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Abstract. In this paper, firstly we introduce some fundamental concepts are included relating to r-
convergence of sequences in a metric space and give some examples. Secondly we consider some 
differentiations between conventional convergence sequences and r-convergence sequences. 
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1. DEFINITIONS AND EXAMPLES 

Definition 1.1. Let 0r , a sequence }{ nx  in a metric space ),( dX  is said to be converger   to Xx , 

( in symbols  xx rn   or nxrx lim  ) if  for every  > 0 ,  there is an Zk  such that 

),( xxd n  < r  kn  .   

Remark. The definition of  r-convergence implies that xx rn   if, and only if rxxd n ),( . 

The convergence of the sequence )},({ xxd n to r  takes place in the Euclidean metric space 1R . 

 

Definition 1.2. A sequence  }{ nx  is said to be fuzzy converges to Xx , or that x  is an fuzzy limit of 

}{ nx ; if there is 0r  such that }{ nx  is an converger   to x  . 
 

Example 1.3. If RX   (the set of real numbers) with usual metric and }/1{}{ nxn  ,  Then: 

1) 11nx ; 

2) 11 nx ; 

3) 2/12/1nx  ; 

4) 12/1nx . 
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Ans. (1): 

Fix  > 0 , from Archimedean property there is Zk such that )/1( k <  

Let n > k , then )/1( n < )/1( k . 

Now, )/1(1)1,( nxd n  < )/1(1 n  < )/1(1 k  < 1 . 

 

(2), (3): By the same way. 

(4): 

 Assume that 12/1nx , that is mean for any 0  there is Zk such that 
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 That is mean all but finitely many points are belong to the interval )
2

3
,

2

3
(   . 

 I.e. the points kxx ,...,1 are out side the interval )
2

3
,

2

3
(   , but this impossible.   

 
 

Example  1.4.  If CX   (the set of complex numbers) with usual metric, })/12(2{}{ 2 innzn   . 

Then izn 211  . 

Ans.             Fix  > 0  04/   , from Archimedean property there is  Zk such that 4/)/1( k . 

Since Zk  kk /1/1 2  . Let 22 /1/1 knkn  . 

Now, 

  1)4/(41/41/41/1/31)21()21,( 224222 knnnizizd nn . 

Hence,  1)21,( izd n . Which is complete the proof. 

 

 

Lemma 1.5. In any metric space ),( dX , the r-limit coincides with the conventional limit of a sequence, 

when 0r  . ( i.e. xxn 0  If, and only if xxn  ). 

Proof:          

                    xxn 0 For any 0  there is Zk such that   0),( xxd n  xxn  . 
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Remark.     From the result above, we can say that the concept of an r-convergence is a natural 

extension of the concept of conventional convergence of sequences in metric spaces. 

However, there is some properties in conventional convergence of sequences are not 

satisfies in r-convergence, as shown in example (1.3.) that  11nx  and 11 nx , but 

11  . That is mean the 1-convergence of a sequence }/1{ n  is not unique. Conversely 

there is some properties are not satisfies in the conventional convergence, but it is true in r-

convergence sequences (cf. Theorem 2.6, Theorem 2.9, Corollary 2.10). 

 

Lemma 1.6.  If ),( dX be a metric space  and }{ nx  is converger   to x , then }{ nx  is convergeq   to x      

for any q > r . 

Proof:                  

}{ nx  is converger   to x , then  for every  > 0 ,  there is an Zk  such that ),( xxd n  < 

r    kn  , but  r  < q , the result is clarity.            

 

Lemma 1.7.   Let  }{},{},{ nnn zyx are sequences in a metric space ),( dX  and }{ nx  is the disjoint union 

of }{},{ nn zy  , then }{ nx  is an converger   to Xx  if, and only if  both }{},{ nn zy are an 

converger   to x . 

Proof:  

 )(        Assume that }{ nx  is an converger   to x , then for any 0 , there is Zk such that 

knrxxd n  ),( , but any element in a sequence }{ nx  is either in }{ ny  or }{ nz not 

in both. Hence, knrxzdandrxyd nn   ),(),( , we get the result. 

 )(          If  }{},{ nn zy are an converger   to x .Then for any 0 , there are Zkk 21, such 

that  21 ),(),( knrxzdandknrxyd nn   , now the assumption 

 }{}{}{ nnn xzy  and  }{}{ nn zy  implies that },max{),( 21 kkknrxxd n   ,  

and  the proof is complete. 

 

Example 1.8. In R  with usual metric let us consider sequences: 

})/1(1{}{ nxn  , })1(1{}{ n

ny  and }]/)1[(1{}{ n

n nnz  . A sequence }{ nx  has 

the conventional limit equal to 1 and many fuzzy limits (e.g.,  2,5.0,01nx ). Sequence 

}{ ny  does not have the conventional limit but has different fuzzy limits (e.g., 01ny  , 

but 5.0,1,12 ny ). Sequence }{ nz  does not have the conventional limit but has a 
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variety of fuzzy limits (e.g., 11nz and 2,7.1,5.1,5.0,02nz ).   

Thus, we see that many sequences that do not have the conventional limit but have lots of fuzzy 

limits. 

 

2. MAIN RESULTS 
 

Theorem 2.1. If  ),( dX  be a linear metric space. }{},{ nn yx are sequences in X such that xx rn   and 

yy qn   then: 

a) yxyx qrnn  
  where };{  Znyxyx nnnn

; 

b) yxyx qrnn     where };{  Znyxyx nnnn
; 

c) xx
rn 

 
  for any R  where };{  Znxx nn  . 

Proof:  

To prove part (c): 

  xx rn   implies to for any 01   there is Zk such that knrxxd n  1),(   

Now, knrrxxdxxd nn   1),(),(  , when 
1  . 

 

Theorem 2.2.  Let  ),( dX be a metric space , xx rn   and yy qn   then  ),()},({ yxdyxd qrnn  . 

Proof:  

Assume that xx rn   and yy qn  , then : 

121 2/),(,,0 knrxxdZkk n     and 22/),( knqyyd n    

Let },max{ 21 kkk   

),(),(),(),(),(),( yxdyxdyxdyxdyxdyxd nnnnnn   

),(),(),(),( yxdyxdyxdyxd nnnn   

  )(2/2/),(),( qrrqxxdyyd nn . 

Thus, ),()},({ yxdyxd qrnn  . 

Definition 2.3.  A sequence }{ nx  in a metric space ),( dX is called : 

(1) Cauchyr   if for any 0  there is 
Zk such that for every kmn   we have 

 rxxd mn 2),( . 

(2) Fuzzy Cauchy, if there is 0r  such that it is Cauchyr  . 

Lemma 2.4.  A sequence }{ nx  is a conventional Cauchy if, and only if it is Cauchy0 . 
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Proof: 

}{ nx  is Cauchy0   for any 0  there is Zk such that for every kmn   we   

have   )0(2),( mn xxd  }{ nx  is a conventional Cauchy. 

 

Lemma 2.5.  Any Cauchyr   sequence is  Cauchyq   for all  rq  . 

Proof:  

Assume that }{ nx  is Cauchyr   sequence, then: 

      For any 0 there is Zk such that  rxxd mn 2),( , but   qr 22 . 

 Theorem 2.6. A sequence }{ nx  in a metric space ),( dX  is fuzzy converges if, and only if it is fuzzy 

Cauchy. 

Proof:  

() If a sequence }{ nx  is fuzzy converges , then there is 0r  such that }{ nx  is an 

converger     to r limit, say x .(i.e. knrxxdZk n   2/),(,0  ). 

Now, if  kmn ,  then: 

  rrxxdxxdxxd mnmn 2)2/(22),(),(),(  

Thus, }{ nx  is fuzzy Cauchy.  

()  Assume that }{ nx  is fuzzy Cauchy, then there is 0r  such that }{ nx is Cauchyr  . 

That is mean for any 0  there is Zk such that kmnrxxd mn  ,2),(  . 

Take rqk 2,1  , then Z and 0q . We get   nqxxd n ),( . 

By other words a sequence }{ nx  is convergeq   to x . Thus, }{ nx  is fuzzy converges. 

The proof is complete. 

 

Definition  2.7.  Let ),( dX  be a metric space. If x  is a point of X and 0r , then for any 0 : 

(1) The ballopenr   (in symbols  )(xBr

  ) with center x  and radius r  is the subset of 

X  defined by    }),(:{)(   ryxdXyxBr . 

(2) The ballclosedr  (in symbols ][xBr

 ) with center x  and radius r  is the subset of 

X  defined by    }),(:{][   ryxdXyxBr . 
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Definition 2.8. A sequence }{ nx  in a metric space ),( dX  is said to be:  

(1) boundedr   if there is Xx  such that )(}{ xBx r

n   for any 0 . 

(2) fuzzy bounded if there is 0r  such that it is boundedr  . 

 

Theorem 2.9.  A sequence }{ nx  in a metric space ),( dX is fuzzy converges if, and only if it is fuzzy 

bounded.  

Proof: 

()      Assume that a sequence }{ nx is fuzzy converges, then there are Xx and 0r  such 

that }{ nx  is converger   to x . By other word, for any 0 , there is Zk such that 

knrxxd n  ),( . 

Take )},(),...,,(,max{ 1 xxdxxdr k , then Z and   rxxd n ),( . 

Thus, )(}{ xBxn


  }{ nx  is bounded  or  }{ nx  is fuzzy bounded. 

()     If }{ nx  is fuzzy bounded, then there are 0,  rXx  such that nxBx r

n  )(}{  . 

                By other word nrxxd n  ),( . Thus, }{ nx is fuzzy converges. 

             The proof is complete. 

 

  Corollary 2.10. A sequence }{ nx  in a metric space ),( dX  is fuzzy Cauchy if, and only if it is fuzzy   

bounded. 
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