Combinatorial Realizability Of The New Exact Sequence

*Dheia G.S.Al-Khafaji and **Raymond N. Shekoury

* Department of Math., College Science of Computer and Mathematic , AL-Qadisiya University .

** Department of Math., College of Science, Baghdad University.

ABSTRACT

In this work we introduce and study the generalization of combinatorial realizability of J.H.C.Whitehead and a new notion analogous of $J_{\rm m}\text{-}complex}$, which we call $J_{\rm m,q}\text{-}complex}$.

Consider the following sequence :

$$\xrightarrow{\boldsymbol{\sigma}_{p+1,q}} \begin{array}{c} \boldsymbol{\sigma}_{p,q} \\ \downarrow \\ \rightarrow \pi_{p+q+1}(k^{p+1},k^p) \rightarrow \pi_{p+q}(k^p) \xrightarrow{j_{p,q}} \\ \pi_{p+q}(k^p,k^{p-1}) \xrightarrow{\boldsymbol{\beta}_{p,q}} \\ \pi_{p+q+1}(k^{p-1}) \rightarrow \end{array} \begin{array}{c} \boldsymbol{\sigma}_{p,q} \\ \downarrow \\ \downarrow \\ \pi_{p+q+1}(k^{p-1},k^p) \rightarrow \end{array}$$

Denote $\pi_{p+q}(k^p, k^{p-1})$ by $C_{p,q}$ and $\pi_{p+q}(k^p)$ by $A_{p,q}$ {In case q < -p, then $C_{p,q} = A_{p,q} = 0$, by the convertion a mong algbraic topologists to assume $\pi_n(X, A) = 0$ and $\pi_n(X) = 0$ if $n \le 0$ }

The above sequence { T_q } is called a composite chain system, if the following tow conditions are satisfied; (1) $C_{p,q} = A_{p,q} = 0$ if $_p < 2$, and

(2) each $C_{p,q}$ is a free abelain group. Denote

${j}_{{}_{p-1,q}}\circ {\beta}_{{}_{p,q}}$	by	$\sigma_{\scriptscriptstyle p,q}$
ker $\sigma_{_{p,q}}/{ m Im}\sigma_{_{p+1,q}}$	by	$\mathbf{H}_{p,q}$
$\ker j_{p,q}$	by	$\Gamma_{p,q}$
$\pi_{p+q}(k^p)/\mathrm{Im}eta_{p+1,q}$	by	$\Sigma_{p,q}$

and

$$\mathbf{E}_{\mathbf{q}}^{-}: \ \cdots \ \rightarrow \mathbf{H}_{\mathbf{p+1},\mathbf{q}}^{-} \ \rightarrow \mathbf{\Gamma}_{\mathbf{p},\mathbf{q}}^{-} \ \rightarrow \sum_{\mathbf{p},\mathbf{q}}^{-} \ \rightarrow \mathbf{H}_{\mathbf{p},\mathbf{q}}^{-} \ \rightarrow \ \cdots \ \rightarrow \ \mathbf{H}_{\mathbf{2},\mathbf{q}}^{-} \ \rightarrow \mathbf{0}$$

be an exact sequence in which the groups are abelain.

A composite chain system T_q will be called a combinatorial realization of E_q^- if and only if $E_q(K)$ is isomorphic to E_q^- .

We obtain some results, which are;

Under certain condition the "a new exact sequence" has a combinatorial realization.

If K is a complex and $A_{p,q} = \pi_{p+q} (K^p)$, then $i_{p,q}: A_{p-1,q+1} \to A_{p,q}$, maps $A_{p-1,q+1}$ onto 0,

 $\forall_{p=2,3,4,\cdots,m} \iff K \text{ is a } J_{m,q}\text{-complex}$. If K is a $J_{m,q}\text{-complex}$, then $\sum_{p,q} \cong H_{p,q} \quad \forall_{p=1,2,3,\cdots,m} \text{ and } \mu_{m+1,q} \text{ is onto.}$

INTRODUCTION

This work is inspired by the papers of "combinatorial homotopy I", and "combinatorial homotopy II" of J.H.C.Whitehead, [W1] and [W2], respectively. We introduce in it a generalization of the main concept of that papers.

This work contains two sections;In first section,we introduce the generalization of the combinatorial realizability and $J_{m,q}\text{-}$ complex . In second section , we establish some results about combinatorial realizability and the $J_{m,q}\text{-}\text{complex}$.

Section(1) "Definitions"

We mean by the term "complex" in the sequel "connected cw-complex". Let k be a cw-complex ,

where $\pi_{p+q}(k^p, k^{p-1})$ by $C_{p,q}$ and $\pi_{p+q}(k^p)$ by $A_{p,q}$ { In case q < -p, then $C_{p,q} = A_{p,q} = 0$, by the convention a mong algebraic topologists to assume

 $\pi_n(X, A) = 0$ and $\pi_n(X) = 0$ if $n \le 0$ } Now, consider the following sequence;

 $\begin{array}{l} T_q: \cdots \rightarrow C_{p+1,q} \xrightarrow{\beta_{p+1,q}} A_{p,q} \xrightarrow{j_{p,q}} C_{p,q} \xrightarrow{\beta_{p,q}} A_{p-1,q} \rightarrow \cdots \\ where \qquad \beta_{p,q} \ , \qquad j_{p,q} \quad are \ the \ homotopy \\ boundary \ and \ the \ real ativizing \ operators \ , respectively \ . \end{array}$

The system T_q is called a composite chain system, if the following tow conditions are satisfied;

(1) $C_{p,q} = A_{p,q} = 0$ if p < 2, and

(2) each $C_{p,q}$ is a free abelain group.

The a new exact sequence $E_q(k)$ induced by T_q as follows;

⁽¹⁾ $E_q(k) : \dots \to H_{p+1,q} \xrightarrow{\gamma_{p+1,q}} \Gamma_{p,q} \xrightarrow{\varphi_{p,q}} \sum_{p,q} \xrightarrow{\mu_{p,q}} H_{p,q} \to \dots$ Where $j_{p-1,q} \circ \beta_{p,q} \qquad by \quad \sigma_{p,q}$ $\ker \sigma_{p,q} / im \sigma_{p+1,q} \qquad by \quad H_{p,q}$ $\ker j_{p,q} \qquad by \quad \Gamma_{p,q}$ $\pi_{p+q}(k^p) / im \beta_{p+1,q} \qquad by \quad \sum_{p,q}$ Let $E_q^- : \dots \to H_{p+1,q}^- \to \Gamma_{p,q}^- \to \sum_{p,q}^- \to H_{p,q}^- \to \dots \to H_{2,q}^- \to 0$

be an exact sequence in which the groups are abelain . A composite chain system T_q will be called a

combinatorial realization of E_q^- iff $E_q(k)$ is isomorphic to E_q^- .

⁽¹⁾ Let $E_q = E_q(k)$, $E_q^- = E_q(k^-)$, where T_q and T_q^- are composite chain system. If a homomorphism $\varepsilon(q): E_q \to E_q^-$ is induced by a homomorphism $\delta(q) = (h_q, f_q): T_q \to T_q^-$, we shall call $\delta(q)$ a combinatorial realization of $\varepsilon(q)$.

⁽²⁾ We say that a complex k is a $J_{m,q}$ - complex if $\ker j_{p,q} = 0 \quad \forall p = 2,3,4,\cdots,m$.

Section (2) "results and conclusion"

We obtain some results . some of these results purely algebraic and others depend on topology of space . we use the " a new exact sequence " mention in [Dh] . we will write some of these results without proof .

<u>Theorem 1</u>

 E_q^- has a combinatorial realization. <u>**Proof**</u>

the proof consists of two stage . the first is to construct

⁽¹⁾ Borrowing from [Dh] the our symbols .

⁽²⁾ In an analogous terminology of J.H.C.Whitehead ,see[W1].

a convenient composite chain system, the second is to prove that auch a construction is a realization of E_a^- .

We start with the second stage, that is assuming the construction is already done. Thus we are assuming that we have at our disposal.

Assume that T_q is a composite chain system which is

constructed and a homomorphisms $l^*_{p+1,q}: Z_{p+1,q} o H^-_{p+1,q}$, $\gamma_{p,q}: \Gamma_{p,q} \approx \Gamma_{p,q}^$ and $t_{p,q}^*$: $A_{p,q} \rightarrow \sum_{p,q}^-$. are given, for every $p = 1, 2, 3, \cdots$ such that the following condition are satisfied; (*) (c1) $(\gamma_{p+1,q}^{-} \circ l_{p+1,q}^{*})(z) = (\vartheta_{p,q} \circ \beta_{p+1,q})(z) \quad \forall z \in \mathbb{Z}_{p+1,q}.$ (c2) $(\varphi_{p,q}^- \circ \vartheta_{p,q})(x) = t_{p,q}^*(x) \quad \forall x \in \Gamma_{p,q} \text{ and }$ $(c3) \quad \left(\mu_{p,q}^{-} \circ t_{p,q}^{*}\right)(x) = \left(l_{p,q}^{*} \circ j_{p,q}\right)(x) \quad \forall x \in A_{p,q} \quad .$ (**) $\begin{array}{rcl} (r1) & l_{p,q}^* \big(Z_{p+1,q} \big) &= & H_{p+1,q}^- & . \\ (r2) & \sigma_{p+1,q} \big(C_{p+1,q} \big) &= & \ker l_{p,q}^* & . \end{array}$ and (r3) $\beta_{p+1,q}(C_{p+1,q}) \subset \ker t_{p,q}^*$ Then it follows from {**} that one can determine homomorphisms $\begin{array}{ll} \tau_{p+1,q}: \ H_{p+1,q} \to H_{p+1,q}^- & for \quad p=1,2,3, \dots \\ \rho_{p,q}: \ \sum_{p,q} \to \sum_{p,q}^- & for \quad p=1,2,3, \dots \\ by \quad \tau \circ l = \ l^* \quad and \quad \rho \circ t = \ t^* \quad , \end{array}$ where $H_{p+1,q}$, $\sum_{p,q}$ are in $E_q = E_q(k)$, and $l : Z_{p+1,q} \rightarrow H_{p+1,q}$ is defined by l(z) = [z], $t : A_{p,q} \rightarrow \sum_{p,q}$ is defined by t(x) = [x]. Clearly $\tau_{p+1,q}$ by $\{**\}$ is an isomorphism. Consider the following diagram;

It is easy to show that this diagram commutes in

each square by simply chasing the diagram and utilizing {*} and {**}. Therefore $\varepsilon(q) = (\vartheta_q, \rho_q, \tau_q) : E_q \to E_q^-$ is a homomorphism. Since $\tau_{p+1,q}, \vartheta_{p,q}, \tau_{p,q}$ and $\vartheta_{p,q}$ are isomorphism for every p, so is $\rho_{p,q}$, (by the five lemma theorem, see [H]).

Now we turn to the first stage namely the construction stage. The proof is by induction on p. Starting with $C_{1,a} = A_{0,a} = 0$.

Let $p \ge 1$, and assume that we have constructed the groups and homomorphisms ;

 $\begin{array}{cccc} C_{p,q} \xrightarrow{\beta_{p,q}} A_{p-1,q} \xrightarrow{j_{p-1,q}} C_{p-1,q} \to \cdots \to C_{1,q} \xrightarrow{\beta_{1,q}} A_{0,q} \, . \\ Likewise \ l_{n+1,q}^* \ and \ t_{n,q}^* \ are \ also \ constructed \ satisfying \$

{*} and {**}, for n = 0, 1, 2, 3, ..., p - 1.

We need to construct $A_{p,q}$ and $j_{p,q}$ this task is carried as follows ;

We define $A_{p,q}$ and $j_{p,q}$ as follows; $A_{p,q} = \Gamma_{p,q}^{-} \otimes \ker \beta_{p,q}$ and $j_{p,q} : A_{p,q} \to C_{p,q}$

 $by \quad j_{p,q}(e,b) = b \quad for \ e \in \Gamma_{p,q}^{-} \ and \ b \in \ker \beta_{p,q} \ .$

It is easy to show that ; $j_{p,q}$ is well – defined , and since $C_{p,q}$ is a free abelian group so is ker $\beta_{p,q}$. Let $\{b_i\}$

be a family of generators of ker $\beta_{p,q}$ indexed by a set I, it follows from {*} when n = p - 1, that $(\gamma_{p,q}^{-\circ} l_{p,q}^{*})(j_{p,q}(b_i)) = (\vartheta_{p-1,q}^{\circ} \beta_{p,q})(j_{p,q}(b_i))$ $= \vartheta_{p-1,q} (\beta_{p,q}(j_{p,q}(b_i)))$

 $l_{p,q}^{*}(j_{p,q}(b_{i})) \in \ker \gamma_{p,q}^{-} = Im \mu_{p,q}^{-}$. ⇒ Therefore, there is for each b_i an $x_i^- \in \sum_{p,q}^-$, $l_{p,q}^{*}(j_{p,q}(b_i)) = \mu_{p,q}^{-}(x_i^{-})$. such theat By axiom of choice we choose an x_i^- for each b_i and will denote such x_i^- by $c(b_i)$. We define $t_{p,q}^*: A_{p,q} \longrightarrow \sum_{p,q}^{-} by$ $t_{p,q}^* (e, b_i) = \left(\varphi_{p,q}^- \circ \vartheta_{p,q}\right)(e) + x_i^- \text{ , where } x_i^- \text{ is } c(b_i)$ Then $\mu^-_{p,q}\left(t^*_{p,q}(e,b_i) \right) = \mu^-_{p,q}\left(\left(\varphi^-_{p,q} \circ \vartheta_{p,q} \right)(e) + x_i^- \right)$ $= \mu_{p,q}^{-} \left(\left(\varphi_{p,q}^{-} \circ \vartheta_{p,q} \right)(e) \right) + \mu_{p,q}^{-}(x_{i}^{-}) \\ = 0 + \mu_{p,q}^{-}(x_{i}^{-})$ $= l_{p,q}^*(j_{p,q}(b_i))$ $= l_{p,q}^{*}(j_{p,q}(e)) + l_{p,q}^{*}(j_{p,q}(b_{i}))$ $= \iota_{p,q}(J_{p,q})$ $= (l_{p,q}^* \circ j_{p,q})(e, b_i)$

Therefore

(1)
$$\cdots (\mu_{p,q}^{-} \circ t_{p,q}^{*})(x) = (l_{p,q}^{*} \circ j_{p,q})(x) \quad \forall x \in A_{p,q}$$

(2) $\cdots t_{p,q}^{*}(e) = (\varphi_{p,q}^{-} \circ \vartheta_{p,q})(e) \quad \forall e \in \Gamma_{p,q}^{-}$

Therefore conditions (c2) and (c3)in {*}are satisfied. Now it remains to construct $C_{p+1,q}$ and $\beta_{p+1,q}$, thus will be done, as follows;

Let $\{y_m\}$ be a family of generators of $H^-_{p+1,q}$ indexed by a set M .

Let $Z_{p+1,q}$ be the free abelian group over a family $\{z_m\}$ which is in one - to - one correspondence with $\{y_m\}$.

Let $l_{p+1,q}^*: Z_{p+1,q} \to H_{p+1,q}^-$, be defined by $l_{p,q}^*(z_m) = y_m$ then $l_{p+1,q}^*(Z_{p+1,q}) = H_{p+1,q}^-$. We define $C_{p+1,q} = Z_{p+1,q} \otimes \ker l_{p,q}^*$. Since $C_{p,q}$ is a free abelian group, so is $\ker l_{p,q}^*$, hence $C_{p+1,q}$ is a free abelian group .

= 0 .

Let
$$\{r_{a}\}$$
 be a family of generators of ker $l_{p,q}^{*}$ indexed
by a set D, it follows from $\{*\}$, when $n = p - 1$, that
 $\beta_{p,q}(r_{d}) = \vartheta_{p-1,q}^{-1}\left(\left(\gamma_{p,q}^{-}\circ l_{p,q}^{*}\right)(r_{d})\right)\right)$
 $= \vartheta_{p-1,q}^{-1}\left(\gamma_{p,q}^{-}\left(l_{p,q}^{*}(r_{d})\right)\right)$
 $= 0$
 $\Rightarrow r_{d} \in \ker \beta_{p,q} = j_{p,q}(A_{p,q})$.
Therefore, there is for each r_{d} an $a_{d} \in A_{p,q}$, such
that $j_{p,q}(a_{d}) = r_{d}$.
By axiom of choice we choose an a_{d} for each r_{d}
and we will denote such a_{d} by $c(r_{d})$.
From (1), we have
 $\left(\mu_{p,q}^{-}\circ t_{p,q}^{*}\right)(a_{d}) = \left(l_{p,q}^{*}\circ j_{p,q}\right)(a_{d}\right)$
 $= l_{p,q}^{*}(I_{p,q}(a_{d}))$
 $= l_{p,q}^{*}(r_{d})$
 $= 0$
 $\Rightarrow t_{p,q}^{*}(a_{d}) \in \ker \mu_{p,q} = Im \varphi_{p,q}^{-}$
Therefore, there is for each a_{d} an $e_{d}^{-} \in \Gamma_{p,q}^{-}$,
such that $t_{p,q}^{*}(a_{d}) = \varphi_{p,q}^{*}(e_{d}^{-})$.
By axiom of choice we choose an e_{d}^{-} for each
 a_{d} and we will denote such e_{d}^{-} by $c(a_{d})$.
From (2), we have $t_{p,q}^{*}(a_{d}) = t_{p,q}^{*}(e_{d})$, where
 $e_{d} = \vartheta_{p,q}^{-1}(e_{d}^{-})$.
 $t_{p,q}^{*}\left(\left(\vartheta_{p,q}^{-1}\circ \gamma_{p+1,q}^{-}\right)\left(l_{p+1,q}^{*}(z)\right)\right)$
 $= \left(\varphi_{p,q}^{-}\circ \vartheta_{p,q}\right)\left(\left(\vartheta_{p,1}^{*-1}\circ \gamma_{p+1,q}^{-}\right)\left(l_{p+1,q}^{*}(z)\right)\right)$
 $= 0$.
Now, we define $\beta_{p+1,q}: C_{p+1,q} \to A_{p,q}$, by
 $\beta_{p+1,q}(z,r_{d}) = \left(\vartheta_{p,q}^{-1}\circ \gamma_{p+1,q}^{-}\right)\left(l_{p+1,q}^{*}(z)\right) + (a_{d} - e_{d})$.

where
$$a_d$$
 is $c(r_d)$ and e_d dependent on choose of a_d .
Then $\varphi_{p+1,q}(z,r_d) = (j_{p,q} \circ \beta_{p+1,q})(z,r_d)$
 $= j_{p,q} \left(\beta_{p+1,q}(z,r_d)\right)$
 $= j_{p,q} \left(\left(\vartheta_{p,q}^{-1} \circ \gamma_{p+1,q}^{-}\right)\left(l_{p+1,q}^*(z)\right)\right) + j_{p,q}(a_d - e_d)$
 $= 0 + j_{p,q}(a_d)$
 $= r_d$.

Therefore $\ker \varphi_{p,q} = Z_{p+1,q} \quad and \quad \varphi_{p+1,q} (C_{p+1,q}) = \ker l_{p,q}^* .$ Also $t_{p,q}^* (\beta_{p+1,q}(z, r_d))$

$$= t_{p,q}^{*} \left(\left(\vartheta_{p,q}^{-1} \circ \gamma_{p+1,q}^{-} \right) \left(l_{p+1,q}^{*}(z) \right) \right) + t_{p,q}^{*}(a_{d} - e_{d})$$

= 0 + $t_{p,q}^{*}(a_{d} - e_{d})$
= 0

Then
$$\beta_{p+1,q}(C_{p+1,q}) \subset \ker t_{p,q}^*$$
 and
 $\vartheta_{p,q}(\beta_{p+1,q}(z,0)) = \vartheta_{p,q}((\vartheta_{p,q}^{-1}\circ\gamma_{p+1,q}^-)(l_{p+1,q}^*(z)))$
 $= \gamma_{p+1,q}^-(l_{p+1,q}^*(z))$

Therefore

 $\begin{pmatrix} \gamma_{p+1,q}^{-} \circ l_{p+1,q}^{*} \end{pmatrix}(z) = (\vartheta_{p,q} \circ \beta_{p+1,q})(z) \quad \forall z \in Z_{p+1,q}.$ Therefore {*} and {**} are satisfied when n = p , and the prove is complet.Theorem 2
Any homomorphism $\varepsilon(q): E_q \to E_q^-$, has a
combinatorial realization $\delta(q): T_q \to T_q^-$.
Proof

Let $\varepsilon(q) = (\vartheta_q, \rho_q, \tau_q)$, as in proof of theorem 1, we have $C_{p+1,q} = Z_{p+1,q} \otimes \ker l_{p,q}^*$ and $A_{p,q} = \Gamma_{p,q} \otimes \ker \beta_{p,q}$, where $\ker l_{p,q}^* = \varphi_{p+1,q}(C_{p+1,q})$ and $\ker \beta_{p,q} = j_{p,q}(A_{p,q})$. Let $i_{p,q}: \Gamma_{p,q} \to A_{p,q}$, be the inclusion homomorphism , define by $i_{p,q} = [x]$, $t_{p,q}^*: A_{p,q} \to \sum_{p,q}$, be the natural homomorphism , defin by $t_{p,q}^*(x) = [x]$, $l_{p,q}: Z_{p,q} \to H_{p,q}$, be the natural homomorphism, defin by $l_{p,q}(z) = [z]$. Let $\{b_i\}_{i\in I}$, $\{z_m\}_{m\in M}$ and $\{r_d\}_{d\in D}$ be a family of generators of ker $\beta_{p,q}$, $Z_{p+1,q}$ and ker $l_{p,q}$, respectively. $\tau_{p+1,q}(l_{p+1,q}(z_m)) \in H^{-}_{p+1,q}$ Then $\Rightarrow \quad \dot{l}_{p+1,q}^{-1}\left(\tau_{p+1,q}\left(l_{p+1,q}(z_m)\right)\right) \in Z_{p+1,q}^{-}$, where $\dot{l}_{p+1,q}: Z_{p+1,q}^- \to H_{p+1,q}^-$ be the natural homomorphis. Let $z_m^- \in \dot{l}_{p+1,q}^{-1}\left(\tau_{p+1,q}\left(l_{p+1,q}(z_m)\right)\right)$ implies that (1) $\cdots \quad \dot{l}_{p+1,q}(z_m) = \tau_{p+1,q}(l_{p+1,q}(z_m)).$ And let $h_{p+1,q}^*: Z_{p+1,q} \to Z_{p+1,q}^-$ be define by $h_{p+1,q}^*(z_m) = z_m^- \quad \forall \ p \ge 1$. Then (2) $\cdots \dot{l}_{p+1,q} \left(h_{p+1,q}^*(z_m) \right) = \tau_{p+1,q} \left(l_{p+1,q}(z_m) \right)$. Also $\rho_{p,q}\left(t_{p,q}(b_i)\right) \in \sum_{p,q}^{-}$ \Rightarrow $\dot{t}_{p,q}^{-1}\left(\rho_{p,q}\left(t_{p,q}(b_i)\right)\right) \subset A_{p,q}^{-}$, where $\dot{t}_{p,q}: A^-_{p,q} \to \sum_{p,q}^-$, be the natural homomorphism. Let $a_i^- \in \dot{t}_{p,q}^{-1}\left(\rho_{p,q}\left(t_{p,q}(b_i)\right)\right)$ implies that (3) ... $\dot{t}_{p,q}(a_i) = \rho_{p,q}(t_{p,q}(b_i))$. $\Rightarrow \qquad \dot{l}_{p,q}\left(j_{p,q}^{-}(a_{i}^{-})\right) = \mu_{p,q}^{-}\left(k_{p,q}^{-}(a_{i}^{-})\right)$

$$= \mu_{p,q}^{-} ((\rho_{p,q} \circ t_{p,q})(b_{i}))$$

$$= (\mu_{p,q}^{-} \circ \rho_{p,q})(t_{p,q}(b_{i}))$$

$$= (\tau_{p,q} \circ \mu_{p,q})(t_{p,q}(b_{i}))$$

$$= \tau_{p,q}(\mu_{p,q}(t_{p,q}(b_{i})))$$

$$= \tau_{p,q}(\mu_{p,q}(t_{p,q}(b_{i})))$$

$$= i_{p,q}(h_{p,q}^{*}(j_{p,q}(b_{i})))$$

$$= i_{p,q}(h_{p,q}^{*}(j_{p,q}(b_{i})))$$

$$\Rightarrow j_{p,q}^{-}(a_{i}^{-}) - h_{p,q}^{*}(j_{p,q}(b_{i})) \in \ker i_{p,q} = \varphi_{p+1,q}^{-}(c_{p+1,q}^{-})$$
Therefore
$$(4) \quad \cdots \quad j_{p,q}^{-}(a_{i}^{-}) = h_{p,q}^{*}(j_{p,q}(b_{i})) + \varphi_{p+1,q}^{-}(c_{i}^{-})$$
for some $c_{i}^{-} \in C_{p+1,q}^{-}$
By axiom of choice we choose an c_{i}^{-} for each b_{i}
and we will denote such c_{i}^{-} by $c(b_{i})$.
Now we define $f_{p,q}$, as follows;
Let $f_{p,q} : A_{p,q} \rightarrow A_{p,q}^{-}$ be define by
$$f_{p,q}(x) = \vartheta_{p,q}(x) \forall x \in \Gamma_{p,q} \text{ and } f_{p,q}(b_{i}) = a_{i}^{-} - \beta_{p+1,q}^{-}(c_{i}^{-})$$
.
Let $x \in \Gamma_{p,q}$ we have
$$t_{p,q}(f_{p,q}(x)) = t_{p,q}(\vartheta_{p,q}(x))$$

$$= (\varphi_{p,q}^{-} \vartheta_{p,q})(x)$$

$$= (\varphi_{p,q}^{-} \vartheta_{p,q})(x)$$

$$= \rho_{p,q}((\psi_{p,q}(x)))$$

$$and \quad t_{p,q}(f_{p,q}(b_{i})) = t_{p,q}(a_{i}^{-}) - t_{p,q}(\beta_{p+1,q}^{-}(c_{i}^{-}))$$

$$= t_{p,q}(a_{i}^{-})$$

Therefore ,we obtain

(5) ...
$$\begin{cases} \tau(l(z_m) = \dot{l}(h^*(z_m) \\ \vartheta(x) = f(x) \quad \forall x \in \Gamma_{p,q} \\ \rho(t(x)) = \dot{t}(f(x)) \quad \forall x \in A_{p,q} \end{cases}$$

From (5), we have
 $\dot{t}_{p,q} \left(f_{p,q} \left(\beta_{p+1,q}(r_d) \right) \right) = \rho_{p,q} \left(t_{p,q} \left(\beta_{p+1,q}(r_d) \right) \right)$
 $= \rho_{p,q}(0)$
 $= 0$
 $\Rightarrow f_{p,q} \left(\beta_{p+1,q}(r_d) \right) \in \ker \dot{t}_{p,q} = \operatorname{Im} \beta_{p+1,q}^-$
Therefore $\beta_{p+1,q}^-(\dot{c}_d) = f_{p,q} \left(\beta_{p+1,q}(r_d) \right)$
for some $\dot{c}_d \in C_{p+1,q}^-$.
By axiom of choice we choose an \dot{c}_d for each
 r_d and we will denote such \dot{c}_d by $c(r_d)$.
Now we will define $h_{p+1,q}$, as follows;
Let $h_{p+1,q} \colon C_{p+1,q} \to C_{p+1,q}^-$, be define by
 $h_{p+1,q}(z) = h_{p+1,q}^*(z) \quad \forall z \in Z_{p+1,q} \text{ and } h_{p+1,q}(r_d) = \dot{c}_d$.
Then $\beta_{p+1,q}^-(h_{p+1,q}(r_d)) = \beta_{p+1,q}^-(\dot{c}_d)$
 $= f_{p,q} \left(\beta_{p+1,q}(r_d) \right)$.

Also, it follows from (5), that

$$f_{p,q}\left(\beta_{p+1,q}(z)\right) = f_{p,q}\left(\gamma_{p+1,q}\left(l_{p+1,q}(z)\right)\right)$$

$$= \vartheta_{p,q}\left(\gamma_{p+1,q}\left(l_{p+1,q}(z)\right)\right)$$

$$= \left(\vartheta_{p,q}\circ\gamma_{p+1,q}\right)\left(l_{p+1,q}(z)\right)$$

$$= \left(\gamma_{p+1,q}^{-}\circ\tau_{p+1,q}\right)\left(l_{p+1,q}(z)\right)$$

$$= \gamma_{p+1,q}^{-}\left(\tau_{p+1,q}\left(l_{p+1,q}(z)\right)\right)$$

$$= \gamma_{p+1,q}^{-} \left(\dot{l}_{p+1,q} \left(h_{p+1,q}(z) \right) \right)$$

$$= \beta_{p+1,q}^{-} \left(h_{p+1,q}(z) \right)$$

$$\Rightarrow \beta_{p+1,q}^{-} \left(h_{p+1,q}(z) \right) = f_{p,q} \left(\beta_{p+1,q}(z) \right) \quad \forall z \in Z_{p+1,q}$$
Therefore $(\beta_{p+1,q}^{-} \circ h_{p+1,q})(x) = (f_{p,q}^{-} \circ \beta_{p+1,q})(x) \; \forall x \in C_{p+1,q}$
Let $x \in \Gamma_{p,q} \Rightarrow \vartheta_{p,q}(x) \in \Gamma_{p,q}^{-}$

$$\Rightarrow j_{p,q}^{-} \left(f_{p,q}(x) \right) = j_{p,q}^{-} \left(\vartheta_{p,q}(x) \right) = 0$$
and $h_{p,q} \left(j_{p,q}(x) \right) = h_{p,q}(0) = 0$.
Then $(j_{p,q}^{-} \circ f_{p,q})(x) = (h_{p,q}^{-} \circ j_{p,q})(x) \; \forall x \in \Gamma_{p,q}$.
On the other hand, we have
 $j_{p,q}^{-} \left(f_{p,q}(b_i) \right) = j_{p,q}^{-} \left(a_i^{-} - \beta_{p+1,q}^{-} (c_i^{-}) \right)$
 $= j_{p,q}^{-} \left(a_i^{-}) - \left(j_{p,q}^{-} \circ \beta_{p+1,q}^{-} \right) (c_i^{-})$
 $= j_{p,q}^{-} \left(a_i^{-}) - \left(j_{p,q}^{-} - h_{p,q}^{*} \left(j_{p,q}^{-} (b_i) \right) \right)$
 $= h_{p,q}^{*} \left(j_{p,q}(b_i) \right)$

Therefore $(j_{p,q}^{-} \circ f_{p,q}) = (h_{p,q} \circ j_{p,q})(x) \quad \forall x \in A_{p,q}$ Therefore (h, f) is a homomorphism. Since $h(z) = h^{*}(z)$, it follows from (5) that (h, f) is a combinatorial realization of (τ, ϑ, ρ) .

 $\begin{array}{l} \underline{Theorem\ 3}\\ Let\ k\ be\ a\ complex\ and\ A_{p,q} = \pi_{p+q}(k^p). Then\\ i_{p,q}: A_{p-1,q+1} \to A_{p,q} \quad maps\ A_{p-1,q+1} \quad onto \quad 0\,,\\ \forall\ p = 2,3,4,\ldots,m\,. \quad \Leftrightarrow \ k\ is\ a\ J_{m,q} - complex\,.\\ \underline{proof}\\ We\ know\ that \quad Im\ i_{p,q} = \ker\ j_{p,q}\ , \qquad then \end{array}$

 $\begin{array}{ll} i_{p,q}(A_{p-1,q+1}) = 0 & \forall p = 2,3,\ldots,m. \\ \Leftrightarrow & \ker j_{p,q} = 0 \ \forall p = 2,3,4,\ldots,m. \\ \Leftrightarrow & k \ is \ a \ J_{m,q} - complex \ . \end{array}$ $\begin{array}{ll} \hline \begin{array}{c} Theorem \ 4 \\ \hline (1) & If \ K \equiv_m L \ , & then \\ K \ is \ a \ J_{m,q} - complex \ \Leftrightarrow \ L \ is \ a \ J_{m,q} - complex. \\ \hline \begin{array}{c} Corollary \ 5 \\ If \ K \equiv_m K^- \ , then \ \Gamma_{p,q} = 0 \ \Leftrightarrow \ \Gamma_{p,q}^- = 0 \ \forall p = 2,3,\ldots,m. \\ \hline \begin{array}{c} Theorem \ 6 \\ If \ K \ is \ a \ J_{m,q} - complex \ , then \ \sum_{p,q} \cong \ H_{p,q} \\ \forall \ p = 1,2,3,\ldots,m. \ and \ \mu_{m+1,q} \ is \ onto \ . \end{array}$

Consider the following a new exact sequence; $\dots \rightarrow \sum_{m+1,q} \xrightarrow{\mu_{m+1,q}} H_{m+1,q} \xrightarrow{\gamma_{m+1,q}} \Gamma_{m,q} \xrightarrow{\varphi_{m,q}} \sum_{m,q} \xrightarrow{\mu_{m,q}} H_{m,q} \rightarrow \dots$ Since $\Gamma_{p,q} = \ker j_{p,q} = 0 \quad \forall p = 1,2,3, \dots, m.$ It follows from exactness, that $\sum_{p,q} \cong H_{p,q} \quad \forall p = 1,2,3,\dots,m.$ and $Im \ \mu_{m+1,q} = \ker \gamma_{m+1,q} = H_{m+1,q}$. Therefore $\mu_{m+1,q}$ is onto <u>Corollary 7</u>

If K is a $J_{m,q}$ - complex, and $K \equiv_m K^-$. Then $\sum_{p,q}^- \cong H_{p,q}^- \quad \forall p = 1, 2, ..., m.$ and $\mu_{m+1,q}^-$ is onto, where $\sum_{p,q}^-$, $H_{p,q}^-$ are in $E_q(K^-)$. <u>corollary 8</u> (Hurewicz's theorem for cw - complexes),[H]

If K is a cw – complex such that $\pi_r(K) = 0$, for $1 \le r \le n - 1$. Then $j_n : \pi_n(K) \cong H_n(K)$ and j_{n+1} maps $\pi_{n+1}(K)$ onto $H_{n+1}(K)$. <u>Theroem 9</u>

Let K be an (m-1) – connected. Then K is a $J_{m,q}$ – complex. <u>Theorem 10</u> Γ ~ Σ

$$\Gamma_{p,q} \cong \sum_{p-1,q+1}$$
 .

⁽¹⁾ K and L are n-equivalent, see [W1]

<u>Proof</u> From the exact homotopy sequence of the pair (k^{p}, k^{p-1}) $\cdots \xrightarrow{i_{p,q+1}} \pi_{p+q+1}(k^p) \xrightarrow{J_{p,q+1}} \pi_{p+q+1}(k^p, k^{p-1})$ $\xrightarrow{\beta_{p,q+1}} \pi_{n+q}(k^{p-1}) \xrightarrow{i_{p,q}} \pi_{p+q}(k^p) \xrightarrow{j_{p,q}} \cdots$ we have $\operatorname{Im} i_{p,q} = \ker j_{p,q} \implies i_{p,q}(A_{p-1,q+1}) = \Gamma_{p,q}$, So from the fundamental homomorphism theorem, we have $\Gamma_{p,q} \cong \frac{A_{p-1,q+1}}{\ker i_{p,q}}$ But from exactness, it follows Im $\beta_{p,q+1} = ker i_{p,q}$. Therefore $\Gamma_{p,q} \cong \sum_{p=1,q+1}$. Theorem 11 $\Gamma_{p,q} \cong \pi_{p+q}(k)$ where $-p \le q < 0$. <u>Proof</u> Consider the following sequence ; $\begin{array}{l} \cdots \rightarrow A_{p-1,q} \xrightarrow{i_{p,q-1}} A_{p,q-1} \xrightarrow{j_{p,q-1}} C_{p,q-1} \xrightarrow{\beta_{p,q-1}} A_{p-1,q-1} \xrightarrow{i_{p,q-2}} A_{p,q-2} \rightarrow \\ when \ q = 1 \ , remembering \ that \ C_{p,q} = \pi_{p+q}(k^p,k^{p-1}) \end{array}$ which is zero in case $-p \leq q < 0$. Also $A_{p,q} = \pi_{p+q}(k^p)$, and by a well known theorem , $\pi_{p+q}(k^p)$ is isomorphic to $\pi_{p+q}(k)$ when $-p \leq q < 0$. Then we get ker $j_{p,q} = A_{p,q}^{-} = \pi_{p,q}(k^p) \cong \pi_{p+q}(k)$ where $-p \le q < 0$. Therefore $\Gamma_{p,q} \cong \pi_{p+q}(k)$ where $-p \le q < 0$. Theorem 12 If k is a cw – complex such that k^{n-1} consists of a single $0 - cell e^0$. Then (i) $\Gamma_{p,q} = 0$ if $p \leq o$, (*ii*) $\sum_{p,q} = 0$ *if* $p \le n-1$, (*iii*) $\sum_{n,q} \cong H_{n,q}$. Proof

Since $k^0 = k^1 = k^2 = \dots = k^{n-1} = \{e^0\}$, it follows that $C_{p,q} = \pi_{p+q}(k^p, k^{p-1}) = 0$ if $p \le n-1$ and $A_{p,q} = \pi_{p+q}(k^p) = 0$ if $p \le n-1$ and hence $\sum_{p,q} = \frac{A_{p,q}}{D_{p,q}} = 0$ if $p \le n-1$. Consider the following sequence; $\dots \to C_{n+1,q} \xrightarrow{\beta_{n+1,q}} A_{n,q} \xrightarrow{j_{n,q}} C_{n,q} \to 0$ Since $\Gamma_{p,q} = \ker j_{p,q}$, it follows that $\Gamma_{p,q} = 0 \quad \forall p \le n-1$ Notice that $C_{n,q} = \pi_{n+q}(k^n, k^{n-1}) \cong \pi_{n+q}(k^n) = A_{n,q}$ then $j_{n,q}$ is an isomorphism. Therefore $\Gamma_{n,q} = \ker j_{n,q} = 0$. Now, consider the following exact sequence; $\to H_{n+1,q} \to \Gamma_{n,q} \to \sum_{n,q} \to H_{n,q} \to \Gamma_{n-1,q} \to \sum_{n-1,q} \to$ it follows from exactness that $\sum_{n,q} \cong H_{n,q}$.

<u>REFERENCES</u>

[B] H.J.Baues .On Homotopy Classification Problems of J.H.C.Whitehead ,in Algebraic Topology Goyyingen 1984. Edited by L.Smith, Springer-Verlag, Berlin Heidelberg 1985 .

[H] Allen Hatcher, Algebraic Topology,
Cambridge University Press, 2002. (Indian edition 2003).
[W1] J.H.C.Whitehead. Combinatorial Homotopy I
.Bull. Amer. Math. Soc 55(1949), 213-245.
[W2] J.H.C.Whitehead. Combinatorial Homotopy II
.Bull. Amer. Math. Soc 55(1949), 453-496.
[Dh] Dheia G. S. Al-Khafaji .A New Exact Sequence , a generalization of J.H.C.Whiteheads, certain exact sequence.