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A B S T R A C T 

In this paper, we obtain some new subclasses of bi-univalent functions by using quasi-
subordination. Also, we obtain the bounds for the modulus of the initial coefficients of the 
function inside these classes. 
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1. Introduction 

   Assume   exist the class of all normalized analytic functions   in an open unit disk   *      | |   + of the 
form: 

 ( )    ∑   
  (   )                                                  (   )

 

   

 

A function   has an inverse     has become satisfying    ( ( ))    (   ) , and  (   ( ))    .| |  

  ( )   ( )  
 

 
/   

location 
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 ( )     ( )       
  (   

    ) 
  (   

          ) 
    (   )              (   ) 

 

 

 

 

 

 

 

 

 

     If   and     are univalent functions in  , then   is described as bi-univalent in   and the class of bi-univalent 
functions defined in   is denoted by  . (see [14]). 

     Let   and   are analytic functions in  . Then   is said to be quasi-subordinated to   in   and articulated as 
follows: 

 ( )    ( ) (   )  

     if there exists  ( ) also  ( ) exist two analytic functions in  , accompanied by  ( )    such that | ( )|  

  | ( )|    also  ( )   ( ) ( ( ))  If  ( )   , then  ( )   ( ( ))  in order to  ( )   ( ) in  . If  ( )   , 

then  ( )   ( ) ( ), It is asserted that   is majorized by   also written  ( )   ( ) in   . (see [1], [16]) 

     Ma and Manda [15] established a category of starlike also convex functions by the use of subordination also the 
examination of classes  ∗( ) and  ∗( ) that is characterized by  

 ∗( )  8    
   ( )

 ( )
  ( )    9  

and  

 ∗( )  8    
    ( )

  ( )
  ( )    9  

     By   
∗( ) and   

∗( ), we denote to bi-starlike also bi-convex functions   is bi-starlike also bi-convex of Ma-Minda 

designate accordingly [15]. 

In the sequel, it is assumed that   of the form  

 ( )           
                                                          (   ) 

where  ( )    and   ( )   , also  

 ( )     ∑   
 

 

   

                                                              (   ) 

Figure : plots of the real and imaginary parts of the bi-univalent function and its inverse 
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which are analytic and constrained in  . Nonetheless, there are only a few works determining the overarching 
coefficient limits |  | also |  | ([2,3,4,6,10,11,12,13,20,21,22] and [23]) for the analytic bi-univalent functions inside 
the scholarly discourse. ([2,5,7,8,9,17,18,19]) 

Lemma (1.1) [10]. Let  ( )           
     , in which location   represents the set of all functions  , 

analytic in  , That is why   * ( )+    (   ), then |  |    for          . 

2. Main Results 

Definition (2.1).  A function     defined by (1.1) is said to be in the class     
 (     ) if the following quasi-

subordination conditions: 

 

 
6(   )4  

    ( )

  ( )
5  4

   ( )

 ( )
5

 

 
    ( )

  ( )
7   ( ( )   )                                (   ) 

and  

 

 
[(   ) .  

    ( )

  ( )
/  .

   ( )

 ( )
/
 

 
    ( )

  ( )
]   ( ( )   )                       (   )  

where (       |* + and       )       and       and the function     are given by (1.2) and (1.3) 
respectively. 

If we put     in Definition(2.1), we obtain the following Remark such that     
 (     )      (     )   

Remark (2.1). A function     defined is classified as belonging to the class     (     ) if the subsequent quasi-

subordination conditions: 

 

 
6(   ) 4  

    ( )

  ( )
5  

    ( )

  ( )
7   ( ( )   )                                            (   ) 

also 

 

 
6(   )4  

    ( )

  ( )
5  

    ( )

  ( )
7   ( ( )   )                                     (   ) 

where (       |* +) and       is given by (1.2). 

Theorem (2.1). If   is given by The Taylor-Maclaurin series expansion (1.1) is classified under     
 (     ), 

subsequently  

|  |     {
     

(      )
 √

     

 (    )  
 

 
 (   )

}                                              (   ) 

and  

|  |     {
     

 (      )
 

     

 (    )  
 

 
 (   )

 
     

 (      )
 

    
   

 

(      ) 
}                    (   ) 

Proof. Let       
 (     ) and      . Subsequently, there exist two analytic functions         accompanied 

by  ( )    also  ( )    | ( )|    | ( )|   , fulfilling  

 

 
6(   ) 4  

    ( )

  ( )
5  4

   ( )

 ( )
5

 

 
    ( )

  ( )
7   ( )( ( ( )   ))                   (   ) 
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also 

 

 
6(   ) 4  

    ( )

  ( )
5  4

   ( )

 ( )
5

 

 
    ( )

  ( )
7   ( )( ( ( )   ))             (   ) 

We define the function   ( ) and   ( ) by: 

  ( )  
   ( )

   ( )
          

                                                (   ) 

and  

  ( )  
   ( )

   ( )
          

                                          (    ) 

Or equivalent, 

 ( )  
  ( )   

  ( )   
 

 

 
6    4   

  
 

 
5    7                             (    ) 

and 

 ( )  
  ( )   

  ( )   
 

 

 
6    4   

  
 

 
5    7                         (    ) 

then   ( ) and   ( ) are analytic functions in  , with   ( )    ( )  1. due to,        , possess a positive real 
component in  , also |  |    

also |  |   , for      . Using (2.11) also (2.12) in (2.7) also (2.8), thus, we obtain 

 

 
[(   ) .  

    ( )

  ( )
/  .

   ( )

 ( )
/
 

 
    ( )

  ( )
]   ( ) . 0

  ( )  

  ( )  
1   /               (    )   

 

also 

 

 
[(   ) .  

    ( )

  ( )
/  .

   ( )

 ( )
/
 

 
    ( )

  ( )
]   ( ) . 0

  ( )  

  ( )  
1   /       (2.14) 

Since     possesses the Maclurian series defined by (1.1), a calculation indicates that its inverse       
according to the expansion in (1.2), we obtain 

 

 
[(   ) .  

    ( )

  ( )
/  .

   ( )

 ( )
/
 

 
    ( )

  ( )
]  

 

 
0(   )  (      )    0 (      )   ( (    )  

 

 
 (   ))  

 1     1  (    )  

and  

 

 
[(   ) .  

    ( )

  ( )
/  .

   ( )

 ( )
/
 

 
    ( )

  ( )
]  

 

 
0(   )  (      )    0 (      )(   

    )  

( (    )  
 

 
 (   ))  

 1    1.                                                                                             (2.16) 

By employing equations (2.11) as well as (2.12) in conjunction with (1.3) as well as (1.4), it becomes apparent that 

 ( ) . 0
  ( )  

  ( )  
1   /  

 

 
        .

 

 
       

 

 
     .   

  
 

 
/  

 

 
      

 /                (    )                                                                                          
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and  

 ( ) . 0
  ( )  

  ( )  
1   /  

 

 
        .

 

 
       

 

 
     .   

  
 

 
/  

 

 
      

 /        (    )  

Utilizing equations (2.17) and (2.15) to compare the coefficients of  and   , we obtain 

 

 
(      )   

 

 
                                                            (    ) 

and  

 

 
0 (      )   ( (    )  

 

 
 (   ))  

 1  
 

 
       

 

 
     .   

  
 

 
/  

 

 
      

    (    )                                                                     

Also utilizing (2.18) also (2.16) to compare the coefficients of  also   , we obatin  

 
 

 
(      )   

 

 
                                                         (    ) 

and  

 

 
0 (      )(   

    )  ( (    )  
 

 
 (   ))  

 1    

 

 
       

 

 
     .   

  
 

 
/  

 

 
      

 .                                     (2.22) 

From equations (2.19) with (2.21), it follows that its       , also 

 (      )   
      

   
 (  

    
 )                                         (    ) 

By summing equations (2.20) and (2.22), we derive 

  
  

      (     )    (  
    

 )(     )

 0( (    ) 
 

 
 (   ))  (      )1

                                            (    )  

or equivalently, 

  
  

   ,   (     )  (  
    

 )(     )-

 0 (    )  
 

 
 (   )1

                                    (    ) 

Applying |  |    also |  |    for the occasion coefficients    also   , we possess immediately 

|  |  √
     

 (    )  
 

 
 (   )

      

and  

|  |  
     

(      )
         

Furthermore, to ascertain the limit on|  | through the subtraction of (2.20) and (2.22), we derive 

 

 
, (      )    (      )  

 -              (     )             (    )  

Utilizing (2.26) also (2.25), we obtain  
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|  |  
     

 (      )
 

     

 (    )  
 

 
 (   )

 

and  

|  |  
     

 (      )
 

    
   

 

(      ) 
   

This completes the proof Theorem (2.1). 

By setting     in Theorem (2.1), we get the next Corollary: 

Corollary (2.1). Let   defined by (1.1) belongs to the class     (     ). Then 

|  |     {
     

(    )
 √

     

 (    )
} 

and  

|  |     8
     

 (    )
 

     

 (    )
 

     

 (    )
 

    
   

 

(    ) 
9  

By setting     in Theorem (2.1), we get the next Corollary: 

Corollary (2.2). Assume   defined by (1.1) belongs to the class     
 (     ). Then 

|  |     {
    

 
 √

    

  
} 

and  

|  |     8
    

  
 

    

  
 
    

  
 

  
   

 

 
9  

By putting       and     in Theorem(2.1), we get the next Corollary: 

Corollary (2.3). Let   defined by (1.1) belongs to the class     
 (     ). Then 

|  |     {
    

 
 √

    

  
} 

and  

|  |     8
    

  
 

    

  
 
    

  
 

  
   

 

 
9  

Definition (2.2). A function     is called in the class     
 (     ) if the subsequent quasi-subordination 

conditions are satisfied: 

 

 
[.

   ( )

 ( )
/
 

0 
 ( )

 
 (   )  ( )   1]   ( ( )   )                            (    )  

also 
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[.

   ( )

 ( )
/
 

0 
 ( )

 
 (   )  ( )   1]   ( ( )   )                     (    )  

where (    and      ) and    |* +,        and       is given by (1.2). 

If we put     in Definition(2.2), we obtain the following Remark such that     
 (     )      (     ) 

Remark (2.2). A function     is called in the class     (     ) if the following quasi-subordination conditions 

satisfying: 

 

 
[0 

 ( )

 
 (   )  ( )   1]   ( ( )   )                                  (    )  

and 

 

 
[0 

 ( )

 
 (   )  ( )   1]   ( ( )   )                              (    )  

location (    also     |* +),        and       is given by (1.2). 

Theorem (2.2). If   is given by (1.1) is owned to the class     
 (     ), then  

|  |     {
    

(   )
 √

     

, (   ) (    )-
}                                         (2.31) 

and  

|  |     2
    

  (    )
 

     

 (   ) (    )
 

    

  (    )
 

    
   

 

(   ) 
3                        (2.32) 

Proof. Let       
 (     ) also      . Subsequently, there exist two analytic functions         with  ( )    

and  ( )    | ( )|    and | ( )|   , satisfying  

 

 
[.

   ( )

 ( )
/
 

0 
 ( )

 
 (   )  ( )   1]   ( )( ( ( )   ))                        (2.33) 

and 

 

 
[.

   ( )

 ( )
/
 

0 
 ( )

 
 (   )  ( )   1]   ( )( ( ( )   )).                (2,34) 

The series expansions for   and   as given in (1.1) and (1.2) respectively, we get 

 

 
[4

   ( )

 ( )
5

 

6 
 ( )

 
 (   )  ( )   7]  

 

 
,(   )    ,(    )    (   )  

 -    -     (    ) 

and 

 

 
[.

   ( )

 ( )
/
 

0 
 ( )

 
 (   )  ( )   1]  

 

 
, (   )    ,(    )(   

    )   (   )  
 -    -.        (2.36) 

By utilizing equations (2.17) and (2.35) and comparing the coefficients of   and   , we derive 

 

 
(   )   

 

 
                                                               (    ) 
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also 

 

 
,(    )    (   )  

 -  
 

 
       

 

 
     .   

  
 

 
/  

 

 
      

 .       (2.38)                                                                                                                            

Likewise, by comparing the coefficients of w and    in equations (2.18) and (2.36), we obtain 

 
 

 
(   )   

 

 
                                                            (    ) 

also 

 

 
,(    )(   

    )   (   )  
 -  

 

 
       

 

 
     .   

  
 

 
/  

 

 
      

 .   (2.40)                                                                                      

From equations (2.37) and (2.39), we derive 

        

and  

 (   )   
      

   
 (  

    
 )                                          (    ) 

Currently, incorporating (2.38) also (2.40), we derive 

  
  

 ,     (     )    (  
    

 )(     )-

 , (   )  (    )-
  

Applying Lemma (1.1) for the coefficients    and   , we have 

|  |  √
     

 (   )  (    )
 

and  

|  |  
    

(   )
  

Now, to find |  |, by subtracting (2.38) and (2.40), we get 

  , (    )    (    )  
 -              (     ).           (2.42) 

By using (2.41) and (2.42), we have 

   
      

  (    )
 

    (     )

  (    )
 

    
   

 (  
    

 )

 (   ) 
  

Utilizing Lemma (1.1) for coefficients    also   , we drive 

|  |  
    

  (    )
 

    
   

 

(   ) 
  

This complete the proof of Theorem (2.2). 

By setting     in Theorem (2.2), we get the next Corollary  

Corollary (2.4). Assume   defined by (1.1) belongs to the class     (     ). Then 
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|  |     {
    

(   )
 √

     

(    )
}  

and 

|  |     2
    

  (    )
 

     

(    )
 

    

  (    )
 

    
   

 

(   ) 
3. 

By setting       in Theorem (2.2), we get the next Corollary  

Corollary (2.5). Assume   defined by (1.1) belongs to the class     
 (     ). Then 

|  |     8
    

 
 √

     

 
9, 

and  

|  |     2
    

  
 

     

 
 
    

  
 

    
   

 

 
3. 

By putting       in Theorem (2.2), we get the next Corollary  

Corollary (2.6). Let   defined by (1.1) belongs to the class     
 (     ). Then 

|  |     {     √
    

,   -
}  

and 

|  |     2
    

 
 

    

,   -
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