r-convergence in metric space

Salah. M. Ali

Department Of Mathematics, College of C. Sc. and Math.,

Al-Qadisiya University, Iraq.

Abstract. In this paper, firstly we introduce some fundamental concepts are included relating to rconvergence of sequences in a metric space and give some examples. Secondly we consider some differentiations between conventional convergence sequences and r-convergence sequences.

Keywords**:** *r converge* , *fuzzy converge*,*r Cauchy*, *fuzzy Cauchy*,*r bounded* , *fuzzy bounded*.

 Mathematics **S**ubject **C**lassification (2010) : *30Lxx,40A05,26E50*.

1. DEFINITIONS AND EXAMPLES

Definition 1.1. Let $r > 0$, a sequence $\{x_n\}$ in a metric space (X,d) is said to be r -converge to $x \in X$,

(in symbols $x_n \to_r x$ or $x = r - \lim x_n$) if for every $\varepsilon > 0$, there is an $k \in \mathbb{Z}^+$ such that $d(x_n, x) < r + \varepsilon \ \forall n > k.$

Remark. The definition of r-convergence implies that $x_n \to r$, x if, and only if $d(x_n, x) \to r$.

The convergence of the sequence $\{d(x_n, x)\}$ to r takes place in the Euclidean metric space R^1 .

Definition 1.2. A sequence $\{x_n\}$ is said to be fuzzy converges to $x \in X$, or that x is an fuzzy limit of ${x_n}$; if there is $r > 0$ such that ${x_n}$ is an r – *converge* to *x*.

Example 1.3. If $X = R$ (the set of real numbers) with usual metric and $\{x_n\} = \{1/n\}$, Then:

1)
$$
x_n \rightarrow_1 1
$$
;
\n2) $x_n \rightarrow_1 -1$;
\n3) $x_n \rightarrow_{1/2} 1/2$;
\n4) $x_n \rightarrow_{1/2} 1$.

[/]e-mail: salah_x9@yahoo.com

Ans. (1):

Fix $\varepsilon > 0$, from Archimedean property there is $k \in \mathbb{Z}^+$ such that $(1/k) < \varepsilon$ Let $n > k$, then $(1/n) < (1/k)$. Now, $d(x_n, 1) = |1 - (1/n)| < 1 + (1/n) < 1 + (1/k) < 1 + \varepsilon$.

 (2) , (3) : By the same way.

 (4) :

Assume that $x_n \rightarrow_{1/2} 1$, that is mean for any $\varepsilon > 0$ there is $k \in \mathbb{Z}^+$ such that *n k n* $-1 \leq \frac{1}{2} + \varepsilon \quad \forall n >$ 2 $\left|\frac{1}{2-1}\right| < \frac{1}{2} + \varepsilon \quad \forall n > k \Rightarrow \left|\frac{1}{2}\right| < \frac{3}{2} + \varepsilon \quad \forall n > k$ *n* \Rightarrow $\left| \frac{1}{2} \right| < \frac{3}{2} + \varepsilon$ $\forall n >$ 2 $\frac{1}{2}$ $\leq \frac{3}{2} + \varepsilon$ $\forall n > k \Rightarrow -\frac{3}{2} - \varepsilon < -\frac{1}{2} + \varepsilon$ $\forall n > k$ *n* $\Rightarrow -\frac{3}{5} - \varepsilon < -\frac{1}{5} + \varepsilon \quad \forall n >$ 2 1 3 2 $\frac{3}{2} - \varepsilon < \frac{1}{2} + \varepsilon \quad \forall n > k.$ That is mean all but finitely many points are belong to the interval $\left(-\frac{3}{2} - \varepsilon, \frac{3}{2} + \varepsilon\right)$ 2 $\frac{3}{2}$ 2 $\left(-\frac{3}{2}-\varepsilon,\frac{3}{2}+\varepsilon\right).$

I.e. the points x_1, \ldots, x_k are out side the interval $\left(-\frac{3}{2} - \varepsilon, \frac{3}{2} + \varepsilon\right)$ 2 $\frac{3}{2}$ 2 $\left(-\frac{3}{2}-\varepsilon,\frac{3}{2}+\varepsilon\right)$, but this impossible.

Example 1.4. If $X = C$ (the set of complex numbers) with usual metric, $\{z_n\} = \{2 + n^{-2} + (2 - 1/n)i\}$. Then $z_n \rightarrow 1 + 2i$.

Ans. Fix $\varepsilon > 0 \Rightarrow \varepsilon / 4 > 0$, from Archimedean property there is $k \in \mathbb{Z}^+$ such that $(1/k) < \varepsilon / 4$. Since $k \in \mathbb{Z}^+ \implies 1/k^2 < 1/k$. Let $n > k \implies 1/n^2 < 1/k^2$. Now, $d(z_n, 1+2i)^2 = |z_n - (1+2i)|^2 = 1 + 3/n^2 + 1/n^4 < 1 + 4/n^2 < 1 + 4/k^2 < 1 + 4(\varepsilon/4) = 1 + \varepsilon$. Hence, $d(z_n, 1 + 2i) < 1 + \varepsilon$. Which is complete the proof.

Lemma 1.5. In any metric space (X,d) , the *r*-limit coincides with the conventional limit of a sequence, when $r = 0$. (i.e. $x_n \rightarrow_0 x$ If, and only if $x_n \rightarrow x$).

Proof:

 $x_n \to 0$, $x \Leftrightarrow$ For any $\varepsilon > 0$ there is $k \in \mathbb{Z}^+$ such that $d(x_n, x) < 0 + \varepsilon = \varepsilon \Leftrightarrow x_n \to x$.

- **Remark.** From the result above, we can say that the concept of an *r*-convergence is a natural extension of the concept of conventional convergence of sequences in metric spaces. However, there is some properties in conventional convergence of sequences are not satisfies in *r*-convergence, as shown in example (1.3.) that $x_n \rightarrow 1$ and $x_n \rightarrow -1$, but $1 \neq -1$. That is mean the 1-convergence of a sequence $\{1/n\}$ is not unique. Conversely there is some properties are not satisfies in the conventional convergence, but it is true in rconvergence sequences (cf. Theorem 2.6, Theorem 2.9, Corollary 2.10).
- **Lemma 1.6.** If (X,d) be a metric space and $\{x_n\}$ is r *converge* to x, then $\{x_n\}$ is q *converge* to x for any $q > r$.

Proof:

{ x_n } is *r*-converge to *x*, then for every $\varepsilon > 0$, there is an $k \in \mathbb{Z}^+$ such that $d(x_n, x)$ < $r + \varepsilon$ $\forall n > k$, but $r + \varepsilon < q + \varepsilon$, the result is clarity.

Lemma 1.7. Let $\{x_n\}, \{y_n\}, \{z_n\}$ are sequences in a metric space (X, d) and $\{x_n\}$ is the disjoint union of $\{y_n\}, \{z_n\}$, then $\{x_n\}$ is an r -converge to $x \in X$ if, and only if both $\{y_n\}, \{z_n\}$ are an r *– converge* to x .

Proof:

- (\Rightarrow) Assume that $\{x_n\}$ is an r -converge to x, then for any $\varepsilon > 0$, there is $k \in \mathbb{Z}^+$ such that $d(x_n, x) < r + \varepsilon \ \forall n > k$, but any element in a sequence $\{x_n\}$ is either in $\{y_n\}$ or $\{z_n\}$ not in both. Hence, $d(y_n, x) < r + \varepsilon$ and $d(z_n, x) < r + \varepsilon \quad \forall n > k$, we get the result.
- (\Leftarrow) $\{y_n\}, \{z_n\}$ are an r – *converge* to x. Then for any $\varepsilon > 0$, there are $k_1, k_2 \in \mathbb{Z}^+$ such that $d(y_n, x) < r + \varepsilon \ \forall n > k_1 \ and \ d(z_n, x) < r + \varepsilon \ \forall n > k_2$, now the assumption $\{y_n\} \cup \{z_n\} = \{x_n\}$ and $\{y_n\} \cap \{z_n\} = \emptyset$ implies that $d(x_n, x) < r + \varepsilon \ \forall n > k = \max \{k_1, k_2\}$, and the proof is complete.

Example 1.8. In R with usual metric let us consider sequences:

 ${x_n} = {1 + (1/n)} , {y_n} = {1 + (-1)^n}$ y_n } = {1 + (-1)ⁿ } and { z_n } = {1 + [(1 - *n*)/*n*]ⁿ }. A sequence { x_n } has the conventional limit equal to 1 and many fuzzy limits (e.g., $x_n \rightarrow 0.0.5,2$). Sequence ${y_n}$ does not have the conventional limit but has different fuzzy limits (e.g., $y_n \rightarrow_1 0$, but $y_n \rightarrow_2 1, -1, 0.5$). Sequence $\{z_n\}$ does not have the conventional limit but has a variety of fuzzy limits (e.g., $z_n \rightarrow_1 1$ and $z_n \rightarrow_2 0, 0.5, 1.5, 1.7, 2$).

Thus, we see that many sequences that do not have the conventional limit but have lots of fuzzy limits.

2. MAIN RESULTS

Theorem 2.1. If (X,d) be a linear metric space. $\{x_n\}$, $\{y_n\}$ are sequences in X such that $x_n \to r x$ and

 $y_n \rightarrow_q y$ then: a) $x_n + y_n \rightarrow_{r+q} x + y$ where $x_n + y_n = \{x_n + y_n : n \in \mathbb{Z}^+\};$ b) $x_n - y_n \rightarrow_{r+q} x - y$ where $x_n - y_n = \{x_n - y_n : n \in \mathbb{Z}^+\};$ c) $\beta x_n \rightarrow_{|\beta| \cdot r} \beta x$ for any $\beta \in R$ where $\beta x_n = {\beta \cdot x_n : n \in Z^+}$.

Proof:

To prove part (c):

$$
x_n \to_r x \text{ implies to for any } \varepsilon_1 > 0 \text{ there is } k \in \mathbb{Z}^+ \text{ such that } d(x_n, x) < r + \varepsilon_1 \quad \forall n > k
$$
\n
$$
\text{Now, } \beta \cdot d(x_n, x) < |\beta| \cdot d(x_n, x) < |\beta| \cdot r + |\beta| \cdot \varepsilon_1 = |\beta| \cdot r + \varepsilon \quad \forall n > k \text{ , when } \varepsilon = |\beta| \cdot \varepsilon_1.
$$

Theorem 2.2. Let (X,d) be a metric space, $x_n \to_r x$ and $y_n \to_q y$ then $\{d(x_n, y_n)\}\to_{r+q} d(x, y)$. **Proof:**

Assume that
$$
x_n \rightarrow_r x
$$
 and $y_n \rightarrow_q y$, then:
\n
$$
\forall \varepsilon > 0, \exists k_1, k_2 \in \mathbb{Z}^+ \ni d(x_n, x) < r + \varepsilon/2 \quad \forall n > k_1 \text{ and } d(y_n, y) < q + \varepsilon/2 \quad \forall n > k_2
$$
\nLet $k = \max \{k_1, k_2\}$
\n
$$
\left| d(x_n, y_n) - d(x, y) \right| = \left| d(x_n, y_n) - d(x_n, y) + d(x_n, y) - d(x, y) \right|
$$
\n
$$
\leq \left| d(x_n, y_n) - d(x_n, y) \right| + \left| d(x_n, y) - d(x, y) \right|
$$
\n
$$
\leq d(y_n, y) + d(x_n, x) < q + \varepsilon/2 + r + \varepsilon/2 = (r + q) + \varepsilon.
$$

Thus, $\{d(x_n, y_n)\}\rightarrow_{r+q} d(x, y)$.

Definition 2.3. A sequence $\{x_n\}$ in a metric space (X,d) is called :

- (1) r *Cauchy* if for any $\varepsilon > 0$ there is $k \in \mathbb{Z}^+$ such that for every $n > m > k$ we have $d(x_n, x_m) < 2r + \varepsilon$.
- (2) Fuzzy Cauchy, if there is $r > 0$ such that it is $r Cauchy$.

Lemma 2.4. A sequence $\{x_n\}$ is a conventional Cauchy if, and only if it is $0 - Cauchy$.

Proof:

 ${x_n}$ is 0–*Cauchy* \Leftrightarrow for any $\varepsilon > 0$ there is $k \in \mathbb{Z}^+$ such that for every $n > m > k$ we have $d(x_n, x_m) < 2(0) + \varepsilon = \varepsilon \Leftrightarrow \{x_n\}$ is a conventional Cauchy.

Lemma 2.5. Any r – Cauchy sequence is q – Cauchy for all $q > r$.

Proof:

Assume that $\{x_n\}$ is r – *Cauchy* sequence, then:

For any $\varepsilon > 0$ there is $k \in \mathbb{Z}^+$ such that $d(x_n, x_m) < 2r + \varepsilon$, but $2r + \varepsilon < 2q + \varepsilon$.

Theorem 2.6. A sequence $\{x_n\}$ in a metric space (X,d) is fuzzy converges if, and only if it is fuzzy Cauchy.

Proof:

(\Rightarrow) If a sequence $\{x_n\}$ is fuzzy converges, then there is $r > 0$ such that $\{x_n\}$ is an *r* – *converge* to *r* – limit, say *x*. (i.e. $\forall \varepsilon > 0$, $\exists k \in \mathbb{Z}^+$ $\exists d(x_n, x) < r + \varepsilon/2 \forall n > k$). Now, if $n,m \geq k$ then:

$$
d(x_n, x_m) \le d(x_n, x) + d(x_m, x) < 2r + 2(\varepsilon/2) = 2r + \varepsilon
$$

Thus, $\{x_n\}$ is fuzzy Cauchy.

(\Leftarrow) Assume that $\{x_n\}$ is fuzzy Cauchy, then there is $r > 0$ such that $\{x_n\}$ is $r - Cauchy$. That is mean for any $\varepsilon > 0$ there is $k \in \mathbb{Z}^+$ such that $d(x_n, x_m) < 2r + \varepsilon \ \forall n, m > k$. Take $\alpha = k + 1$, $q = 2r$, then $\alpha \in \mathbb{Z}^+$ and $q > 0$. We get $d(x_n, x_\alpha) < q + \varepsilon \ \forall n > \alpha$. By other words a sequence $\{x_n\}$ is q – *converge* to x_α . Thus, $\{x_n\}$ is fuzzy converges. The proof is complete.

Definition 2.7. Let (X,d) be a metric space. If x is a point of X and $r > 0$, then for any $\varepsilon > 0$:

- (1) The r -open ball (in symbols $B_{\varepsilon}^r(x)$) with center x and radius r is the subset of *X* defined by $B_{\varepsilon}^r(x) = \{ y \in X : d(x, y) < r + \varepsilon \}.$
- (2) The r -closed ball(in symbols $B_{\varepsilon}^{r}[x]$) with center x and radius r is the subset of *X* defined by $B_{\varepsilon}^r[x] = \{ y \in X : d(x, y) \le r + \varepsilon \}.$

Definition 2.8. A sequence $\{x_n\}$ in a metric space (X,d) is said to be:

(1) r *– bounded* if there is $x \in X$ such that $\{x_n\} \subset B_\varepsilon^r(x)$ for any $\varepsilon > 0$.

(2) fuzzy bounded if there is $r > 0$ such that it is r *– bounded*.

Theorem 2.9. A sequence $\{x_n\}$ in a metric space (X,d) is fuzzy converges if, and only if it is fuzzy bounded.

Proof:

- (\Rightarrow) Assume that a sequence $\{x_n\}$ is fuzzy converges, then there are $x \in X$ and $r > 0$ such that $\{x_n\}$ is r – *converge* to x. By other word, for any $\varepsilon > 0$, there is $k \in \mathbb{Z}^+$ such that $d(x_n, x) < r + \varepsilon \ \forall n > k.$ Take $\alpha > \max\{r, d(x_1, x), \ldots, d(x_k, x)\}\$, then $\alpha \in \mathbb{Z}^+$ and $d(x_n, x) < r + \varepsilon < \alpha + \varepsilon$. Thus, $\{x_n\} \subset B_\varepsilon^\alpha(x) \Longrightarrow \{x_n\}$ is α -bounded or $\{x_n\}$ is fuzzy bounded.
- (
iii) If $\{x_n\}$ is fuzzy bounded, then there are $x \in X$, $r > 0$ such that $\{x_n\} \subset B_{\varepsilon}^r(x)$ $\forall n$. By other word $d(x_n, x) < r + \varepsilon \ \forall n$. Thus, $\{x_n\}$ is fuzzy converges. The proof is complete.
- **Corollary 2.10.** A sequence $\{x_n\}$ in a metric space (X,d) is fuzzy Cauchy if, and only if it is fuzzy bounded.

Acknowledgements

The author would like to thank and grateful to Assist Prof Dr. Noori Farhan Adhab for comment and helpful suggestion.

R e f e r e n c e s

[1] **T.M. Apostol**, Mathematical analysis, Addison-Wesley Publishing Company, Inc., (**1974**).

[2] **M. Burgin**, Fuzzy Differentiation Of Real Functions, University of California, Los Angeles,

Mathematics Report Series, MRS Report 01-03,**2001**,39 p.

- [3] **J. M. E. Hyland**, Analysis, The Archimedean, Cambridge University, (**1996**).
- [4] **G.F. Simmons**, Introduction to topology and modern analysis, M.G.H Book Company, Inc., (**1963**).