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Abstract. In this paper, firstly we introduce some fundamental concepts are included relating to r-
convergence of sequences in a metric space and give some examples. Secondly we consider some
differentiations between conventional convergence sequences and r-convergence sequences.
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1. DEFINITIONS AND EXAMPLES
Definition 1.1. Let r > 0, a sequence {x,} in a metric space (X,d) is said to be r —converge to xe X,
(insymbols x, —, x or x=r—limx, ) if forevery £>0, thereisan keZ" such that
d(x,,X) <r+¢& vn>Kk.
Remark. The definition of r-convergence implies that x, —, x if, and only if d(x,,x) > r.

The convergence of the sequence {d(x.,Xx)}to r takes place in the Euclidean metric space R*.

Definition 1.2. A sequence {x } is said to be fuzzy converges tox € X , or that x is an fuzzy limit of

{x.}; if there is r > 0 such that {x .} isan r —converge to x .

Example 1.3. If X =R (the set of real numbers) with usual metric and {x }={1/n}, Then:
1)x, — 1;
2) X, —> —1;
)X, =, 1/2
A) X, Py, 1.
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Ans. (1):
Fix £>0, from Archimedean property there is k € Z" such that (1/k)<e¢
Let n>k, then (1/n)<(1/k).
Now, d(x,,1)=|1-(/n) |<1+@/n) <1+(/k) <1l+¢.

(2), (3): By the same way.
(4):

Assume that X, —,,,1, that is mean for any &>0 there is keZ"such that
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n

n

<%+g vn>k = <g+g Vn>k:>—g—g<i<g+g vn>Kk.

n

That is mean all but finitely many points are belong to the interval (—g - g,g +¢&).

l.e. the points Xx,,...,x, are out side the interval (—g - g,g + &), but this impossible.

Example 1.4. If X =C (the set of complex numbers) with usual metric,{z.}={2+n” +(2-1/n)i }.

Then z, —;1+2i.

Ans. Fix >0 = ¢/4 >0 , from Archimedean property there is k € Z* such that (1/k) <&/4.
Since ke Z* = 1/k* <1/k. Let n>k =1/n* <1/k”.
Now,
d(z,1+2i)* =|z, -1+ 2i)|2 =1+3/n* +1/n* <1+4/n* <1+4/k* <1+4(el4) =1+¢.
Hence, d(z,,1+2i) <1+ &. Which is complete the proof.

Lemma 1.5. In any metric space (X,d), the r-limit coincides with the conventional limit of a sequence,
when r=0 . (i.e. x, >, x If,and only ifx, — x).
Proof:

X, —>, X <>Forany ¢ >0 there is k e Z" such that d(x,,X) <0+e=¢ < X, > X.



Remark.

Lemma 1.6.

Proof:

Lemma 1.7.

Proof:

From the result above, we can say that the concept of an r-convergence is a natural
extension of the concept of conventional convergence of sequences in metric spaces.
However, there is some properties in conventional convergence of sequences are not
satisfies in r-convergence, as shown in example (1.3.) that x, — 1 and x, — —1, but
1+ -1. That is mean the 1-convergence of a sequence {l/n} is not unique. Conversely
there is some properties are not satisfies in the conventional convergence, but it is true in r-

convergence sequences (cf. Theorem 2.6, Theorem 2.9, Corollary 2.10).

If (X,d)be ametric space and {x.} is r —converge tox, then {x } is q—converge to x

forany q>r.

{x.} is r—converge to x,then for every £>0, thereisan keZ" such that d(x,,x) <

r+c Vvn>k,but r+& < q+g¢,theresultis clarity.

Let {x.}.{y.}.{z }are sequences in a metric space (X,d) and {x.} is the disjoint union
of {y.}{z,} . then {x.} isan r—converge to xe X if, and only if both {y },{z,}are an

r —converge to Xx.

Assume that {x.} is an r —converge tox, then for anye >0, there is k € Z" such that
d(x,,x)<r+¢ Vv n>k, but any element in a sequence {x.} is either in {y.} or {z,}not
in both. Hence, d(y,,xX)<r+& andd(z,,X)<r+& V¥vn>k, we get the result.

If {y,}.{z,}are an r—converge to x.Then for any ¢ >0, there are k;,k, € Z"such
that d(y,,x)<r+¢ vn>k andd(z,,xX)<r+¢ Vvn>Kk,, now the assumption
{y.} oAz }={x.}and{y }{z,}=¢ implies that d(x,,x)<r+& Vn>k =max{,k,},

and the proof is complete.

Example 1.8. In R with usual metric let us consider sequences:

{X}={+@/n)}, {y.}={+D" Yand{z, }={L+[L—n)/n]"}. A sequence {x.} has
the conventional limit equal to 1 and many fuzzy limits (e.g., x, —, 0,0.5,2). Sequence
{y.} does not have the conventional limit but has different fuzzy limits (e.g., y, =, 0 ,
buty, —,1-10.5). Sequence {z,} does not have the conventional limit but has a



variety of fuzzy limits (e.g., z, —», 1and z, —, 0,0.51.51.7,2).

Thus, we see that many sequences that do not have the conventional limit but have lots of fuzzy
limits.

2. MAIN RESULTS

Theorem 2.1. If (X,d) be a linear metric space.{x_ },{y,}are sequences in X such that x, —, x and
Y, —>, Y then:

a) Xn + yn _)rJrq X+ y Where Xn -+ yn :{Xn + yn ’ ne Z+},
b) X, — Y, —>,q X—Y Where x, —y, ={x, -y, :ineZ'}

¢) B, 3, Px forany peR where px ={B-x,;neZ'}.
Proof:

To prove part (c):
X, —, X implies to for any & >0 thereis k e Z" such that d(x,,x) <r+¢& VvVn>k
Now, B-d(x,,X) <|4-d(x,,X)<|8-r+|f-&=|f-r+& Yn>k when e=|f-¢.

Theorem 2.2. Let (X,d)be a metric space, x, —, x and y, —, y then {d(X,,y,)}—., d(X,y).
Proof:

Assume that x, —, x and y, —, Y, then:

Ve>0,3k,k,eZ">d(x,,X)<r+¢&/2 vn>k and d(y,,y)<q+&/2 Vn>Kk,
Let k =max{,k,}
| d(%,, ¥a) —d(x,y) [=] (%, ¥a) =d (%, Y) +d (X, ¥) —d (X, Y) |

<[ d(%,, ¥a) =d (X, y) [+] d (%, ¥) = d(x,Y) |

<d(y,,y)+d(X,,X)<q+¢&/2+r+el2=(r+q)+¢.
Thus, {d (X, ¥,)} . d(X,Y) .

Definition 2.3. A sequence {x } in a metric space (X,d)is called :

(1) r—Cauchy if for any & >0 there is k e Z" such that for every n>m>k we have
d(x,,X,) <2r+e¢.

(2) Fuzzy Cauchy, if there is r > 0 such that it is r —Cauchy.

Lemma 2.4. A sequence {x.} is a conventional Cauchy if, and only if it is 0 —Cauchy.



Proof:
{x.} is 0—Cauchy<«> for any & >0 there is k € Z" such that for every n>m>k we

have d(x,,x,) <2(0)+¢=¢ < {X} is a conventional Cauchy.

Lemma 2.5. Any r —Cauchy sequence is q—Cauchyforall gq>r.

Proof:
Assume that {x.} is r —Cauchy sequence, then:
Forany ¢>0 thereis k e Z"such that d(x,,x,) <2r+¢,but 2r+e<2q+¢.
Theorem 2.6. A sequence {x.} in a metric space (X,d) is fuzzy converges if, and only if it is fuzzy
Cauchy.

Proof:
(=) If a sequence {x } is fuzzy converges , then there is r >0 such that {x.} is an

r—converge to r—limit, say x.(i.e. Ve>0,3keZ" 5d(Xx,,X)<r+¢&/2 vn>Kk).
Now, if n,m>Kk then:

d(x,,x,)<d(X,xX)+d(X,,X)<2r+2(e/2)=2r+¢

Thus, {x,} is fuzzy Cauchy.

(«<=) Assume that {x } is fuzzy Cauchy, then there is r >0 such that {x }is r —Cauchy.
That is mean for any ¢ > 0 there is k € Z" such that d(x,,Xx,,) <2r+& vnm>K.
Takea=k+1,q=2r,then a e Z"and q>0.Weget d(x,,X,)<q+& Vn>«.

By other words a sequence {x } is q—converge to x_. Thus, {x } is fuzzy converges.

The proof is complete.

Definition 2.7. Let (X,d) be a metric space. If x isa point of X andr >0, then for any e > 0:
(1) The r—open ball (in symbols B!(x) ) with center x and radius r is the subset of
X definedby B.(X)={yeX:d(xy)<r+e&}.
(2) The r—closed ball(in symbols B[[x]) with center x and radius r is the subset of

X definedby B][x]={yeX:d(xy)<r+e}.



Definition 2.8. A sequence {x.} in a metric space (X,d) is said to be:
(1) r —bounded if there is x e X such that {x }< B/ (x) forany ¢ > 0.
(2) fuzzy bounded if there is r > 0 such that it is r —bounded .

Theorem 2.9. A sequence {x,} in a metric space (X,d)is fuzzy converges if, and only if it is fuzzy
bounded.
Proof:

(=) Assume that a sequence {x_}is fuzzy converges, then there are xe X and r >0 such
that {x,} is r—converge to x. By other word, for any &> 0, there is k € Z" such that
d(x,,X)<r+¢ vn>Kk.

Take o > max{r,d(x,X),....d(%,X)}, then a e Z"and d(X,,X)<r+e<a+¢.
Thus, {x.} = B (x) ={x,} is « —bounded or {x } is fuzzy bounded.

(<) If {x} is fuzzy bounded, then there are x € X, r >0 such that{x.} = B.(x) Vn.

By other word d(x,,x) <r+¢& Vvn. Thus, {x }is fuzzy converges.

The proof is complete.

Corollary 2.10. A sequence {x } in a metric space (X,d) is fuzzy Cauchy if, and only if it is fuzzy
bounded.
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