On Studying Hessian Matrix with Applications

Adel Mohammed Hassan Rizak Al-Rammahi Assistant Professor ,PH.D, math.Dep.,math. & comp.Coll.,Kufa Un, Iraq E-mail: adelr@naharpost.com

Abstract

To study the properties of definite and Hessian matrices and using it in finding the critical points of quadratic forms . On the other hand, the applications of Hessian matrix are introduced in

static springs system problem .

حول دراسة مصفوفة هيسيان مع التطبيقات

د.عـادل وحيــذ حسـٍ رزاق انرياحــي أستـار يسـاعذ ـ قسى انرياضيـاث ـ كـهيت انرياضياث وانحاسباث ـ جايعت انكىفت

انخــالصـــــت در اسة صفات مصفو فات هيسيان ومصفو فات اليقين و استخدامها لايجاد النقاط الحرجة للاشكال التربيعية وتطبيقات الافتراضية الجديدة في مسائل الانظمة الديناميكية .

1- Introduction

In this paper, the calculation of critical points of quadratic forms are studied .The proposed method was applied in static springs system .

Hessian differential matrix was proved that it represents the symmetric matrix of the quadratic form.

Positive and negative matrices are play useful role in applied mathematical problems, Lyapunov stability[1], control system[2], electric circuit[3], economics[4], competition[5], approximation[6] and others.

In this paper the quadratic form

 $f(x) = c + b^t x + \frac{1}{2} x^t A x, c \in R, b \in R^n, x \in R^n, A \in R^{n \times n}$ 2 $f(x) = c + b^t x + \frac{1}{2}$

Was studied and proved that the stationary vector x^* is minimum only if $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ be positive definite , and the gradient of quadratic form $f(x)$ is $\nabla f(x) = b + Ax$, and the Hessian matrix H of $f(x)$ is the constant matrix A .

Then it is also proved that if A be positive definite proved that H is positive definite which implies that X^* be minimum and calculated form

$$
x^* = A^{-1}b
$$

2- Basic Definitions and Theorems :

In this chapter, the basic definitions and theorems with properties are presented as follows :

Definition $(2-1)[7]$: the real symmetric $n \times n$ matrix $A = (a_{ij})$

is said to be **positive definite** if the leading principle minors of A are all positive , such that it satisfies the following Sylvestor's condition

positive, such that it satisfies the following Sylvester's condition
\n
$$
\det(A_j) = \det \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{ij} \\ a_{21} & a_{22} & \cdots & a_{2j} \\ \vdots & \vdots & \ddots & \vdots \\ a_{j1} & a_{j2} & \cdots & a_{jj} \end{bmatrix} > 0 \qquad , \quad \forall j = 1, 2, ..., n
$$

Definition (2-2) **[7]:** The real symmetric nxn matrix A is said to be **negative definite** if and only if

 $(-1)^j \det(A_j) > 0$ $\forall j=1,2,...,n$.

Theorem $(2-1)[8-9]$: Let $A = (a_{ij})$ be $n \times n$ and symmetric, The following are equivalent.

1) det(A_j) > 0 ((-1)^{*j*} det(A_j) > 0), $\forall j = 1,2,...,n$

2) $x^t A x > 0$ ($x^t A x < 0$) for all vector x.

Then A is called positive (negative) definite.

Definition (2-3) **[10]:** A **quadratic from** on R is a real – valued function of the from $Q(x1, \dots, xn) = \sum_{i \leq j}$ $=$ *i j* $Q(x_1, \ldots, x_n) = \sum a_{ij} x_i x_j$ where each term is a monomial of degree two, a matrix from $Q(x)=x^t.A.x$.

one can take the gradient of $f(x)$, as

$$
\nabla f = \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n} \right]^T
$$

Which is a column vector of n function .

Definition (2-4)[9,11] :-The $n \times n$ matrix of second derivatives is called the **Hessian matrix** and can be found by taking the gradient a gain , thus,

 $H(x_1, \ldots, x_n) = \nabla \nabla^T f = \nabla^2 f$ or more specifically, the ∇^2 operator can be written as

$$
\nabla^{2} = \begin{bmatrix} \frac{\partial^{2}}{\partial x_{1}^{2}} & \cdots & \frac{\partial^{2}}{\partial x_{1} \partial x_{n}} \\ \vdots & \vdots & \ddots \\ \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} & \cdots & \frac{\partial^{2}}{\partial x_{n}^{2}} \end{bmatrix} = \begin{bmatrix} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} \end{bmatrix}_{n \times n}
$$

Where the subscript i denotes the row and j denotes the column.

The Hessian matrix is symmetric because of the properties of the second derivatives of continuous functions. $\frac{0}{2\pi\epsilon_0} f(x) = \frac{0}{2\epsilon_0} f(x)$ 2 $\qquad \qquad$ 2 *f x* $\partial x_i \partial x$ *f x* $\partial x_i \partial x_j$ ^{*j* $\partial x_j \partial x_i$} $=\frac{\partial}{\partial x}$ $\partial x_i\,\partial$ ∂

Definition $(2-5)[10]$:- A point x^{**} is said to be the **strong global minimum** of a function $f(x)$ if $f(x)-f(x^{**})>0$, $\forall x \in \mathbb{R}^n$

Definition(2**-**6**)[10]** a point *x** is said to be a **strong local minimum** of a function $f(x)$ if there exists a $\delta > 0$ such that

 $f(x) - f(x^*) > 0$ for all x such that $||x - x^*|| < \delta$.

If the inequalities in $f(x) - f(x^{**}) > 0$ and $f(x) - f(x^{*}) > 0$ are replaced by < than we have strong global and local maxima.

If the inequalities in $f(x) - f(x^{**}) > 0$ and $f(x) - f(x^{*}) > 0$ are replaced by \ge then the minima are called weak global and weak local minima .

Definition(2-7)[10] One can expand f(x) in a **Taylor expansion** about x as

 $(x)\Delta x + O(||Ax||^3)$ 2 $f(x + \Delta x) = f(x) + \Delta x^T \Delta f(x) + \frac{1}{2} \Delta x^T \Delta^2 f(x) \Delta x + O(||Ax||^3)$. Where the notation $O(||Ax||^3)$ represents terms " order " $||Ax||^3$ and these can be neglected for $||Ax||^3$ sufficiently small .

Theorem (2-1)[10,12] :- Necessary condition based on $(\nabla f, \nabla^2 f)$

 x^* is a local minimum only if $\nabla f(x^*)=0$ and $\nabla^2 f(x^*)$ is positive semi definite .

Definition (2-8)[10,12]:- a stationary point which is not local minimum or local maximum is called a saddle point.

3-Proposed Method for Finding Critical Points : In this section the quadratic Form

$$
f(x) = c + b^t x + \frac{1}{2} x^t A x, c \in R, b \in R^n, x \in R^n, A \in R^{n \times n}
$$
 (3.1)

was studied and proved that the stationary vector x^* is minimum only if $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ be positive definite.

It is proved that the gradient of quadratic form $f(x)$ is $\nabla f(x) = b + Ax$

and the Hessian matrix H of $f(x)$ is the constant matrix A. Then if A be positive definite proved that H is positive definite which implies that x^* be minimum and calculated from the form $X^* = -A^{-1}b$.

Following a propositions are introduced :

Now a point x^* is called local minimum of $f(x)$ if there exist $\delta > 0$ such that $f(x) - f(x^*) > 0$ for all x such that $||x - x^*|| < \delta$ where $\| \$ denotes the norm.

A point x^* is called global minimum of $f(x)$ if there exist $\delta > 0$ such that $f(x) - f(x^*) > 0$ for all x.

When the inequality in $f(x) - f(x^*) > 0$ be replaced by \lt , then x^* is called maxima [11] .

One can expand $f(x)$ in a Taylor expansion about x as :

$$
f(x + \Delta x) = f(x) + \Delta x' \nabla f(x) + \frac{1}{2} \Delta x' \nabla^2 f(x) \Delta x + O(||\Delta x||^3)
$$

Where the notation $O \llbracket \Delta x \rrbracket^3$ represents terms of order $\llbracket \Delta x \rrbracket^3$ and these can be neglected for $\|\Delta x\|$ sufficiently small.

For x^* to be minimum this implies that $f(x^* + \Delta x) - f(x^*) > 0$ for $\|\Delta x\| > 0$.

From the Taylor expansion [11] :

 $f(x^* + \Delta x) = f(x^*) + \Delta x^t \nabla f(x^*) + \frac{1}{2} \Delta x^t \nabla^2 f(x^*) \Delta x$ 2 $(x^* + \Delta x) = f(x^*) + \Delta x' \nabla f(x^*) + \frac{1}{2} \Delta x' \nabla^2 f(x^*)$

Must be greater than zero , where $O||\Delta x||^3$ be neglected.

For x^* be stationary then

 $\nabla f(x^*) = 0$

Implying definition (2.1) that $\nabla^2 f(x^*)$ be positive definite.

Proposition (3.1) x^* is minimum only if $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ be positive definite

Now for proposition(2) one can write $f(x)$ in matrix notation as equation $(3.1) >$

In algebraic form one can write $f(x)$ as

$$
f(x) = c + \sum_{i=1}^{n} b_i x_i + \sum_{j=1}^{n} \sum_{i=1}^{n} \frac{1}{2} x_j a_{ij} x_j
$$

$$
f(x) = c + \sum_{i=1}^{n} b_i x_i + \frac{1}{2} \left[a_{kk} x_k^2 + x_k \sum_{j \neq k} a_{kj} x_j + x_k \sum_{j \neq k} x_i a_{ik} + \sum_{i \neq k} \sum_{j \neq k} x_i a_{ij} x_j \right]
$$

And there fore

$$
\frac{\partial f}{\partial x_k} = b_k + \frac{1}{2} \left[2a_{kk}x_k + 2 \sum_{j \neq k} a_{kj}x_j \right] = b_k + \sum_j a_{kj}x_j
$$

In matrix form

 $\nabla f(x) = b + Ax$

Proposition(3.2):-

The gradient of quadratic form (3.1) is $\nabla f(x) = b + Ax$.

Now for new proposition, using definition (2.4), Hessian matrix be

$$
H(x) = \nabla(\nabla f(x))' = \left[\frac{\partial^2}{\partial x_i \partial x_j} f(x) \right]_{n \times n}
$$

Since $\frac{\partial f}{\partial x_j} = b_j + \sum_k a_{jk} x_k$
Then $\frac{\partial f}{\partial x_j x_i} f(x) = a_{ij} = a_{ji}$

And in matrix notation . $H(x) = H = A$

Proposition (3.3):-

The Hessian matrix of quadratic form is the constant matrix A. then. If A be positive definite then H is positive definite which implies that x^* be minimum.

Finally for introducing other proposition, the minimum x^* hold: $\nabla f(x^*) = b + Ax^* = 0 \Rightarrow x^* = -A^{-1} b$

Proposition (3.4):-

The minimum x^* of quadratic form is calculated as $x^* = -A^{-1} b$

4- **Applications of Hessian matrix**

This section is concerned for applications of Hessian matrix ,referred as linear spring system

To apply above new propositions, one can introduce the following System of linear spring system[13]:

The blocks A and B are two bodies connected to 3 Linear elastic springs having spring constants K_1, K_2, k_3 respectively.

when the force $p=0$, $x_1 = 0$, $x_2 = 0$ define the natural position.

One want to find new positions x_1 , x_2 when non zero P is applied [12 , 13 , 14].

Recall that for a linear spring blocks Law springs that $F = kd$ where k is spring constant and d is displacement of the spring from equilibrium. The strain energy of a spring is the work done in stretching it, that is

$$
E = \int_{0}^{x} kx dx = \frac{1}{2}kx^2
$$

The work put in to the system by the constant for P is given by the potential energy of the system is

$$
f(x) = \frac{1}{2}k_1x_1^2 + \frac{1}{2}k_3(x_2 - x_1) + \frac{1}{2}x_2^2 - px_2
$$

According to principle of potential energy $f(x)$ must be minimize $f(x)$ can be written in quadratic form :

$$
f(x) = \frac{1}{2} \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} k_2 + k_3 & -k_3 \\ -k_3 & k_1 + k_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 & -p \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}
$$

Using introduced propositions then

$$
H = A = \begin{bmatrix} k_2 + k_3 & -k_3 \\ -k_3 & k_1 + k_3 \end{bmatrix}, x^* = -A^{-1} \begin{bmatrix} o \\ -p \end{bmatrix}
$$

Using theorem (1) *A*

 $=$ $\begin{bmatrix} \kappa_2 + \kappa_3 \\ \kappa_3 + \kappa_4 \end{bmatrix}$ is positive definite

2 ^T κ_3 \int *for* $k_1 + k_3 > k_3^2$ $k_2 + k_3$ $\int_{for \ k_1+k_3>k_4}$ \int for k_1+k_3 $\overline{}$ L And stationary $x^* = \frac{1}{|\Lambda|} \begin{bmatrix} P\kappa_3 \\ (L + L) \end{bmatrix}$ $\overline{}$ I L \mathbf{r} $\overline{+}$ \overline{a} $=$ $(k_2 + k_3)p$ *pk* A $(k_2 + k_3)$ $x^* = \frac{1}{1}$ $2 \frac{1}{3}$ $\frac{3}{2}$ be minimum

0

 L L L L

1

 I

5- Conclusion

The general method for finding critical points of more one variable function is determined by partial derivatives .

2

 $\overline{}$ $\overline{}$ $\overline{}$

 $\overline{}$

 n_1 + n_3 - n_3 2^{1} \sim 3 3

 $\ddot{}$ $+k_{3} \ddot{}$ \overline{a}

 $k_1 + k_3 - k$ $k₂ + k$ *k*

In this method , the critical points studies by using definite and Hessian matrices , The Hessian matrix method involves multi variable Functions .

The advantage of this method is a obvious in its applications of ion , static springs systems .

Reffrences

- 1. Grujie,L.T.and siljack,D.D., "Asymptotic stability and Instability of Large – scale System" ; IEEE transaction automatic control, vol.Ac – 18 , pp.636.1973.
- 2. Ogatak, "modern control engineering" prentice ball 1998.
- 3. Shweehdi, M. *et al*, " Aparametric sensitive formulation for power system Analysis", 14^{th} pscc,sevilla, june, pp. 24-28, 2002.
- 4. MenzikI" Banach fixed point theorem and the stability of the market"International con ference inmathematics Brno, Czech, sept. pp.177-180,2003.
- 5. Burdern, I.r.f.fairas, J-D"Numerical Analysis"ITP C_0 , 5e, 1997.
- 6. Kolman B,1984,Introductory Linear Algebra with Applicatias Mac Millan publishing company, New York.
- 7. Barntt.S. and story,C." matrix methods in stability theory" Nelson, 1970.
- 8. Rizak A-"on positive and negative Definite matercies" J Babylon un . vol.7,no.3,march,pp.472 – 475,2002.
- 9. Kaddora. I"Aprocedur for constru cting Lyaponur functions to sdtudy Dynamic systemso" Ms thesis .Bayhdadun.1984.
- 10.Brussel I J" calculus and Analytic Geometry"4e, Addison Wesley pudlishing company; 1984.
- 11. Cinlar E & vanderby $R J$; mathemematical methods of Enyineering Company; 1984.
- 12.Kreyszige " Advanced Engineering Mathematical";M c Graw Hill;1984.
- 13.Meriamj I ; "Engineering mechanics static Dynamic"John wiley &sons, 1984.

--