact operator. If 

the spectrum of   is nonzero, then   is the   isometry. 

Proof: Since   is       isometry, then: 

∑     
 

   

(
 
 )   ∗  ∗      

Since   is a compact factor and the spectrum of   does not contain zero,   is an approximately invertible 

factor. This means that there is a sequence of factors 𝜙  

such that: 

∣∣  𝜙  𝐼 ∣∣→   𝑎 𝑑  ∣∣ 𝜙   𝐼 ∣∣→    𝑤ℎ   𝑣    → ∞ 

Now, let's multiply both sides of the       isometry equation by 𝜑 
∗  

on the left and 𝜑 
  on the right: 

𝜑 
∗ (∑     

 

   

(
 
 ) ∗  ∗     )𝜑 

    

Hence,  

∑     
 

   

(
 
 )𝜑 

∗  ∗  ∗     𝜑 
     

Thus,  

∑     
 

   

(
 
 )   𝜙  

∗   𝜙  
  ∗      

When  → ∞  then  𝜙 → 𝐼, and hence   𝜙  
∗ → 𝐼 and   𝜙  

 → 𝐼. So, ∑       
   (

 
 ) ∗     .  This 

means that   is an   isometry. 
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Theorem 3.8. Let   be the       isometry on the Hilbert space H, and let   be a normal operator. If   

satisfies the condition ∣∣   ∣∣ ∣∣  ∣∣  for all   𝑁, then   is the   isometry if and only if   is invertible. 

Proof: (→) If   is an   isometry, then   is invertible. Let   be an   isometry, i.e.: 

∑     
 

   

(
 
 ) ∗      

Since   is       isometry, then: 

∑     
 

   

(
 
 )   ∗  ∗      

If   is non-invertible, then the spectrum of   contains zero      𝜎    . Since   is a natural factor, then  

∣∣  ∣∣ 𝑠𝑢𝑝{∣ 𝜆 ∣: 𝜆  𝜎   }. If     𝜎   , then || ||     , which means that   is the zero factor (     ). 

If      , then   is a       isometry trivially, but this does not necessarily mean that   is an m-

isometry. To prove that   must be invertible, we assume the converse and arrive at a contradiction. If   is 

not invertible, then there exists a sequence of unit vectors 

𝑥 such that  ∣∣  𝑥 ∣∣→  .Applying the       isometry equation to 𝑥 , we get: 

∑     
 

   

(
 
 ) ⟨ ∗  ∗     𝑥  𝑥 ⟩    

Since, ∣∣  𝑥 ∣∣→  , all terms in the sum above tend to zero, which means that   must be a zero factor, 

which contradicts   being a non-trivial m-isometry. So,   must be invertible. 

(←) If   is invertible, then   is the   isometry: 

Let us assume that   is invertible. Then we can multiply both sides of the       isometry equation by 

  1 and  ∗ 1: 

∑     
 

   

(
 
 ) ∗ j ∗j ∗           

Thus,  ∑       
   (

 
 ) ∗     . Therefore,   is an   isometry. 

 

4.Conclusions  

The reversibility of the factor   plays a crucial role in determining whether the       isometry is also an 

  isometry. If   is reversible, the       isometry "behaves" like an   isometry. Also, if   is non-reversible, the 

      isometry may not be an   isometry, which means that there is a broader class of factors that satisfy the 

      isometry condition but are not   isomets. Furthermore, when   is a natural factor, the conditions become 

clearer. Moreover, the condition ∣∣   ∣∣ ∣∣  ∣∣  ensures that   preserves the power norm, and is true for unitary 

operators and some other operators. Finally, these results can be used to study the spectral properties and 

convergence of operators on Hilbert spaces. They can also be used in areas such as signal processing and quantum 

mechanics. 
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