bopen Sets In Topological Spaces

Raad Aziz Hussain Al-Abdulla

&

Sema Kadhim Gaber

Al-Qadisiya University College of Science Dept. of Mathematics

Abstract

This work consist of two sections. In section one we recall the definition of connected sets. We also introduce similar definition using b – *open* sets and study the property of this definition. In [5] $[1]$ *I* – *space* and *MI*-space are studied respectively. In section two we introduce similar definition T_{B} -space using b -open sets. In particular we will prove that in MI-space the T_B -space and T_D -space are equivalent.

Introduction

The concept of b -open set in topological spaces was introduced in [2]. We recall the definition of connected spaces [4]. In first section of this paper we study similar definition using b -open sets which is called b-connected space and we give several properties of this definition . In section two of this paper we study I -space and some of their generalizations using b – open sets and we study MI – space and some of their generalization using b – open sets.

Section one

b-connected spaces

Definition 1.1]2[

Let *X* be a topological space $A \subseteq X$. *A* is called *b* – *open* set in *X* iff $\stackrel{\circ}{\subseteq} \overline{A} \cup \overline{A}$ $A \subseteq A \cup A$. *A* is called *b*-closed iff \hat{A} is *b*-openand it is easy to see that *A* is *b*-*closed* set iff $\overrightarrow{A} \cap \overrightarrow{A} \subseteq A$ \circ

It is clear that every open set is b -open and every closed set is b -closed. The intersection of b -open set with open set is b -open set. Also the union of any b – *open* sets is b – *open* set.

Definition 1.2:

Let *X* be topological space and $x \in X$, $A \subseteq X$. The point *x* is called a *b*-limit point of A, if each b – open set containing x , contains a point of A distinct from *x* . We shall call the set of all *b-limit* points of *A* the *b* – *derived* set of *A* and denoted it by A^{b} . Therefore $x \in A^{b}$ iff for every *b*-*open* set *V* in *X* such that $x \in V$ implies that $(V \cap A) - \{x\} \neq \emptyset$.

Proposition 1.3

Let *X* be a topological space and $A \subseteq B \subseteq X$. then:

(i) $\overline{A} = A \cup \overline{A}^{b}$ (ii) A is *b*-closed set iff $A^{b} \subseteq A$. (iii) $A^{b} \subseteq B^{b}$

Proof:

(i) If $x \notin A$, then there exists a *b*-closed set *F* in *X* such that $A \subseteq F$ and $x \notin F$. Hence $V = X - F$ is *b* – *open* set such that $x \in V$ and $V \cap A = \phi$. Therefore $x \notin A$ and $x \notin A^{b}$, Then $x \notin A \cup A^{b}$. Thus $A \cup A^{b} \subseteq A$. On the other hand, $x \notin A \cup A^{b}$ implies that there exists a *b*-open set V in X such that $x \in V$ and $V \cap A = \phi$. Hence $F = X - V$ is a *b*-closed set in X such that $A \subseteq F$ and $x \notin F$. Hence $x \notin A$. Thus $A \subseteq A \cup A$. Therefore $A = A \cup A^{/b}$.

For (ii) and (iii) the proof is easy.

Definition 1.4]2[

Let *X* be a topological space and $A \subseteq X$. The *b*-closure of *A* is defined as the intersection of all b -closed sets in X containing A, and is denoted by \overrightarrow{A} . It is clear that \overrightarrow{A} is *b*-closed set for any subset *A* of *X*, and $A \subseteq A$.

Proposition 1.5

Let *X* be a topological space and $A \subset X$, then \overrightarrow{A} is the smallest *b closed* set containing *A* .

Proof:

Suppose that *B* is *b*-closed set such that $A \subseteq B$. Since $A^{-b} = A \cup A^{b}$ by proposition 1.3 (i), and $A \subset B$. Then $A^{-b} = A \cup A'^b \subseteq B \cup B \subseteq B$. Thus $A \subset B$. therefore \overrightarrow{A} is the smallest *b*-closed set containing *A*.

Proposition 1.6

Let *X* be a topological space and $A \subseteq B \subseteq X$. Then :

(i) $A = A \cap A$ $\overline{\text{(ii)}} \stackrel{-b}{A} \subseteq \overline{\text{A}}$ (iii) *A* is *b*-closed set iff $A = \overline{A}$ (iv) $A \subseteq B$ (v) $A = A^{b}$ $\overset{-b}{A} = A$ i,

Proof:

 (i) See [2]

(ii) since $\overline{A} = \overline{A} \cap \overline{A} \subseteq \overline{A}$. Then $\overline{A} \subset \overline{A}$ [3] therefore $\overline{A} \subset \overline{A}$.

(iii) Suppose that A is b -closed set. Since $A \subset A$ by definition \overrightarrow{A} , and $A \subseteq A$. Then $A \subseteq A$. Therefore $A = A$. Conversely suppose that $A = A$, since \overrightarrow{A} is *b*-closed set by definition \overrightarrow{A} , and $\overrightarrow{A} = A$. Then *A* is *b*-closed (iv) Since $B \subset \overline{B}$ by definition \overline{B} , and $A \subset B$. Then $A \subset \overline{B}$, since \overline{B} is *b* – *closed* and $A \subseteq B$ by proposition 1.5, then $A \subseteq B$ For (v) the proof is easy.

Definition 1.7:

Let X be a topological space. Two subsets A and B of X are called *b* – seperated if $\overrightarrow{A} \cap B = A \cap \overrightarrow{B} = \phi$.

Definition 1.8 :

Let *X* be a topological space and $\phi \neq A \subseteq X$. Then *A* is called b – *connected* set iff A is not the union of any two b – *seperated* sets.

Remark 1.9

A set A is called b -clopen iff it is b -open and b -closed.

Proposition 1.10

Let X be a topological space, then the following statements are equivalent :

1- X is b – *connected* space.

2- The only b -clopen set in the space are X and ϕ .

3- The exist no two disjoint b -open set and A and B such that $X = A \cup B$.

Proof:

 $(1) \rightarrow (2)$

let *X* be *b* – *connected* space. Suppose that *D* is *b* – *clopen* set such that $D \neq \emptyset$ and $D \neq X$. Let $E = X - D$, then $E \neq \emptyset$ (since $D \neq X$). Since D is *b*-*open* set, then *E* is *b*-*closed* set. But $\overrightarrow{D} \cap E = D \cap E = \emptyset$ (since *D* is *b*-*clopenset*) and $D \cap E = D \cap E = \phi$ (since *E* is *b*-*closed* set), then *D* and *E* are two *b*-seperated sets and $X = D \cup E$. Hence X is not *b*-connected space which is a contradiction. Therefore the only b -clopensets in the space are X and ϕ .

 $(2) \rightarrow (3)$

Suppose that the only b -clopen sets in the space are X and ϕ . Assume that there exists two disjoint b -open sets A and B such that $X = A \cup B$. Since $\overrightarrow{B} = A$, then A is *b*-clopen set. But $A \neq \emptyset$ and $A \neq X$, which is a contradiction. Hence there exist no two disjoint b -open sets A and *B* such that $X = A \cup B$.

 $(3) \rightarrow (1)$

Suppose that X is not b -connected space. Then there exist two *b* – *seperated* sets *A* and *B* such that $X = A \cup B$. Since $\overline{A} \cap B = \phi$ and $A \cap B \subseteq A \cap B$, thus $A \cap B = \emptyset$. Since $A \subseteq B = A$, then A is b -closed set. By the same way we can see that *B* is *b*-*closed* set. Since $\overrightarrow{A} = B$, then *A* and *B* are b -open sets. Therefore *A* and *B* are two disjoint b -open sets such that $X = A \cup B$ which is a contradiction. Hence X is b -connected space.

Example 1.11

It is clear that each *b*-connected space is connected. However, a connected space is not necessarily b – *connected*, as seen by the following example. Suppose *X* is any set with at least three points. Let $a \in X$, and $T = \{A : A \subset X, a \notin A\} \cup X$. It is clear that X is connected space. Let $A \neq \emptyset$, $A \neq X$ such that $a \notin A$. It is cleat that A is open set, then A is b -open set (since each open set is *b*-*open*). Since $\bar{A} = A \cup \{a\}$, then $A = A \subseteq A$. Therefore *A* is *b*-closed set. Hence *A* is *b*-clopen set and $A \neq \emptyset$, $A \neq X$, then X is not b – *connected* space.

Example 1.12

In this example we show that b -connectivity is not a hereditary property . Let $X = \{a,b,c,d\}$ and $T = \{\{a\}, \{a,b\}, \{a,c\}, \{a,b,c\}, X, \phi\}$ be a topological on *X*. The *b*-*open* sets are:- $\{a\}, \{a, b\}$ $\{a,c\}, \{a,b,c\}, \{a,d\}, \{a,b,d\}, \{a,c,d\}, X$ and ϕ . It is clear that X is b-connected space. Since the only b -clopen sets are *X* and ϕ . Let $Y = \{b, c\}$, then

 $Ty = \{\{b\}, \{c\}, Y, \phi\}.$ It is clear that *Y* is not *b* – *connected* space. Since ${b} \neq \emptyset, {b} \neq Y$ and ${b}$ is *b*-clopen set in *Y*. Thus a *b*-connectivity is not a hereditary property.

Proposition 1.13

Let A be a b -connected set and D , E are b -seperated sets. If $A \subseteq D \cup E$, then either $A \subseteq D$ or $A \subseteq E$.

Proof:

Suppose *A* be a *b* \sim *connected* set and *D*, *E* are *b* \sim *seperated* sets and $A \subseteq D \cup E$. Let $A \nsubseteq D$ and $A \nsubseteq E$. Suppose $A_1 = D \cap A \neq \emptyset$ and $A_2 = E \cap A \neq \emptyset$. Then $A = A_1 \cup A_2$. Since $A_1 \subseteq D$, hence $A_1 \subseteq D$. Since $D \cap E = \phi$, then $A_1 \cap A_2 = \phi$. Since $A_2 \subseteq E$, hence $A_2 \subseteq E$. Since $E \cap D = \phi$, then $A_2 \cap A_1 = \phi$. But $A = A_1 \cup A_2$, therefore A is not *b*-connected space which is a contradiction. Then either $A \subseteq D$ or $A \subseteq E$.

Proposition 1.14

Let X be a topological space such that any two elements x and y of *X* are contained in some b – *connected* subspace of *X*. Then *X* is *b connected* .

Proof:

Suppose X is not b -connected space. Then X is the union of two b -seperated sets A, B . Since A, B are non empty sets, thus there exists *a*,*b* such that $a \in A, b \in B$. Let *D* be *b* – *connected* subspace of *X* which contains *a* and *b*. Therefore either $D \subseteq A$ or $D \subseteq B$ which is a contradiction. (since $A \cap B = \phi$). Then *X* is *b*-connected space.

Proposition 1.15

If *A* is *b* – *connected* set then \overrightarrow{A} is *b* – *connected*.

Proof :

Suppose *A* is *b*-connected and \overrightarrow{A} is not. Then there exist two *b*-seperated sets *D*, *E* such that $\overrightarrow{A} = D \cup E$. But $A \subseteq \overrightarrow{A}$, then $A \subseteq D \cup E$ and since A is b -connected set, then either $A \subseteq D$ or $A \subseteq E$. (1) If $A \subseteq D$, then $A \subseteq D$. But $D \cap E = \phi$, hence $A \cap E = \phi$. Since $A \subseteq D$, then $E = \phi$ which is a contradiction.

(2) If
$$
A \subseteq E
$$
, then $A \subseteq E$. But $E^{-b} \cap D = \phi$, hence $A \cap D = \phi$. Since $A \subseteq E$,
then $D = \phi$ which is a contradiction Therefore A is b-connected set.

Proposition 1.16

If *D* is *b*-connected set and $D \subseteq E \subseteq \mathbb{D}$, then *E* is *b*-connected.

Proof:

If *D* is not b -connected, then there exist two sets A, B such that $A \cap B = A \cap \overline{B} = \emptyset$. Since $D \subset E$, thus either $D \subseteq A$ or $D \subseteq B$. Suppose $D \subseteq A$, then $D \subseteq B$, thus $D \cap B = A \cap B = \emptyset$. But *b* $B \subseteq E \subseteq D$ \overline{a} $\subseteq E \subseteq D$, thus $D \cap B = B$. Therefore $B = \phi$ which is a contradiction. Thus *E* is *b* – *connected* set.

If $D \subseteq B$, then $A = \phi$ which is a contradiction. Then E is *b connected* set.

Corollary 1.17

If space *X* contains a *b* – *connected* subspace *A* such that $\overrightarrow{A} = X$, then *X* is b – *connected*.

Proof:

Suppose *A* is a *b* – *connected* subspace of a space *X* such that $\overrightarrow{A} = X$, since $A \subseteq X = \overline{A}$, then by proposition 1.16, *X* is *b*-connected.

Proposition 1.18

If *A* and *B* are *b* – *connected* subspaces of a space *X* such that $A \cap B \neq \phi$, then *AUB* is *b* – *connected*.

Proof:

Suppose that $A \cup B$ is not *b*-connected, then there are two *b seperated* sets *D* and *E* such that $A \cup B = D \cup E$. Since $A \subseteq A \cup B = D \cup E$ and A is a *b*-connected, then either $A \subseteq D$ or $A \subseteq E$. Since $B \subseteq A \cup B = D \cup E$ and *B* is *b*-connected, then either $B \subseteq D$ or $B \subseteq E$.

(1) If $A \subseteq D$ and $B \subseteq E$, then $A \cup B \subseteq D$. Hence $E = \phi$ which is a contradiction.

(2) f $A \subseteq D$ and $B \subseteq E$, then $A \cap B \subseteq D \cap E = \emptyset$. Therefore $A \cap B = \emptyset$ which is a contradiction.

By the same way we can get a contradiction if $A \subseteq D$ and $B \subseteq D$ or if $A \subseteq E$ and $B \subseteq E$. Therefore $A \cup B$ is *b*-connected subspace of space *X* .

Proposition 1.19

If each b -open subset of X is connected, then every pair of non empty open subsets of *X* has a non empty intersection.

Proof:

Let *A*,*B* be open subsets of *X* such that $A \cap B = \phi$. It is clear that $A \cup B$ is an open subset of X and A, B are open in $A \cup B$. Then $A \cup B$ is not connected set which is a contradiction since $A \cup B$ is b -open subset of *X*. Therefore $A \cap B \neq \phi$.

Preposition 1.20

If each b -open subset of X is b -connected, then every pair of non empty open set subset of *X* has a non empty intersection.

Proof:

Let each b -open subset of X is b -connected. Since each *b connected* is connected, then by proposition 1.19 every pair of non empty subset of *X* has a non empty intersection.

Remark 1.21

The converse of preposition 1.20 is not true as shown by the following example.

Example 1.22

We consider the topological space (X,T) where $X = \{a,b,c\}$ and $T = \{\phi, X, \{a,b\}\}\$. Let $A = \{a,b\}$ is $b - open$ set then $T_A = \{A,\phi\}$. Then $b - open$ sets is A are ϕ , A , $\{a\}$, $\{b\}$. It is clear every pair of non-empty subsets of X has a non empty intersection but A is b -open subset of X and it is not *b connected* .

 $\overline{1}$

Preposition 1.23

If each b -open subset of X is b -connected, then each b -open subset of *X* is connected.

Proof:

It follows since every *b* – *connected* set is connected.

Remark 1.24

The converse of preposition 1.23 is not true as shown by the following example.

Example 1.25

We consider the topological space given in example 1.22, then $A = \{a,b\}$ is connected but A is not *b* – *connected*.

Section Two

 T_{B} -*Spaces*

Definition 2.1 [5]

A topological space (X,T) is called T_D – space iff the set of limit points of any singeleton is closed . On the other hand ,a topological space (X,T) is called I – *space* iff each open subset of X is connected.

Definition 2.2

Atopological space (X,T) is called T_B – space iff the set of *b-limit* of any sington is b – closed.

We shall prove later that $T_B - Space$ and $T_D - Space$ are equivalent if the space is $MI - Space$. The following example show that the $T_D - Space$ and T_B -*Space* are not equivalent in general.

Example 2.3

Let $X = \{a,b,c,d,e\}$ and $T_X = \{\{a\},\{c,d\},\{a,c,d\},\{a,b,d,e\},\{d\},\{a,d\},\phi,X\}$ be a topological on *X*. The b -open set $\{a\}$, $\{c, d\}$, $\{a, b, e\}$, ${a,c,d}, {a,b,d,e}, {d}, {a,d}, {a,b,d}, {a,d,e}, {a,b,c,d}, {a,c,d,e}, {b,d,e}, {b,c,d,e}$ $\{a,e\}, \{b,d\}, \{d,e\}, \{c,d,e\}, \{b,c,d\}, \{a,b\}, \phi, X$. It is clear that *X* is T_B -*Space*. But *X* is not T_D – *Space*. Since $\{b\}^{\prime} = \{e\}$ and $\{e\}$ is not closed.

Definition 2.4

Let (X,T) be a topological space, then (X,T) is called BT_0 (resp., B-T₁) iff for every $x, y \in X$ such that $x \neq y$, there exists a *b*-open set containing x but not y or (resp- and) ab -open set containing y but not *x* .

Proposition 2.5

Let (X,T) be a topological space. If for every $x \in X, \{x\}$ is b – *closed* set, then (X,T) is a BT_o-space.

Proof :

Let $x, y \in X$ such that $x \neq y$. Then either $y \notin \{x\}$, in which case $\{x\}$ $Ny = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$ is a *b*-*open* set contain *y* which does not contain *xor* $y \in \begin{bmatrix} y \\ y \\ x \end{bmatrix}$. Then $y \in \left\{x\right\}^{b}$. Hence $Nx = \left\{x\right\}^{b}$ is a *b*-*open* set which does not contain *y*. If $x \in Nx$, then $x \in \{x\}^{b}$. Hence for each Vx is b -open set contain

12

which is a contradiction. Then Nx contain x . Therefore (X, T) is $BTo-space$.

Proposition 2.6

Every T_B -space is BTo -space.

Proof:

This follows immediately from proposition 2.5.

Proposition 2.7

A topological space (X,T) is BT_1 - space if $\{x\} = \{x\}$ for each $x \in X$.

Proof:

x, $(x \wedge x) = \{x\} \neq \emptyset$ which is a contract of X , $y \neq \emptyset$ which is a contract of X , T is B *To-space*.
 Proposition 2.6
 Proposition 2.6
 Proof:

This follows immediately from
 Proposition 2.7

A topologi Let (X,T) be a BT_1 -space and $x \in X$. If $y \in X - \{x\}$, then there exist *b*-*open* set such that $y \in G$ and $x \in X - G$. Hence $y \notin \{x\}$ and $\{x\} = \{x\}$. Conversely suppose that $\{x\} = \{x\}$, for each $x \in X$. Let $y, z \in X$ with $y \neq z$. then $\begin{bmatrix} y \\ y \end{bmatrix} = \{y\}$ implies that $\begin{bmatrix} y \\ y \end{bmatrix}$ $\begin{cases} \n\frac{c}{c} & \text{if } b - \text{ open set } \n\end{cases}$ contain ζ but not y . Also, $\{\overline{z}^b\} = \{y\}$ implies that $\{\overline{z}^b\}$ $\begin{cases} \frac{1}{c} \\ \frac{1}{c} \end{cases}$ is *b*-*open* set contain *y* but not *z*. thus (X,T) is *TB space*.

Proposition 2.8

Every BT_1 -space is T_B -space.

Proof:

In a
$$
BT_1
$$
–space X. $\{\vec{x}\} = \{x\}$ for all $x \in X$. Hence $\{x\}^{\prime b} \subseteq \{x\}$.

Therefore $\{x\}^{b^b} \subseteq \{x\}^{b^b}$. Then $\{x\}^{b^b}$ is *b*-closed. Hence the space is T_{B} -space.

Definition 2.9]1[

An I -space (X,T) is called a maximal I -space if for any topological U on X such that $T \subset U$, then (X, U) is not an I -space. We shall denote a maximal I - space briefly by MI - space.

Proposition 2.10]1[

Let (X,T) be a MI - space . If (X,T) is T_I -space . Then : $(X,T) = \{A : x \in A, for some x \in X\} \cup \{\phi\}$ $=\langle x, x_{\circ} \rangle$ for some $x_{\circ} \in X$.

Proposition 2.11

Let (X,T) be a T_1 -space. Then (X,T) is T_B -Space iff it is $T_D - Space.$

Proof:

Let (X,T) be a T_1 -space. Then $\{x\}^{\prime} = \{x\}^{\prime} = \emptyset$ for each $x \in X$. then for $x \in X, \{x\}^{\prime}$ and $\{x\}^{\prime b}$ are closed and hence they are *b*-closed set. Therefore (X, T) is T_B -*Space*. Iff it is T_D -*Space*.

14

Proposition 2.12

Let (X,T) be a MI -space, and is not T_1 -space. Then (X,T) is $T_B - Space$ iff it is $T_D - Space$.

Proof:

Let (X,T) be a *MI* – *space* which is not T_1 – *space*. Then $(X,T) = \langle x, x_0 \rangle$ for some $x_0 \in X$ (By proposition 2.10). thus $\{x\}^{\prime} = \phi$ for each $x \neq x_0$ and ${x_0}' = X - {x_0}$ therefore ${x'}$ is closed for each $x \in X$. Since in this space the *b*-*open* sets are the same as open sets, then $\{x\}$ is closed iff $\{x\}$ is *b*-closed for each $x \in X$. Therefore (X,T) is T_B -space iff it is $T_{\scriptscriptstyle D}$ -space.

Theorem 2.13

Let (X,T) be a $MI-space$. Then (X,T) is $T_B-space$ iff it is $T_{\scriptscriptstyle D}$ -space.

Proof:

The theorem follows immediately from proposition 2.12, 2.11 .

References

- [1] N.Al-Amili and A.G. Naoum, "On Maximal irreducible space". Bull. Coll. Sci.,Vol. 17, No.2, (1976).
- [2] D. Andrijevic, "On b -open sets", Mat. Vesnik, 48 (1996), 59-64.
- [3] P. Das, "Note on some applications on semi-open sets", progress of Mathematics, 7 (1973).
- [4] Michael C. Gemigani, "Elementary Topology", Reading, Mass: Addison-Wesley publishing Co.,Inc. , (1967).
- [5] J. Throne, "Topological structures" Holt Reinhart and Winston Book Co. , New York, (1966).