

Available online at www.qu.edu.iq/journalcm

JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS

ISSN:2521-3504(online) ISSN:2074-0204(print)

Certain Sub-Classes of Harmonic Univalent Functions Associated With the Differential Operator

Fatima K. Manshad^{a,*}, Abdul Rahman S. Juma^b

- a Department of Mathematics, College of Education for Pure Sciences, University of Anbar, Anbar, Iraq. Email: fat23u2007@uoanbar.edu.iq
- bDepartment of Mathematics, College of Education for Pure Sciences, University of Anbar, Anbar, Iraq. Email: eps.abdulrahman.juma@uoanbar.edu.iq

ARTICLEINFO	ABSTRACT
Article history:	In the present study, a subclass of harmonic univalent functions defined by a differential operator acting on complex harmonic functions is tackled. A sufficient condition and a representation theorem for the subclass are derived. Some geometric properties associated with it are also investigated, including coefficient bound, extreme points, distortion and convex combinations in connection to the subclass $\mathcal{S}_{\gamma}(\mu, \tau, \sigma, n, \rho, \gamma, \beta)$.
Received: 21/03/2025	
Rrevised form: 11/04/2025 Accepted: 17/04/2025	
Available online: 30/06/2025	
Keywords:	
Keywords:	
Harmonic Functions.	MSC
univalent Functions,	
Sense-Preserving,	
extreme Points, distortion Theorem.	
distortion Theorem.	

1. Introduction

The Y denotes the family of continuous complex-valued harmonic functions that are harmonic in open unit disk $\Delta = \{z: |z| < 1\}$. The $\mathcal{H} \subset Y$ contains analytic functions in Δ . A harmonic function in Δ is represented by the form $f = h + \bar{g}$, where $h \in \mathcal{H}$ and $g \in \mathcal{H}$. Here , h is referred to as the analytic part, and g is known as the coanalytic part of f, A condition that is both necessary and sufficient for f to be locally univalent and sense-preserving in Δ is that |h'(z)| > |g'(z)| (refer to [1]). Hence, without loss of generality, this can be expressed as:

$$h(z) = z + \sum_{s=2}^{\infty} a_s z^s \quad , \quad g(z) = \sum_{s=1}^{\infty} b_s z^s \quad , z \in \Delta.$$
 (1)

The S_{Υ} denotes the family of sense-preserving, harmonic, and univalent functions $f(z) = h(z) + \overline{g(z)}$ within Δ , satisfying the condition $f_z(0) - 1 = f(0) = 0$. It can be demonstrated that the sense-preserving characteristic implies $|b_1| < 1$. The $S_{\Upsilon}^0 \subset S_{\Upsilon}$ encompasses all functions of S_{Υ} that satisfy the condition $f_z(0) = 0$ (refer to [1]).

*Corresponding author: Fatima K. Manshad

Email addresses: fat23u2007@uoanbar.edu.iq

Communicated by 'sub editor'

The geometric subclass and certain coefficient bounds in the class Y were examined in [1]. For more foundational outcomes, one may consult the standard introductory textbook [2] and explore additional insights from [3], [4]. Various researchers have unveiled a multitude of compelling findings in several articles, as indicated by references [5], [6], [7] and [9]. Moreover, researchers have extensively examined the related class and its subclasses in [10], [11] and [12].

For a function f in S, the differential operator $\mathcal{D}^n(n \in \mathbb{N}_0)$ of f was defined in [12]. For $f = h + \bar{g}$ given by (1), in [11] the modified Sãlãgean operator of f was introduced as :

Drawing inspiration from the preceding studies of [13] and [10], the present study focuses on examining coefficient condition, convex combination, distortion, and extreme points.

$$\mathcal{D}^n f(z) = \mathcal{D}^n h(z) + (-1) \overline{\mathcal{D}^n g(z)},$$

where

$$\mathcal{D}^n h(z) = z + \sum_{s=2}^{\infty} s^n a_s z^s$$
 and $\mathcal{D}^n g(z) = \sum_{s=1}^{\infty} s^n b_s z^s$.

Next, for the functions $f = h + \bar{g} \in \mathcal{H}$ defined in (1), in [10] multiplier transformations were introduced, as the modified multiplier transformation of f is denoted as:

$$I_{\mu,\tau}^0 f(z) = \mathcal{D}^0 f(z) = h(z) + \overline{g(z)},$$

$$I_{\mu,\tau}^{1}f(z) = \frac{\mu \mathcal{D}^{0}f(z) + \tau \mathcal{D}^{1}f(z)}{\mu + \tau} = \frac{\mu \left(h(z) + \overline{g(z)}\right) + \tau \left(h'(z) + \overline{g'(z)}\right)}{\mu + \tau},\tag{2}$$

$$I_{\mu,\tau}^n f(z) = I_{\mu,\tau}^1 \left(I_{\mu,\tau}^{n-1} f(z) \right), (n \in \mathbb{N}_0).$$
 (3)

For $0 \le \mu \le \tau$. If f is given by (1), then from (2) and (3) we see that

$$I_{\mu,\tau}^{n}f(z) = z + \sum_{s=2}^{\infty} (\frac{\tau s + \mu}{\mu + \tau})^{n} a_{s} z^{s} + (-1)^{n} \sum_{s=1}^{\infty} (\frac{\tau s - \mu}{\mu + \tau})^{n} \overline{b_{s} z^{s}}$$

$$\tag{4}$$

Also, as f is given by (1):

$$\begin{split} I^n_{\mu,\tau}f(z) &= f * \underbrace{\left(\Theta_1(z) + \overline{\Theta_2(z)}\right) * \dots * \left(\Theta_1(z) + \overline{\Theta_2(z)}\right)}_{n-times} \\ &= h * \underbrace{\left(\Theta_1(z) * \dots * \Theta_1(z)\right)}_{n-times} + \overline{g * \underbrace{\Theta_2(z) * \dots * \Theta_2(z)}_{n-times}}, \end{split}$$

here " * " represents power series convolution or the Hadamard product and

$$\Theta_1(z) = \frac{(\mu + \tau)z - \mu z^2}{(\mu + \tau)(1 - z)^2} , \quad \Theta_2(z) = \frac{(\mu - \tau)z - \mu z^2}{(\mu + \tau)(1 - z)^2}.$$

The operators examined by various researchers are obtained through the parameter specialization for all $f \in \mathcal{H}$:

- (i) $I_{0,1}^n f(z) = \mathcal{D}^n f(z)$ ([12]);
- (ii) $I_{\lambda}^{n} f(z)$ ([10]);
- (iii) $I_{1,1}^n f(z) = I^n f(z)$ ([14]) for $f \in Y$;
- (iv) $I_{\mu,1}^n f(z) = I_{\mu}^n f(z)$ ([11]).

Definition 1.1. For $\rho \neq 0$ and $\rho \in \mathbb{C}$, with $|\rho| \leq 1$, $\sigma \in \mathbb{R}$, $0 \leq \gamma \leq 1$ and $0 \leq \beta < 1$, let $\mathcal{S}_{\gamma}(\mu, \tau, \sigma, n, \rho, \gamma, \beta)$ denoted the class of harmonic functions f given by (1) satisfying the condition:

$$Re\left\{1 + \frac{1}{\rho} \left(\frac{(1 + e^{i\sigma}) I_{\mu,\tau}^{n+1} f(z)}{(1 - \gamma)z + \gamma I_{\mu,\tau}^{n} f(z)} - e^{\sigma i} - 1\right)\right\} \ge \beta$$
 (5)

As $I_{\mu,\tau}^n f(z)$ is defined by (4). Further, by $\overline{\mathcal{S}_{\gamma}}(\mu,\tau,\sigma,n,\rho,\gamma,\beta)$ the subclass of $\mathcal{S}_{\gamma}(\mu,\tau,\sigma,n,\rho,\gamma,\beta)$ harmonic functions $f_n(z) = h(z) + \overline{g_n(z)}$ so that h(z) and $g_n(z)$ are of the form:

$$h(z) = z - \sum_{s=2}^{\infty} a_s z^s$$
 , $g_n(z) = (-1)^n \sum_{s=1}^{\infty} b_s z^s$, $a_s, b_s \ge 0$ (6)

Through the selection of appropriate parameter values, the class $S_{\gamma}(\mu, \tau, \sigma, n, \rho, \gamma, \beta)$ is transformed into various subclasses of harmonic univalent functions.

- $S_{\Upsilon}(0,1,\sigma,0,1,\gamma,\beta) = G_{\Upsilon}(\sigma,\gamma,\beta)$ in ([15]). (i)
- (ii)
- $S_{\Upsilon}(0,1,\sigma,0,1,1,\beta) = G_{\Upsilon}(\beta) \text{ in ([16])}.$ $S_{\Upsilon}(0,1,0,0,1,1,0) = SH_{\Upsilon}^{*}(0) \text{ in ([17], [18], [19])}.$ (i)
- $S_{Y}(0,1,0,0,1,1,\beta) = SH_{Y}^{*}(\beta)$ in ([20]). (ii)
- $S_{Y}(\mu, 1, 0, n, 1, 1, \beta) = SH_{Y}(\mu, n, \beta) \text{ in}([21]).$ (iii)
- $S_{\Upsilon}(0,1,0,n,1,1,0) = HK_{\Upsilon}(0)$ in ([17], [18], [19]). (iv)
- $S_{\Upsilon}(0,1,0,1,1,1,\beta) = HK_{\Upsilon}(\beta)$ in ([20]). (i)
- $S_{\gamma}(0,1,0,n,1,1,\beta) = H_{\gamma}(n,\beta) \text{in ([4])}$ (ii)
- $S_{\gamma}(0,1,\sigma,n,1,1,\beta) = RS_{\gamma}(n,\beta)$ in ([22]). (iii)
- $S_{\mathbf{Y}}(\mu, 1, \sigma, n, 1, 1, \beta) = RS_{\mathbf{Y}}(\mu, n, \beta) \text{in ([23])}.$

 $S^0_{\Upsilon}(\mu, \tau, \sigma, n, \rho, \gamma, \beta) = S_{\Upsilon}(\mu, \tau, \sigma, n, \rho, \gamma, \beta) \cap S^0_{\Upsilon}$ and $\overline{S^0_{\Upsilon}}(\mu, \tau, \sigma, n, \rho, \gamma, \beta) = \overline{S_{\Upsilon}}(\mu, \tau, \sigma, n, \rho, \gamma, \beta) \cap S^0_{\Upsilon}$ is defined.

2. The Coefficient Condition

In this section, we demonstrate the sufficient condition for $f \in S_{\gamma}(\mu, \tau, \sigma, n, \rho, \gamma, \beta)$ as indicated by the following result.

Theorem 2.1. If
$$f = h + \bar{g}$$
 such that h and g are defined by (1) with $b_1 = 0$. Moreover:
$$\sum_{s=2}^{\infty} \left[\frac{2[(\tau s + \mu) - \gamma(\mu + \tau)]}{\mu + \tau} + \gamma \rho (1 - \beta) \right] \left(\frac{\tau s + \mu}{\mu + \tau} \right)^n |a_s|$$

$$+ \sum_{s=2}^{\infty} \left[\frac{2[(\tau s - \mu) + \gamma(\mu + \tau)]}{\mu + \tau} - \gamma \rho (1 - \beta) \right] \left(\frac{\tau s - \mu}{\mu + \tau} \right)^n |b_s| \le (1 - \beta)$$
(7)

As: $\rho \neq 0$ and $\rho \in \mathbb{C}$, with $|\rho| \leq 1$, $\sigma \in \mathbb{R}$, $0 \leq \gamma \leq 1$, $0 \leq \mu \leq \frac{\tau}{2}$, $n \in \mathbb{N}_0$ and $\frac{\mu}{\mu + \tau} \leq \beta \leq \frac{\tau}{\mu + \tau}$. Then f is sensepreserving, harmonic univalent in unit disk Δ and $f \in S_{Y}(\mu, \tau, \sigma, n, \rho, \gamma, \beta)$

Proof. If z_1 and z_2 are two distinct points then:

$$\left| \frac{f(z_1) - f(z_2)}{h(z_1) - h(z_2)} \right| \ge 1 - \left| \frac{g(z_1) - g(z_2)}{h(z_1) - h(z_2)} \right| = 1 - \left| \frac{\sum_{s=1}^{\infty} b_s(z_1^s - z_2^s)}{(z_1 - z_2) - \sum_{s=2}^{\infty} a_s(z_1^s - z_2^s)} \right| > 1 - \frac{\sum_{s=1}^{\infty} s |b_s|}{1 - \sum_{s=2}^{\infty} s |a_s|}$$

$$\ge 1 - \frac{\sum_{s=1}^{\infty} \frac{\left[\frac{2[(\tau s - \mu) + \gamma(\mu + \tau)]}{\mu + \tau} - \gamma\rho(1 - \beta)\right] \left(\frac{\tau s - \mu}{\mu + \tau}\right)^n}{1 - \beta} |b_s|}{1 - \sum_{s=2}^{\infty} \frac{\left[\frac{2[(\tau s + \mu) - \gamma(\mu + \tau)]}{\mu + \tau} + \gamma\rho(1 - \beta)\right] \left(\frac{\tau s + \mu}{\mu + \tau}\right)^n}{1 - \beta} |a_s|} \ge 0$$

This shows univalent. f is sense-preserving in unit disk Δ because

$$\begin{split} |h'(z)| &\geq 1 - \sum_{s=2}^{\infty} s |a_s| \, |z|^{s-1} \\ &> 1 - \sum_{s=2}^{\infty} \frac{1}{1-\beta} \left[\frac{2[(\tau s + \mu) - \gamma(\mu + \tau)]}{\mu + \tau} + \gamma \rho (1-\beta) \right] \left(\frac{\tau s + \mu}{\mu + \tau} \right)^n |a_s| \\ &\geq \sum_{s=2}^{\infty} \frac{1}{1-\beta} \left[\frac{2[(\tau s - \mu) + \gamma(\mu + \tau)]}{\mu + \tau} - \gamma \rho (1-\beta) \right] \left(\frac{\tau s - \mu}{\mu + \tau} \right)^n |b_s| \\ &> \sum_{s=2}^{\infty} s |b_s| \, |z|^{s-1} \\ &\geq |g'(z)|. \end{split}$$

Using the given condition that $|1 - \beta + \omega| \ge |1 + \beta + \omega|$ if and only if $Re(\omega) \ge \beta$, it is sufficient to demonstrate that $|1 - \beta + \omega| - |1 + \beta + \omega| \ge 0$ gives,

$$\left| \gamma(2\rho - \rho\beta - 1 - e^{i\sigma}) I_{\mu,\tau}^{n} f(z) + (1 + e^{i\sigma}) I_{\mu,\tau}^{n+1} f(z) + (1 - \gamma)(2\rho - \rho\beta - 1 - e^{i\sigma}) z \right|
- \left| \gamma(1 + \rho\beta + e^{i\sigma}) I_{\mu,\tau}^{n} f(z) - (1 + e^{i\sigma}) I_{\mu,\tau}^{n+1} f(z) + (1 - \gamma)(1 + \rho\beta + e^{i\sigma}) z \right| \ge 0$$
(8)

Substituting for $I_{\mu,\tau}^n f(z)$ and $I_{\mu,\tau}^{n+1} f(z)$ in (8), we get

$$\begin{split} \gamma\left(2\rho - \rho\beta - (1 + e^{i\sigma})\right) \left(z + \sum_{s=2}^{\infty} \left(\frac{\tau s + \mu}{\mu + \tau}\right)^n a_s z^s + (-1)^n \sum_{s=1}^{\infty} \left(\frac{\tau s - \mu}{\mu + \tau}\right)^n \overline{b_s z^s}\right) \\ + (1 + e^{i\sigma}) \left(z + \sum_{s=2}^{\infty} \left(\frac{\tau s + \mu}{\mu + \tau}\right)^{n+1} a_s z^s + (-1)^{n+1} \sum_{k=1}^{\infty} \left(\frac{\tau s - \mu}{\mu + \tau}\right)^{n+1} \overline{b_s z^s}\right) + (1 - \gamma)(2\rho - \rho\beta - 1 - e^{i\sigma})z \\ - \left[- \left(1 + e^{i\sigma}\right) \left(z + \sum_{s=2}^{\infty} \left(\frac{\tau s + \mu}{\mu + \tau}\right)^{n+1} a_s z^s + (-1)^n \sum_{s=1}^{\infty} \left(\frac{\tau s - \mu}{\mu + \tau}\right)^n \overline{b_s z^s}\right) + (1 - \gamma)(1 + \rho\beta + e^{i\sigma})z \right] \\ \geq 2(1 - \beta)|z| - \sum_{s=2}^{\infty} \left[\frac{2[(\tau s + \mu) - \gamma(\mu + \tau)]}{\mu + \tau} + \gamma\rho(2 - \beta) \left[\left(\frac{\tau s + \mu}{\mu + \tau}\right)^n |a_s||z|^s \right] \\ - \sum_{s=2}^{\infty} \left[\frac{2[(\tau s - \mu) + \gamma(\mu + \tau)]}{\mu + \tau} - \gamma\rho(2 - \beta) \left[\left(\frac{\tau s - \mu}{\mu + \tau}\right)^n |a_s||z|^s \right] \right] \\ - \sum_{s=2}^{\infty} \left[\frac{2[(\tau s - \mu) + \gamma(\mu + \tau)]}{\mu + \tau} + \gamma\rho\beta \left[\left(\frac{\tau s - \mu}{\mu + \tau}\right)^n |a_s||z|^s \right] \right] \\ \geq 2(1 - \beta)|z| \begin{cases} 1 - \sum_{s=2}^{\infty} \frac{1}{1 - \beta} \left[\frac{2[(\tau s - \mu) + \gamma(\mu + \tau)]}{\mu + \tau} + \gamma\rho(1 - \beta) \left[\left(\frac{\tau s - \mu}{\mu + \tau}\right)^n |a_s| \right] \right] \\ \sum_{s=1}^{\infty} \frac{1}{1 - \beta} \left[\frac{2[(\tau s - \mu) + \gamma(\mu + \tau)]}{\mu + \tau} - \gamma\rho(1 - \beta) \left[\left(\frac{\tau s - \mu}{\mu + \tau}\right)^n |a_s| \right] \end{cases} \end{cases}.$$

The final result is non-negative by (7), thus concluding the demonstration.

Theorem 2.2. If $f_n = h + \overline{g_n}$ defined by (6) with $b_1 = 0$. Then $f \in \overline{\mathcal{S}_{\Upsilon}}(\mu, \tau, \sigma, n, \rho, \gamma, \beta)$ if and only if

$$\sum_{s=2}^{\infty} \left[\frac{2[(\tau s + \mu) - \gamma(\mu + \tau)]}{\mu + \tau} + \gamma \rho (1 - \beta) \right] \left(\frac{\tau s + \mu}{\mu + \tau} \right)^{n} a_{s}$$

$$+ \sum_{s=2}^{\infty} \left[\frac{2[(\tau s - \mu) + \gamma(\mu + \tau)]}{\mu + \tau} - \gamma \rho (1 - \beta) \right] \left(\frac{\tau s - \mu}{\mu + \tau} \right)^{n} b_{s} \le (1 - \beta)$$
(9)

As: $\rho \neq 0$ and $\rho \in \mathbb{C}$, with $|\rho| \leq 1$, $\sigma \in \mathbb{R}$, $0 \leq \gamma \leq 1$, $0 \leq \mu \leq \frac{\tau}{2}$, $n \in \mathbb{N}_0$ and $\frac{\mu}{\mu+\tau} \leq \beta \leq \frac{\tau}{\mu+\tau}$.

Proof. since $\overline{\mathcal{S}^0_{\Upsilon}}(\mu,\tau,\sigma,n,\rho,\gamma,\beta)\subset \mathcal{S}_{\Upsilon}(\mu,\tau,\sigma,n,\rho,\gamma,\beta)$. then the " if " part follows from Theorem 2.1 not that if the functions h and g in $f=h+\bar{g}\in\mathcal{S}_{\Upsilon}(\mu,\tau,\sigma,n,\rho,\gamma,\beta)$ are given in (6) then $f\in\overline{\mathcal{S}^0_{\Upsilon}}(\mu,\tau,\sigma,n,\rho,\gamma,\beta)$. For the " only if " part, by contradiction, $f\notin\overline{\mathcal{S}^0_{\Upsilon}}(\mu,\tau,\sigma,n,\rho,\gamma,\beta)$ if the condition (5) dose not hold.

$$Re \left\{ \frac{\left(1 - \beta\right)z - \left(\sum_{s=2}^{\infty} \left[\frac{2[(\tau s + \mu) - \gamma(\mu + \tau)]}{\mu + \tau} + \gamma \rho(1 - \beta)\right] \left(\frac{\tau s + \mu}{\mu + \tau}\right)^{n} a_{s} z^{s} + \sum_{s=2}^{\infty} \left[\frac{2[(\tau s - \mu) + \gamma(\mu + \tau)]}{\mu + \tau} - \gamma \rho(1 - \beta)\right] \left(\frac{\tau s - \mu}{\mu + \tau}\right)^{n} b_{s} \overline{z}^{s}}{1 - \sum_{s=2}^{\infty} \left(\frac{\tau s + \mu}{\mu + \tau}\right)^{n} a_{s} z^{s} + \sum_{s=2}^{\infty} \left(\frac{\tau s - \mu}{\mu + \tau}\right)^{n} b_{s} \overline{z}^{s}} \right) \ge 0.$$

The above condition satisfies all values of , |z| = r < 1 . By choosing z on the positive real axis $(0 \le z = r < 1)$,:

$$Re \left\{ \frac{\left(1 - \beta\right) - \left(\sum_{s=2}^{\infty} \left[\frac{2[(\tau s + \mu) - \gamma(\mu + \tau)]}{\mu + \tau} + \gamma \rho (1 - \beta)\right] \left(\frac{\tau s + \mu}{\mu + \tau}\right)^{n} a_{s} r^{s - 1} + \right)}{\sum_{s=2}^{\infty} \left[\frac{2[(\tau s - \mu) + \gamma(\mu + \tau)]}{\mu + \tau} - \gamma \rho (1 - \beta)\right] \left(\frac{\tau s - \mu}{\mu + \tau}\right)^{n} b_{s} r^{s - 1}}{1 - \sum_{s=2}^{\infty} \left(\frac{\tau s + \mu}{\mu + \tau}\right)^{n} a_{s} r^{s - 1} + \sum_{s=2}^{\infty} \left(\frac{\tau s - \mu}{\mu + \tau}\right)^{n} b_{s} r^{s - 1}} \right\} \ge 0.$$

If the condition (9) is not satisfied, the numerator in (10) is negative. This contradicts with $f \in \overline{\mathcal{S}_{Y}^{0}}(\mu, \tau, \sigma, n, \rho, \gamma, \beta)$. Here, the proof is complete.

3. Extreme points

To examine the extreme points of the function $f_n \in \overline{\mathcal{S}_Y^0}(\mu, \tau, \sigma, n, \rho, \gamma, \beta)$, we utilize the coefficient condition obtained in Section 2.

Theorem 3.1. Let f_n by given by (2) then $f_n \in \overline{\mathcal{S}^0_{\Upsilon}}(\mu, \tau, \sigma, n, \rho, \gamma, \beta)$ if and only if

$$\begin{split} f_n(z) &= \sum_{s=1}^\infty \left(\mathcal{X}_s h_s(z) + \mathcal{Y}_s g_{n_s}(z) \right), \\ where, h_1(z) &= z \quad , \quad h_s(z) = z - \frac{1-\beta}{\left[\frac{2[(\tau s + \mu) - \gamma(\mu + \tau)]}{\mu + \tau} + \gamma \rho(1-\beta)\right] \left(\frac{\tau s + \mu}{\mu + \tau}\right)^n} z^s, \\ and \ g_{n_1}(z) &= z \quad , \quad g_{n_s}(z) = z + (-1)^n \frac{1-\beta}{\left[\frac{2[(\tau s - \mu) + \gamma(\mu + \tau)]}{\mu + \tau} - \gamma \rho(1-\beta)\right] \left(\frac{\tau s - \mu}{\mu + \tau}\right)^n} \overline{z^s}, \end{split}$$

 $\mathcal{X}_s \geq 0, \\ \mathcal{Y}_s \geq 0, \\ \sum_{s=1}^{\infty} (\mathcal{X}_s + \mathcal{Y}_s) = 1, \\ \rho \neq 0 \quad \text{and} \quad \rho \in \mathbb{C} \quad , \quad \text{with} \quad |\rho| \leq 1, \\ \sigma \in \mathbb{R}, \\ 0 \leq \gamma \leq 1, \quad 0 \leq \mu \leq \frac{\tau}{2}, \\ n \in \mathbb{N}_0, \\ \frac{\mu}{\mu + \tau} \leq \beta \leq \frac{\tau}{\mu + \tau} \\ \text{and} \quad (s = 2, 3, \dots).$

Specially, the extreme points of $f_n \in \overline{\mathcal{S}^0_{\Upsilon}}(\mu, \tau, \sigma, n, \rho, \gamma, \beta)$ are $\{h_s\}$ and $\{g_{n_s}\}$.

Proof. From (6), for functions f_n as:

$$\begin{split} f_n(z) &= \sum_{k=1}^{\infty} \left(\mathcal{X}_s h_s(z) + \mathcal{Y}_s g_{n_s}(z) \right) = \sum_{s=1}^{\infty} (\mathcal{X}_s + \mathcal{Y}_s) z - \sum_{s=2}^{\infty} \frac{1 - \beta}{\left[\frac{2\left[(\tau s + \mu) - \gamma(\mu + \tau)\right]}{\mu + \tau} + \gamma \rho(1 - \beta)\right] \left(\frac{\tau s + \mu}{\mu + \tau}\right)^n} \mathcal{X}_s z^s \\ &+ (-1) \sum_{s=2}^{\infty} \frac{1 - \beta}{\left[\frac{2\left[(\tau s - \mu) + \gamma(\mu + \tau)\right]}{\mu + \tau} - \gamma \rho(1 - \beta)\right] \left(\frac{\tau s - \mu}{\mu + \tau}\right)^n} \mathcal{Y}_s \overline{z^s}. \end{split}$$

Then:

$$\begin{split} \sum_{s=2}^{\infty} \left(\frac{\left[\frac{2[(\tau s + \mu) - \gamma(\mu + \tau)]}{\mu + \tau} + \gamma \rho(1 - \beta)\right] \left(\frac{\tau s + \mu}{\mu + \tau}\right)^{n}}{1 - \beta} \right) \left(\frac{1 - \beta}{\left[\frac{2[(\tau s + \mu) - \gamma(\mu + \tau)]}{\mu + \tau} + \gamma \rho(1 - \beta)\right] \left(\frac{\tau s + \mu}{\mu + \tau}\right)^{n}} \chi_{s} \right) \\ + \sum_{s=2}^{\infty} \left(\frac{\left[\frac{2[(\tau s - \mu) + \gamma(\mu + \tau)]}{\mu + \tau} - \gamma \rho(1 - \beta)\right] \left(\frac{\tau s - \mu}{\mu + \tau}\right)^{n}}{1 - \beta} \right) \left(\frac{1 - \beta}{\left[\frac{2[(\tau s - \mu) + \gamma(\mu + \tau)]}{\mu + \tau} - \gamma \rho(1 - \beta)\right] \left(\frac{\tau s - \mu}{\mu + \tau}\right)^{n}} \chi_{s} \right) \\ = \sum_{s=2}^{\infty} \chi_{s} + \sum_{s=2}^{\infty} \chi_{s} = 1 - \chi_{1} - \chi_{1} \leq 1 \end{split}$$

and so $f_n \in \overline{\mathcal{S}^0_{\Upsilon}}(\mu, \tau, \sigma, n, \rho, \gamma, \beta)$. Conversely, if $f_n \in \overline{\mathcal{S}^0_{\Upsilon}}(\mu, \tau, \sigma, n, \rho, \gamma, \beta)$, then:

$$a_{s} \leq \frac{1 - \beta}{\left[\frac{2[(\tau s + \mu) - \gamma(\mu + \tau)]}{\mu + \tau} + \gamma \rho (1 - \beta)\right] \left(\frac{\tau s + \mu}{\mu + \tau}\right)^{n}}$$

$$and \quad b_{s} \leq \frac{1 - \beta}{\left[\frac{2[(\tau s - \mu) + \gamma(\mu + \tau)]}{\mu + \tau} - \gamma \rho (1 - \beta)\right] \left(\frac{\tau s - \mu}{\mu + \tau}\right)^{n}}.$$

$$\begin{split} \mathcal{X}_s &= \frac{\left[\frac{2\left[(\tau s + \mu) - \gamma(\mu + \tau)\right]}{\mu + \tau} + \gamma\rho(1 - \beta)\right]\left(\frac{\tau s + \mu}{\mu + \tau}\right)^n}{1 - \beta} a_s, \quad (s = 2, 3, \dots), \\ \mathcal{Y}_s &= \frac{\left[\frac{2\left[(\tau s - \mu) + \gamma(\mu + \tau)\right]}{\mu + \tau} - \gamma\rho(1 - \beta)\right]\left(\frac{\tau s - \mu}{\mu + \tau}\right)^n}{1 - \beta} b_k, \quad (s = 2, 3, \dots), \\ and \quad \mathcal{X}_1 + \mathcal{Y}_1 &= 1 - \sum_{s=1}^{\infty} (\mathcal{X}_s + \mathcal{Y}_s), \end{split}$$

As: \mathcal{X}_s , $\mathcal{Y}_s \ge 0$. Then, as necessary, we obtain

$$\begin{split} f_n(z) &= (\mathcal{X}_1 + \mathcal{Y}_1)z + \sum_{s=1}^{\infty} \mathcal{X}_s h_s(z) + \mathcal{Y}_s g_{n_s}(z) \\ &= \sum_{s=1}^{\infty} \Big(\mathcal{X}_s h_s(z) + \mathcal{Y}_s g_{n_s}(z) \Big). \end{split}$$

4. Distortion and Convex Combination

The Theorem outlined below demonstrates that the $\overline{\mathcal{S}_{\Upsilon}^0}(\mu,\tau,\sigma,n,\rho,\gamma,\beta)$ remains invariant under distortion and convex combinations of its numbers.

Theorem 4.1. Let $f_n \in \overline{\mathcal{S}^0_{\Upsilon}}(\mu, \tau, \sigma, n, \rho, \gamma, \beta)$. Then for |z| = r < 1 and $\rho \neq 0$, $\rho \in \mathbb{C}$, with $|\rho| \leq 1, \sigma \in \mathbb{R}, 0 \leq \gamma \leq 1$, $0 \leq \mu \leq \frac{\tau}{2}$, $n \in \mathbb{N}_0$ and $\frac{\mu}{\mu + \tau} \leq \beta \leq \frac{\tau}{\mu + \tau}$ we have

$$|f_n(z)| \le r + \frac{1 - \beta}{\left[\frac{2[(2\tau + \mu) - \gamma(\mu + \tau)]}{\mu + \tau} + \gamma \rho (1 - \beta)\right] \left(\frac{2\tau + \mu}{\mu + \tau}\right)^n} r^2$$

and

$$|f_n(z)| \ge r - \frac{1 - \beta}{\left[\frac{2[(2\tau + \mu) - \gamma(\mu + \tau)]}{\mu + \tau} + \gamma \rho (1 - \beta)\right] \left(\frac{2\tau + \mu}{\mu + \tau}\right)^n} r^2$$

Proof. To establish the validity of the left-hand side, we assume that $f_n \in \overline{S_Y^0}(\mu, \tau, \sigma, n, \rho, \gamma, \beta)$ then:

$$\begin{split} |f_n(z)| &\leq r + \sum_{s=2}^{\infty} (a_s + b_s) r^2 \\ &\leq r + \frac{(1-\beta) r^2}{\left[\frac{2[(2\tau + \mu) - \gamma(\mu + \tau)]}{\mu + \tau} + \gamma \rho (1-\beta)\right] \left(\frac{2\tau + \mu}{\mu + \tau}\right)^n} \sum_{s=2}^{\infty} \left\{ \frac{\left[\frac{2[(\tau s + \mu) - \gamma(\mu + \tau)]}{\mu + \tau} + \gamma \rho (1-\beta)\right] \left(\frac{\tau s + \mu}{\mu + \tau}\right)^n}{1-\beta} a_s \right\} \\ &\frac{\left[\frac{2[(\tau s - \mu) + \gamma(\mu + \tau)]}{\mu + \tau} - \gamma \rho (1-\beta)\right] \left(\frac{\tau s - \mu}{\mu + \tau}\right)^n}{1-\beta} b_s \end{split}$$

$$\leq r + \frac{1 - \beta}{\left[\frac{2[(2\tau + \mu) - \gamma(\mu + \tau)]}{\mu + \tau} + \gamma\rho(1 - \beta)\right] \left(\frac{2\tau + \mu}{\mu + \tau}\right)^n} r^2$$

Similarly, the validity of the right-hand is demonstrated.

Corollary 4.2. Let f_n of type (6)be so that, $f_n \in \overline{\mathcal{S}_{\Upsilon}^0}(\mu, \tau, \sigma, n, \rho, \gamma, \beta)$, where $0 \le \gamma \le 1$, $0 \le \mu \le \frac{\tau}{2}$, $n \in \mathbb{N}_0$ and $\frac{\mu}{\mu + \tau} \le \beta \le \frac{\tau}{\mu + \tau}$. then

$$\left\{w: |w| < 1 - \frac{1 - \beta}{\left[\frac{2[(2\tau + \mu) - \gamma(\mu + \tau)]}{\mu + \tau} + \gamma \rho(1 - \beta)\right] \left(\frac{2\tau + \mu}{\mu + \tau}\right)^n}\right\} \subset f_n(\Delta).$$

Theorem 4.3. The class $\overline{\mathcal{S}_{\Upsilon}^0}(\mu, \tau, \sigma, n, \rho, \gamma, \beta)$ is closed under convex combinations.

Proof. Let $f_{n_i} \in \overline{\mathcal{S}_{\Upsilon}^0}(\mu, \tau, \sigma, n, \rho, \gamma, \beta)$ for (t = 1, 2, ...) is given by:

$$f_{n_t}(z) = z - \sum_{s=2}^{\infty} a_{s_t} z^s + (-1) \sum_{s=2}^{\infty} b_{s_t} \overline{z}^s.$$

Then by (9),

$$\sum_{s=2}^{\infty} \frac{\left[\frac{2\left[(\tau s + \mu) - \gamma(\mu + \tau)\right]}{\mu + \tau} + \gamma \rho(1 - \beta)\right] \left(\frac{\tau s + \mu}{\mu + \tau}\right)^n}{1 - \beta} a_{s_t} + \sum_{s=2}^{\infty} \frac{\left[\frac{2\left[(\tau s - \mu) + \gamma(\mu + \tau)\right]}{\mu + \tau} - \gamma \rho(1 - \beta)\right] \left(\frac{\tau s - \mu}{\mu + \tau}\right)^n}{1 - \beta} b_{s_t} \le 1.$$

$$(11)$$

For $\sum_{t=1}^{\infty}q_t=1$, $0< q_t<1$, we express the convex combination of f_{n_t} as follows

$$\sum\nolimits_{t=1}^{\infty} q_t \, f_{n_t}(z) = z - \sum\nolimits_{s=2}^{\infty} \left(\sum\nolimits_{t=1}^{\infty} q_t \, a_{s_t} \right) z^s + (-1) \sum\nolimits_{s=2}^{\infty} \left(\sum\nolimits_{t=1}^{\infty} q_t \, b_{s_t} \right) \overline{z^s}.$$

Then by (11),

$$\begin{split} \sum_{s=2}^{\infty} & \frac{\left[\frac{2\left[(\tau s + \mu) - \gamma(\mu + \tau)\right]}{\mu + \tau} + \gamma\rho(1 - \beta)\right] \left(\frac{\tau s + \mu}{\mu + \tau}\right)^n}{1 - \beta} \left(\sum_{t=1}^{\infty} q_t \, a_{s_t}\right) \\ & + \sum_{s=2}^{\infty} \frac{\left[\frac{2\left[(\tau s - \mu) + \gamma(\mu + \tau)\right]}{\mu + \tau} - \gamma\rho(1 - \beta)\right] \left(\frac{\tau s - \mu}{\mu + \tau}\right)^n}{1 - \beta} \left(\sum_{t=1}^{\infty} q_t \, b_{s_t}\right) \\ & = \sum_{t=1}^{\infty} q_t \left\{\sum_{s=2}^{\infty} \frac{\left[\frac{2\left[(\tau s + \mu) - \gamma(\mu + \tau)\right]}{\mu + \tau} + \gamma\rho(1 - \beta)\right] \left(\frac{\tau s + \mu}{\mu + \tau}\right)^n}{1 - \beta} a_{s_t} \right. \\ & + \sum_{s=2}^{\infty} \frac{\left[\frac{2\left[(\tau s - \mu) + \gamma(\mu + \tau)\right]}{\mu + \tau} - \gamma\rho(1 - \beta)\right] \left(\frac{\tau s - \mu}{\mu + \tau}\right)^n}{1 - \beta} b_{s_t} \right\} \\ & \leq \sum_{t=1}^{\infty} q_t = 1. \end{split}$$

This is the condition required by (9) and so $\sum_{i=1}^{\infty} q_i f_{n_i}(z) \in \overline{\mathcal{S}_{\Upsilon}^0}(\mu, \tau, \sigma, n, \rho, \gamma, \beta)$.

5. Conclusion

This article introduces a subclass of harmonic univalent functions defined by linear operator $I_{\mu,\tau}^n f(z)$. Furthermore, various intriguing outcomes are examined, such as the coefficient bound for the subclass $\overline{S_{\gamma}^0}(\mu,\tau,\sigma,n,\rho,\gamma,\beta)$. Subsequently, geometric properties pertaining to the considered function, including coefficient bound, extreme points, distortion and convex combinations in connection to the subclass $S_{\gamma}(\mu,\tau,\sigma,n,\rho,\gamma,\beta)$.

Acknowledgements

The authors express their gratitude to the reviewers and editors for their valuable feedback and suggestions.

References

^[1] J. Clunie and T. Sheil-Small, "Harmonic univalent functions," Annales Academiae Scientiarum Fennicae Mathematica, vol. 9, pp. 3-25, 1984.

^[2] P. Duren, "Harmonic mappings in the plane," Cambridge University Press, Cambridge, United Kingdom, 2004.

^[3] O. P. Ahuja, "Planar harmonic univalent and related mappings," Journal of Inequalities in Pure and Applied Mathematics, vol. 6, no. 4, pp. 1-18, 2005.

^[4] J. M. Jahangiri, G. Murugusundaramoorthy, and K. Vijaya, "Salagean-type harmonic univalent functions," South J. Pure Appl. Math., vol. 2, no. 6, pp. 77-82, 2002.

^[5] A. R. S. Juma and L. I. Cot^irla, "On harmonic univalent function defined by generalized Salagean derivatives," Acta Universitatis Apulensis, vol. 23, pp. 179-188, 2010.

^[6] Z. Ś. Ghali and A. K. Wanas, "Some Characteristics Properties for Linear Operator on Class of Multivalent Analytic Functions Defined by Differential Subordination," Journal of Al-Qadisiyah for Computer Science and Mathematics, vol. 16, no. 3, pp. 36-43, 2024.

- [7] Q. A. Shakir, F. M. Sakar, "On Third-Order Differential Subordination and Superordination Properties of Analytic Functions Defined by Tayyah-Atshan Fractional Integral Operator" Advances in Nonlinear Variational Inequalities. (2025). https://doi.org/10.52783/anvi.v28.2528.
- [8] A. A. Husien, Q. A. Shakir, "On a Certain Subclass for Multivalent Analytic Functions with a Fixed Point Involving Linear Operator" Earthline Journal of Mathematical Sciences 2.2 (2019): 515-526.
- [9] A. M. Rashid and A. R. S. Juma, "A class of harmonic univalent functions defined by the q-derivative operator," International Journal of Nonlinear Analysis and Applications, vol. 13, no. 1, pp. 2713-2722, 2022.
- [10] N. E. Cho and T. H. Kim, "Multiplier transformations and strongly close-to-convex functions," Bulletin of the Korean Mathematical Society, vol. 40, no. 3, pp. 399-410, 2003.
- [11] J. M. Jahangiri, "Harmonic functions starlike in the unit disk," Journal of Mathematical Analysis and Applications, vol. 235, no. 2, pp. 470-477, 1999.
- [12] G. S. Salagean, "Subclasses of univalent functions," in Complex Analysis Fifth Romanian-Finnish Seminar. Lecture Notes in Mathematics, pp. 362-372. Springer, Berlin, Heidelberg, 1983.
- [13] H. Bayram and S. Yalçın, "A subclass of harmonic univalent functions defined by a linear operator," Palestine Journal of Mathematics, vol. 6, Special Issue: II, pp. 320-326, 2017.
- [14] B. A. Uralegaddi and C. Somanatha, "Certain classes of univalent functions," in Current Topics in Analytic Function Theory, pp. 371-374, 1992.
- [15] S. Yalçın, G. Murugusundaramoorthy, and K. Vijaya, "Inclusion results on subclasses of harmonic univalent functions associated with Pascal distribution series," Palestine J. Math, vol. 11, pp. 267-275, 2022.
- [16] T. Rosy, B. A. Stephen, K. G. Subramanian, and J. M. Jahangiri, "Goodman-Ronning-type harmonic univalent functions," Kyungpook Mathematical Journal, vol. 41, no. 1, pp. 45, 2001.
- [17] Y. Avci, "On harmonic univalent mappings," Ann. Univ. Marie Curie-Sklodowska Sect. A, vol. 44, pp. 1-7, 1991.
- [18] H. Silverman and E. M. Silvia, "Subclasses of harmonic univalent functions," New Zealand Journal of Mathematics, vol. 28, pp. 275-284, 1999.
- [19] H. Silverman, "Harmonic univalent functions with negative coefficients," Journal of Mathematical Analysis and Applications, vol. 220, no. 1, pp. 283-289, 1998.
- [20] J. M. Jahangiri, "Harmonic functions starlike in the unit disk," Journal of Mathematical Analysis and Applications, vol. 235, no. 2, pp. 470-477, 1999.
- [21] E. Yasar and S. Yalçin, "Certain properties of a subclass of harmonic functions," Applied Mathematics & Information Sciences, vol. 7, no. 5, pp. 1749-1753, 2013.
- [22] S. Yalçin, M. Öztürk, and M. Yamankaradeniz, "On the subclass of Salagean-type harmonic univalent functions," J. Inequal. Pure Appl. Math, vol. 8, no. 2, pp. 1-9, 2007.
- [23] R. Kumar, S. Gupta, and S. U. K. H. J. I. T. Singh, "A class of univalent harmonic functions defined by multiplier transformation," Rev. Roumaine Math. Pures Appl, vol. 57, no. 1, pp. 371-382, 2012.