

Available online at www.qu.edu.iq/journalcm JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS ISSN:2521-3504(online) ISSN:2074-0204(print)

On a Generalization of IF-Rings

Ali Jawad Majida, Akeel Ramadan Mehdib*

a Mathematical Department, Education College, University of Al-Qadisiyah, Al-Diwaniya City, Iraq. Email: edu.math.post24.17@qu.edu.iq

^b Mathematical Department, Education College, University of Al-Qadisiyah, Al-Diwaniya City, Iraq. Email: akeel.mehdi@qu.edu.iq

ARTICLEINFO

Article history: Received: 21/03/2025 Rrevised form: 07/04/2025 Accepted : 24/04/2025 Available online: 30/06/2025

Keywords:

Flat module;

Injective module;

IF-ring; Reg-flat module;

IREGF-ring.

https://doi.org/10.29304/jqcsm.2025.17.22210

1. Introduction

Throughout this paper, all modules are unitary *R*-modules, where *R* is an associative ring with identity. The class of right *R*-modules is denoted by Mod-*R* and the class of left *R*-modules is denoted by *R*-Mod. We will denote the finitely generated by the symbol f.g. A submodule *N* of M_R is said to be pure if the tensor-induced map $N \otimes_R A \to M \otimes_R A$ is injective, for any left *R*-module A [6]. According to [5], a left *R*-module *M* is called regular if all its submodules are pure. The sum of all regular submodules of $M \in Mod-R$ is denoted by Reg(M). For a submodule *N* of a module *M*, the notations $N \leq M$, (resp., $N \leq^p M$, $N \leq^{\text{reg}} M$, $N \leq^{\text{fgreg}} M$) means that *N* is a submodule (resp. pure, regular, finitely generated regular) submodule of *M*. The module $M^* = \text{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z})$, known as the character module. The symbol c.u.d.p. means closed under direct products. If $M \in \text{Mod-}R$ is pure in all modules that include it as a submodule, then *M* is called FP-injective [9]. A left R-module *M* is said to be injective, if for every left *R*-homomorphism $f: A \longrightarrow B$ (where *A* and *B* are left *R*-modules) and every left R-homomorphism $g: A \longrightarrow M$, there exists left R-homomorphism $h: B \longrightarrow M$ such that g = hf [1]. In [8], the concept of Reg-*N*-injective modules was introduced as a proper generalization of injective modules, where a left *R*-module *M* is said to be Reg-*N*-injective

ABSTRACT

In this paper, we present and investigate the notion of a right IREGF-ring as a proper generalization of the concept of a right IF-ring. A ring R is defined as a right IREGF-ring if every injective right R-module is Reg-flat. We provide numerous characterizations and explore various properties of right IREGF-rings.

MSC: 16D40, 16D50, 16E30, 16P20.

^{*}Corresponding author: Akeel Ramadan Mehdi

Email address: akeel.mehdi@qu.edu.iq

(where $N \in R$ -Mod) if every left *R*-homomorphism from any $A \leq^{reg} N$ into *M* extends to *N*. A module *M* is said to be Reg-injective, if *M* is Reg-*R*-injective. In [8], the concept of Reg-*N*-flat (resp., Reg-flat) modules were introduced as a proper generalization of *N*-flat (resp., flat) module. A module $M \in Mod$ -*R* is named Reg-*N*-flat (where $N \in R$ -Mod) if for every $B \leq^{reg} N$, exactness holds for the sequence $0 \to M \otimes_R B \to M \otimes_R N$. A module *M* is said to be Reg-flat if it is Reg-*R*-flat. We use (Reg- \mathcal{F})_{*R*} (resp., _{*R*}(Reg-I)) to denote the class of Reg-flat right *R*-modules (resp. the class of Reg-injective left *R*-modules). We use E(*M*) to denote the injective envelope of $M \in Mod$ -*R*. Colby in [2], introduced the concept of right IF-rings. If all injective right *R*-modules are flat, then ring *R* is referred to be a right IF-ring.

In this paper, we present and examine the idea of a right IREGF-ring as a proper generalization of a right IF-ring. It is said that a ring R is a right IREGF-ring if all injective right R-modules are Reg-flat. Many examples of IREGFrings are given. Many characterizations of IREGF-rings are given, for example, we show in Proposition 2.3 that for a given ring R, the following assertions are all equivalent: (1) R is a right IREGF-ring; (2) M is embedded in a Reg-flat module, for any right *R*-module *M*; (3) A Reg-flat module contains *M* embedded in it; for each injective right *R*module M; (4) E(M) is embedded in a Reg-flat module, for any $M \in Mod-R$; (5) For any right R-module M, E(M) is a Reg-flat module. Also, we prove in Proposition 2.4 that a ring R is a right IREGF-ring \Leftrightarrow All FP-injective right *R*-modules are Reg-flat \Leftrightarrow If an FP-injective right module *M* has an FP-injective submodule *N*, then *M* / *N* is a Regflat module for that module \Leftrightarrow The injective envelope of every finitely presented right R-module is Reg-flat \Leftrightarrow For *R*-module F, F^{*} is Reg-flat. In Corollary 2.5, we prove that if under direct products, $(\text{Reg-}\mathcal{F})_R$ is closed, any free left then R is a right IREGF-ring if and only if $i_K^*: (_R R)^* \to K^*$ is an $(\text{Reg}-\mathcal{F})_R$ -precover of K^* , for every f.g. regular left ideal K of R, where $i_K: K \to R$ is the inclusion mapping if and only if $(R^*)^*$ is a Reg-flat right R-module. Moreover, we prove in Proposition 2.10. that if a ring R is a right IREGF-ring and R(Reg-I) is closed under pure submodules, then _RR is a Reg-injective left R-module. Finally, in Proposition 2.13, we prove that if $(\text{Reg}-\mathcal{F})_R$ is c.u.d.p. and there is a pure exact sequence $0 \rightarrow {}_{R}R \rightarrow N \rightarrow L \rightarrow 0$ with N^* is Reg-flat, then R is a right IREGF-ring.

2. Rings over which every injective module is Reg-flat

In this section, as a generalization of right IF-ring, we introduce the concept of right IREGF-ring. **Definition 2.1.** A ring *R* is said to be a right IREGF-ring if every injective right *R*-module is Reg-flat. **Examples and Remarks 2.2.**

(1) If $\operatorname{Reg}(_{R}R) = 0$, then *R* is a right IREGF-ring.

Proof. Since $\text{Reg}_R(R) = 0$, every right *R*-module is Reg-flat and so every injective right *R*-module is Reg-flat. Hence *R* is a right IREGF-ring.

(2) It is clear that every right IF-ring is a right IREGF-ring.

(3) The converse of (2) is not true in general, for Example: \mathbb{Z} is an IREGF-ring (by (1) above). But \mathbb{Z} is not an IF-ring, since \mathbb{Q}/\mathbb{Z} is a injective \mathbb{Z} -module but it is not flat, by [4, Example (3), p. 401]. So, right IREGF-ring is a proper generalization of right IF-ring.

(4) Every regular ring is a right IREGF-ring, where a ring *R* is said to be regular if for each $a \in R$, we have a = aba for some $b \in R$ [6, p.38].

Proof. Let *R* be a regular ring. By [6, Theorem 10.4.9, p.262], all right *R*-module is flat. Hence all injective right *R*-module is Reg-flat. So *R* is an IREGF-ring.

In the following proposition, we will introduce some characterizations of a right IREGF-ring.

Proposition 2.3. Let *R* be a ring. Then the following statements are equivalent:

(1) *R* is a right IREGF-ring.

(2) *M* is embedded in a Reg-flat module, for any right *R*-module *M*.

(3) *M* is embedded in a Reg-flat module, for any injective right *R*-module *M*.

(4) *E*(*M*) is embedded in a Reg-flat module, for any right *R*-module *M*.

(5) *E*(*M*) is a Reg-flat module, for any right *R*-module *M*.

Proof. (2) \Rightarrow (3) and (3) \Rightarrow (4) are obvious.

(1) \Rightarrow (2). Let *M* be a right *R*-module. Thus, there is a right *R*-monomorphism $\alpha: M \to E(M)$, where E(M) is the injective envelope of *M*. By hypothesis, E(M) is a Reg-flat module. Thus *M* is embedded in a Reg-flat module.

(4) \Rightarrow (5). Let *M* be a right *R*-module. By hypothesis, there is a right *R*-monomorphism $\alpha: E(M) \rightarrow L$, where *L* is Reg-flat and hence $E(M) \cong \alpha(E(M))$. Since E(M) is injective, by [1, Proposition 5.1.2, p.135], $\alpha(E(M))$ is a summand of *L*. Since *L* is Reg-flat, we have that $\alpha(E(M))$ is Reg-flat. Hence E(M) is a Reg-flat module.

(5) ⇒ (1). Let $M \in Mod$ -R with M is an injective right R-module. Since M is injective, then M = E(M). By (5), E(M) is a Reg-flat module and hence M is a Reg-flat module. Thus, R is a right IREGF-ring. □

We provide more characterizations of IREGF-ring in the following result.

Proposition 2.4. For a ring *R*, the next conditions are equivalent.

(1)*R* is a right IREGF-ring.

(2) E(M) is Reg-flat, for any finitely presented right *R*-module *M*.

(3) *F*/*K* is a submodule of a f.g. free module, for any f.g. free right *R*-module *F* and a cyclic regular submodule *K* of *F*.

(4)All FP-injective right *R*-modules are Reg-flat.

(5)*M*/*L* is Reg-flat, for any FP-injective right module *M* and an $L \leq^{p} M$.

(6) M/L is Reg-flat, for any FP-injective right module M and any FP-injective submodule L of M.

(7) *F*^{*} is Reg-flat, for any free left *R*-module *F*.

Proof. (1) \Rightarrow (2). Let $M \in Mod \cdot R$ with M is finitely presented. Thus, E(M) is a Reg-flat module, by Proposition 2.3.

(2) \Rightarrow (3). Let M = F/K, where *F* is a f.g. free right *R*-module and $K \leq^{reg} F$ with *K* is cyclic. Thus, there is a monomorphism $\alpha: M \rightarrow E(M)$. By (2), E(M) is a Reg-flat module. Thus, α factors through a module, say F_1 , is f.g. free and hence there is a $f \in \text{Hom}_R(M, F_1)$, $g \in \text{Hom}_R(F_1, E(M))$ such that $\alpha = gf$. Since α is a monomorphism, *f* is a monomorphism and hence $M \leq F_1$.

(3) \Rightarrow (4). Given a right *R*-homomorphism $\alpha: F/K \rightarrow M$ with an FP-injective right *R*-module *M*, where *F* is any f.g. free right *R*-module and *K* is any cyclic regular submodule of *F*. By hypothesis, $F/K \leq F_1$, with F_1 is f.g. free. Thus, we have the following diagram:

where *i* (resp. π) is the inclusion (resp. natural epimorphism). Since F_1 is a f.g. free and F/K is a f.g. module, we have $F_1/(F/K)$ is a finitely presented module. Since *M* is FP-injective, it follows from [12, 35.1(c), p.297] that *M* is injective with respect to the sequence $0 \longrightarrow F/K \xrightarrow{i} F_1 \longrightarrow F_1/(F/K) \longrightarrow 0$ and hence there is a homomorphism $\lambda: F_1 \longrightarrow M$ such that $\lambda i = \alpha$. Thus, α factors through a f.g. free module F_1 and hence *M* is a Reg-flat module.

(4) ⇒ (5). Let *M* be an FP-injective right *R*-module and $L \leq^p M$. By hypothesis, *M* is Reg-flat. By [8, Corollary 2.5], *M*/*L* is a Reg-flat module.

(5) ⇒ (6). Let *L* be an FP-injective submodule of an FP-injective right *R*-module *M*. By [9, p.561], $L \leq^{p} E(L)$ (resp. $M \leq^{p} E(M)$). Since E(L) is an injective submodule of E(M), we have from [1, Proposition 5.1.2, p.135] that E(L) is a summand of E(M) and hence $E(L) \leq^{p} E(M)$. Since $L \leq^{p} E(L)$, we have from [12, 33.3(1), p.276] that $L \leq^{p} E(M)$. Since $L \leq M \leq E(M)$, we have from [12, 33.3(2), p. 276] that $L \leq^{p} M$. By (5), M/L is Reg-flat.

(6) \Rightarrow (7). If *F* is a free left *R*-module, we have from [7, Theorem, p. 239] that *F*^{*} is an injective right *R*-module. Since < 0 > is an injective module, we have < 0 > and *F*^{*} are FP-injective modules. By (6), *F*^{*}/< 0 > is a Reg-flat module. Since *F*^{*} \cong *F*^{*}/< 0 >, we have that *F*^{*} is a Reg-flat module.

 $(7) \Rightarrow (1)$. Let *M* be any injective right *R*-module. Thus, *M*^{*} is a left *R*-module. By [11, Proposition 2.5, p. 10], $M^* \cong F/K$, where *F* is a free left *R*-module. Thus, there is an epimorphism $\alpha: F \to M^*$. By hypothesis, *F*^{*} is Reg-flat. By [3, Lemma 17-1.7(i), p. 361] $\alpha^*: M^{**} \to F^*$ is a monomorphism. By [3, Corollary 17-1.5, p. 360], there a monomorphism $\beta: M \to M^{**}$. Hence $\alpha^*\beta: M \to F^*$ is a monomorphism. Since *M* is injective, $\alpha^*\beta(M)$ is a direct summand of *F*^{*} and hence $\alpha^*\beta(M)$ is a Reg-flat module. Since $M \cong \alpha^*\beta(M)$, we have that *M* is a Reg-flat module. Thus *R* is a right IREGF-ring. \Box

A homomorphism $\alpha: A \to M$ is called \mathcal{F} -precover of a right R-module M where $\mathcal{F} \subseteq Mod-R$ and $A \in \mathcal{F}$ if, for any $g \in Hom_R(K, M)$ such that $K \in \mathcal{F}$, there is a $h \in Hom_R(L, A)$ with $\alpha h = g$ [1, p.244].

Corollary 2.5. If $(\text{Reg-}\mathcal{F})_R$ is c.u.d.p., then the next statements are equivalent:

(1) *R* is a right IREGF-ring.

(2) $(_{R}R)^*$ is Reg-flat.

(3) $i_K^*: (_RR)^* \to K^*$ is a $(\operatorname{Reg}-\mathcal{F})_R$ -precover of K^* , for every f.g. regular left ideal K of R, where $i_K: K \to R$ is the inclusion mapping.

Proof. (1) \Rightarrow (2). Since $_{R}R$ is a free left *R*-module, $(_{R}R)^{*}$ is Reg-flat (by Proposition 2.4).

(2) \Rightarrow (3). Let *K* be a f.g. regular left ideal of *R*. By [3, Lemma 17-1.7(ii), p. 361], $i_K^*: (_RR)^* \to K^*$ is an epimorphism. By (2), $(_RR)^*$ is Reg-flat. Let B is a Reg-flat right *R*-module, then the sequence $0 \to B \otimes_R K \xrightarrow{I_B \otimes_R i_K} B \otimes_R R$ is exact. By [3, Lemma 17-1.7(ii), p. 361], the sequence $(B \otimes_R R)^* \xrightarrow{(I_B \otimes_R i_K)^*} (B \otimes_R K)^* \to 0$ is exact. By [10, Theorem 2.75, p. 92], the sequence $\text{Hom}_R(B, (_RR)^*) \to \text{Hom}_R(B, K^*) \to 0$ is exact. Thus $i_K^*: (_RR)^* \to K^*$ is a (Reg- \mathcal{F})_R-precover of K^* .

(3) ⇒ (1). Suppose that $i_K^*: ({}_RR)^* \to K^*$ is a $(\text{Reg}-\mathcal{F})_R$ -precover of K^* , for every $K \leq {}^{fgreg}{}_RR$. Thus, $({}_RR)^*$ is a Reg-flat right *R*-module. Let *F* be a free left *R*-module. Thus $F \cong {}_RR^{(I)}$, for some index set *I*. Thus $F^* \cong ({}_RR^{(I)})^* \cong (({}_RR)^*)^I$ by [7, Lemma 4.3.3, p. 86]. By hypothesis, $(({}_RR)^*)^I$ is Reg-flat and hence F^* is Reg- flat. By Proposition 2.4, *R* is a right IREGF-ring. □

It is essay to prove the following lemma:

Lemma 2.6. The class (Reg- \mathbb{F})_R is c.u.d.p. if and only if $(_{R}(\text{Reg-}\mathbb{I}))^* \subseteq (\text{Reg-}\mathbb{F})_{R}$.

Corollary 2.7. If $_RR$ is a Reg-injective left *R*-module and $(\text{Reg-}\mathcal{F})_R$ is c.u.d.p., then *R* is a right IREGF-ring.

Proof. Let $_RR$ be a Reg-injective left R-module. Since $(\text{Reg-}\mathcal{F})_R$ is c.u.d.p. (by hypothesis), $(_RR)^*$ is Reg-flat (by Lemma 2.6). By Corollary 2.5, R is a right IREGF-ring. \Box

Let $N \in R$ -Mod and $M \in Mod-R$. For any index set I, define $\varphi_N : M^I \otimes_R N \to (M \otimes_R N)^I$ by $\varphi((m_\alpha)_{\alpha \in I} \otimes_R n) = (m_\alpha \otimes_R n)_{\alpha \in I}$, for any $n \in N$, $(m_\alpha)_{\alpha \in I} \in M^I$. Thus φ_N is a natural homomorphism, by [2, p. 241].

Proposition 2.8. Let U_R be a Reg-flat module. Then the following statements are equivalent:

(1) U^S is a Reg-flat right *R*-module, for every index set *S*.

(2) For any index set *S* and $K \leq^{fgreg} R$, the natural homomorphism $\varphi_K : U^S \otimes_R K \to (U \otimes_R K)^S$ is an isomorphism.

Proof. (1) \Rightarrow (2). Let $K \leq^{fgreg} {}_{R}R$. Since U and U^{S} are Reg-flat right R-modules, we have from [8, Corollary 2.7] that the sequences: $0 \rightarrow U \otimes_{R} K \xrightarrow{I_{U} \otimes_{R} i_{K}} U \otimes_{R} R \xrightarrow{I_{U} \otimes_{R} \pi_{K}} U \otimes_{R} (R/_{K}) \rightarrow 0$ and $0 \rightarrow U^{S} \otimes_{R} K \xrightarrow{I_{U} \otimes \otimes_{R} i_{K}} U^{S} \otimes_{R} R$ $\xrightarrow{I_{U} \otimes \otimes_{R} \pi_{K}} U^{S} \otimes_{R} (R/_{K}) \rightarrow 0$ are exact, where I_{U}, i_{K} and π_{K} are the identity homomorphism, the inclusion mapping and natural epimorphism, respectively. Thus, we get the next commutative diagram:

with exact rows. Since $_RR$ and R/K are finitely presented left R-modules, it follows from [1, Proposition 5.3.15, p. 161] that φ_R and $\varphi_{(R/K)}$ are isomorphisms. By [1, Problem 12(b), p.88], φ_K is an epimorphism. Since $I_U \otimes i_K$ and φ_R are monomorphism, we have φ_K is a monomorphism. Thus, φ_K is an isomorphism.

(2) \Rightarrow (1). Let *K* be any f.g. regular left ideal of *R*. Thus, we have the following commutative diagram:

Since *U* is Reg-flat, we have from [8, Corollary 2.7] that the sequence $0 \rightarrow U \otimes_R K \xrightarrow{I_U \otimes_R} U \otimes_R R$ is exact and hence the sequence: $0 \rightarrow (U \otimes_R K)^S \xrightarrow{(U \otimes_R R)^S} (U \otimes_R R)^S$ is exact. Since $_R R$ is a finitely presented left *R*-module, we have from [1, Proposition 5.3.15, p.161] that φ_R is an isomorphism. By hypothesis, φ_K is an isomorphism. Thus, the sequence $0 \rightarrow U^S \otimes_R K \xrightarrow{I_U \otimes \otimes_R k} U^S \otimes_R R$ is exact and so for any index set *S*, U^S is Reg-flat (by [8, Corollary 2.7]).

Proposition 2.9. If *R* is a right IREGF-ring, then for every $K \leq^{fgreg} R$ and for any index set *I*, the natural homomorphism $\varphi_K : ((R^n)^*)^I \otimes_R K \to ((R^n)^* \otimes_R K)^I$ is an isomorphism.

Proof. Suppose that *R* is a right IREGF-ring. By Proposition 2.4, $(_R R^{(I)})^*$ is a Reg-flat right *R*-module, for any index set *I*. Since $((_R R)^*)^I \cong (_R R^{(I)})^*$ (by [6, Lemma 4.3.3, p.86]), it follows that $((_R R)^*)^I$ is a Reg-flat right *R*-module. Hence, the natural homomorphism $\varphi_K: ((_R R)^*)^I \otimes_R K \to ((_R R)^* \otimes_R K)^I$ is an isomorphism, for any index set *I*, by Proposition 2.8. \Box

The following proposition discuss the converse of Proposition 2.9.

Proposition 2.10. If the right *R*-module $(_RR)^*$ is Reg-flat and the natural homomorphism $\varphi_K: ((_RR)^*)^I \otimes_R K \to ((_RR)^* \otimes_R K)^I$ is an isomorphism, for any $K \leq ^{fgreg} R$ and for an index set *I*, then *R* is a right IREGF-ring.

Proof. Suppose that *F* is a free left *R*-module, thus $F \cong ({}_{R}R)^{(I)}$, for an index set *I*. By hypothesis, the natural homomorphism $\varphi_{K}: (({}_{R}R)^{*})^{I} \otimes_{R} K \longrightarrow (({}_{R}R)^{*} \otimes_{R} K)^{I}$ is an isomorphism, for each $K \leq {}^{fgreg}{}_{R}R$. Since $({}_{R}R)^{*}$ is Reg-flat, $(({}_{R}R)^{*})^{I}$ is Reg-flat (by Proposition 2.8). Since $F^{*} \cong (({}_{R}R)^{(I)})^{*} \cong (({}_{R}R)^{*})^{I}$ (by [6, Lemma 4.3.3, p. 86]), it follows that F^{*} is a Reg-flat right *R*-module. By Proposition 2.4, *R* is a right IREGF-ring. \Box

Proposition 2.11. If a ring *R* is a right IREGF-ring and the class of Reg-injective left *R*-modules $_R$ (Reg-I) is closed under pure submodules, then $_RR$ is a Reg-injective left *R*-module.

Proof. Suppose that *R* is a right IREGF-ring. By Proposition 2.4, $(_RR)^*$ is a Reg-flat right *R*-module. By [8, Theorem 2.3], $(_RR)^{**}$ is a Reg-injective left *R*-module. Since $_RR \leq^p (_RR)^{**}$ and $_R(\text{Reg-I})$ is closed under pure submodule, we have $_RR$ is Reg-injective. \Box

Proposition 2.12. If $(\text{Reg-}\mathcal{F})_R$ is c.u.d.p. and there is a pure exact sequence $0 \rightarrow {}_R R \xrightarrow{\alpha} A \xrightarrow{\beta} K \rightarrow 0$ with A^* is Reg-flat, then *R* is a right IREGF-ring.

Proof. Let $0 \to {}_{R}R \xrightarrow{\alpha} A \xrightarrow{\beta} K \to 0$ be a pure exact sequence, with A^* is Reg-flat. By [3, 18-2.13, p. 378], the sequence $0 \to K^* \xrightarrow{\beta^*} A^* \xrightarrow{\alpha^*} ({}_{R}R)^* \to 0$ is split. By [3, 1-4.4, p.11], $A^* = \beta^*(K^*) \oplus D$, for some $D \le A^*$ with $D \cong ({}_{R}R)^*$. Since A^* is Reg-flat (by hypothesis), we get from [8, Corollary 2.5] that D is Reg-flat. Since $D \cong ({}_{R}R)^*$, we have $({}_{R}R)^*$ is Reg-flat. By Corollary 2.5, R is a right IREGF-ring. \Box

References

^[1] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, Berlin-New York, 1974.

^[2] R. R. Colby, Rings which have flat injective modules, J. Algebra, 35(1975), pp. 239-252.

^[3] J. Dauns, Modules and rings, Cambridge University Press, Cambridge, 1994.

^[4] D. S. Dummit and R. M. Focte, Abstract algebra, 3rdn, John Viley and sons Inc, New Jersey, 2004.

^[5] D. J. Fieldhouse, Regular rings and modules, J. the Australian Math. Soc., 13(4), (1972), pp. 477-491.

^[6] F. Kasch, Modules and rings, Academic Press, New York, 1982.

^[7] J. Lambek, A module is flat if and only if its character module is injective, Canad. Math. Bull., 7(2) (1964), pp. 237-243.

^[8] A. J. Majid and A. R. Mehdi, Reg-N-flat modules, International Journal of Mathematics and Computer Science, 20(2) (2025), pp. 619-624.

^[9] C. Megibben, Absolutely pure modules, Proc. Amer. Math. Soc., 26(4) (1970), pp. 561-566.

^[10] J. J. Rotman, An introduction to homological algebra, Springer, 2009.

^[11] B. Stenstöm, Rings of quotients, Springer, New York, 1975.

^[12] R. Wisbauer, Foundations of module and ring theory, Gordon and Breach, 1991.