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Abstract  

This work consist of two sections. In section one we recall the 

definition of connected sets. We also introduce similar definition using 

openb   sets and study the property of this definition. In ]5[ ]1[ spaceI   

and spaceMI   are studied respectively. In section two we introduce 

similar definition spaceT B
  using openb   sets. In particular we will 

prove that in MI-space the spaceT B
  and spaceTD

  are equivalent. 

 

Introduction  

The concept of openb   set in topological spaces was introduced in 

]2[. We recall the definition of connected spaces ]4[. In first section of 

this paper we study similar definition using openb   sets which is called 

b-connected space and we give several properties of this definition . In 

section two of this paper we study spaceI   and some of their 

generalizations using openb   sets and we study spaceMI   and some of 

their generalization using openb    sets.  
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Section one 

b-connected spaces 

Definition 1.1 ]2[ 

Let X  be a topological space XA  . A is called openb   set in X  iff 









AAA . A  is called closedb   iff 
c

A is openb  and it is easy to see that 

A  is closedb   set iff AAA 


 


 

  

It is clear that every open set is openb   and every closed set is 

closedb  . The intersection of openb   set with open set is openb   set. 

Also the union of any openb   sets is openb   set.  

 

Definition 1.2:  

Let X  be topological space and ., XAXx   The point x  is called a 

b-limit point of A , if each openb   set containing x  , contains a point of A  

distinct from x . We shall call the set of all b-limit points of A  the 

derivedb   set of A  and denoted it by 
b

A
/

. Therefore 
b

Ax
/

 iff for every 

openb   set V  in X  such that Vx implies that   .)(  xAV  

 

Proposition 1.3  

Let X  be a topological space and .XBA  then:  

(i) 
bb

AAA
/




 

(ii) A  is closedb   set iff .
/

AA
b

  

(iii) 
bb

BA
//

  
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Proof:  

(i) If 
b

Ax


 , then there exists a closedb   set F  in X  such that FA  and 

.Fx  Hence FXV   is openb   set such that Vx  and  AV . 

Therefore Ax  and A
b

x
/

  , Then 
b

AAx
/

 . Thus 
bb

AAA



/

. On the 

other hand, 
b

AAx
/

 implies that there exists a openb   set  V  in X  

such that  Vx  and   AV . Hence  VXF   is a closedb   set in X  

such that FA  and .Fx Hence
b

Ax


 . Thus 
bb

AAA


 . Therefore 

AAA b
b

/


.  

For (ii) and (iii) the proof is easy.  

 

Definition 1.4 ]2[  

Let X  be a topological space and .XA  The closureb   of A is 

defined as the intersection of all closedb  sets in X  containing A , and is 

denoted by 
b

A


  . It is clear that 
b

A


  is closedb   set for any subset A  of 

X , and 
b

AA


 .  

 

Proposition 1.5  

Let X  be a topological space and XA , then
b

A


 is the smallest 

closedb  set containing A  . 

  

Proof:  

Suppose that B  is closedb   set such that BA . Since AA
bb

A
/




 

by proposition 1.3 (i) , and BA  . Then AA
bb

A
/




 
b

BBB
/

 . Thus 

BA
b




 . therefore 
b

A


 is the smallest closedb   set containing A .  



 4 

Proposition 1.6  

Let X  be a topological space and XBA  . Then :  

(i) 
psb

AAA


  

(ii) 


 AA
b

 

(iii) A  is closedb   set iff 
b

AA


  

(iv) 
bb

BA


  

(v) 
bb

AA

b







  

 

Proof:  

(i) See ]2[  

(ii) since 
spsb

AAAA


 . Then 


 AA
s

]3[ therefore 


 AA
b

.  

(iii) Suppose that A is closedb   set. Since 
b

AA


  by definition 
b

A


, and 

AA . Then AA
b




. Therefore AA
b




.  Conversely  suppose that AA
b




, 

since 
b

A


 is closedb   set by definition 
b

A


, and AA
b




. Then A is closedb    

(iv) Since 
b

BB


  by definition 
b

B


, and BA  . Then 
b

BA


 , since 
b

B


 is 

closedb   and 
b

BA


  by proposition 1.5, then 
bb

BA


  

For (v) the proof is easy.  

 

Definition 1.7:  

Let X  be a topological space . Two subsets A  and B of X  are called 

seperatedb  iff 
 bb

BABA .  
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Definition 1.8 : 

Let X  be a topological space and     XA . Then A  is called 

connectedb   set iff A  is not the union of any two seperatedb   sets.  

 

Remark 1.9  

A set A  is called clopenb   iff it is openb  and closedb  . 

 

Proposition 1.10  

Let X  be a topological space, then the following statements are 

equivalent :  

1- X  is  connectedb   space.  

2- The only clopenb   set in the space are X  and  .  

3- The exist no two disjoint openb  set and  A  and B such that BAX  .  

 

Proof:  

(1) (2) 

 let X  be connectedb   space. Suppose that D  is clopenb   set such 

that D  and XD  . Let DXE  , then E  (since XD  ). Since D  

is openb  set, then E  is closedb   set. But 


EDED
b

 (since D  is 

clopenb  set) and 


EDED
b

 (since E  is closedb  set), then D  and 

E  are two seperatedb   sets and EDX  . Hence X  is not connectedb   

space which is a contradiction. Therefore the only clopenb  sets in the 

space are X  and  .  

(2)  (3)  

Suppose that the only clopenb   sets in the space are X  and  . 

Assume that there exists two disjoint  openb  sets A  and B  such that 

BAX  . Since AB
c

 , then A  is clopenb   set. But A  and XA  , 
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which is a contradiction. Hence there exist no two disjoint openb  sets A  

and B  such that BAX  .  

 

(3)  (1)  

Suppose that X  is not connectedb   space. Then there exist two 

seperatedb   sets  A  and B  such that BAX  . Since 


BA
b

 and 

BABA
b




, thus  BA . Since ABA
cb




, then A  is  closedb  set. By 

the same way we can see that B is closedb  set. Since BA
c

 , then A  and 

B  are openb  sets. Therefore A  and B  are  two disjoint openb  sets such 

that BAX   which is a contradiction. Hence X  is connectedb  space.  

 

Example 1.11  

It is clear that each connectedb   space is connected. However, a 

connected space is not necessarily connectedb  , as seen by the following 

example. Suppose X  is any set with at least three points. Let Xa , and 

XAaXAAT  },:{ . It is clear that X  is connected space. Let A , 

XA   such that Aa  . It is cleat that A  is open set, then A  is openb  set 

(since each  open set is openb ). Since  aAA 
_

, then AAA 



. 

Therefore A  is closedb   set. Hence A  is clopenb  set and A , XA  , 

then X  is not connectedb   space. 

 

Example 1.12  

In this example we show that  tyconnectivib   is not a hereditary  

property . Let },,,{ dcbaX   and      ,,,,,,,,, XcbacabaaT    

be a topological on X . The openb  sets are:-   ,,, baa  

       and ,,,,,,,,,,,,, Xdcadbadacbaca . It is clear that X  is connectedb   

space. Since the only clopenb   sets are X  and  . Let  cbY , , then 
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   ,,, YcbTy  . It is clear that Y is not connectedb   space. Since 

    Ybb  ,  and  b  is clopenb   set in  Y . Thus a tyconnectivib   is not a 

hereditary property. 

  

Proposition 1.13  

Let A  be a connectedb   set and D , E  are seperatedb  sets. If 

EDA  , then either DA   or EA .  

Proof:  

Suppose A  be a connectedb   set and D , E  are seperatedb  sets and 

EDA  . Let DA  and EA  . Suppose  ADA1  and 

 AEA2 . Then 21 AAA  . Since DA 1 , hence 
bb

DA


1 . Since 




ED
b

, then 


21 AA
b

. Since EA 2 , hence 
bb

EA


2 . Since 


DE
b

, 

then 


12 AA
b

. But 21 AAA  , therefore A  is not connectedb   space 

which is a contradiction. Then either DA  or EA .  

 

Proposition 1.14  

Let X  be a topological space such that any two elements x  and y   

of X  are contained in some connectedb   subspace of X . Then X  is 

connectedb  .  

 

Proof:  

Suppose X  is not connectedb   space. Then X  is the union of two 

seperatedb   sets BA, . Since BA,  are non empty sets, thus there exists 

ba,  such that BbAa  , . Let D  be connectedb   subspace of X  which 

contains a  and b . Therefore either AD   or BD   which is a 

contradiction. (since  BA ). Then X  is connectedb   space.  
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Proposition 1.15  

If A  is connectedb   set then  
b

A


 is connectedb  .  

 

Proof :  

Suppose A  is connectedb   and 
b

A


 is not. Then there exist two 

seperatedb   sets ED,  such that EDA
b




. But 
b

AA


 , then EDA   

and since A  is connectedb   set, then either DA   or EA .  

(1) If DA  , then 
bb

DA


 . But 


ED
b

, hence 


EA
b

. Since DA
b




, 

then E  which is a contradiction.  

(2) If  EA , then 
bb

EA


 . But 


DE
b

, hence 


DA
b

. Since EA
b




, 

then D  which is a contradiction Therefore 
b

A


 is connectedb   set.  

 

Proposition 1.16  

If  D  is connectedb   set and 
b

DED


 , then E  is connectedb  .  

 

Proof:  

If D  is not connectedb  , then there exist two sets BA,  such that 


 bb

BABA  . Since ED  , thus either  AD   or BD  . Suppose 

AD  , then 
bb

BD


 , thus 


BABD
bb

. But 
b

DEB


 , thus  BBD
b




. 

Therefore B  which is a contradiction. Thus E  is connectedb   set.  

If BD  , then A  which is a contradiction. Then E  is 

connectedb   set.  

 

Corollary 1.17  
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If space X  contains a connectedb   subspace A  such that XA
b




, then 

X  is connectedb  .  

 

Proof:  

Suppose A  is a connectedb   subspace of a space X  such that XA
b




, 

since 
b

AXA


 , then by proposition 1.16, X  is connectedb  . 

  

Proposition 1.18  

If A  and B  are connectedb   subspaces of a space X  such that 

BA , then AUB  is connectedb  . 

  

Proof:  

Suppose that BA  is not connectedb  , then there are two 

seperatedb   sets D  and E  such that EDBA  . Since 

EDBAA   and  A  is a connectedb  , then either DA   or EA  . 

Since EDBAB   and B  is connectedb  , then either DB   or 

EB  .  

(1) If DA   and EB  , then DBA  . Hence E  which is a 

contradiction.  

(2) f DA   and EB  , then  EDBA . Therefore BA  which 

is a contradiction.  

By the same way we can get a contradiction if DA   and DB   or 

if EA   and EB  . Therefore BA  is connectedb   subspace of space 

X .  

 

Proposition 1.19  



 10 

If each openb   subset of X  is connected, then every pair of non 

empty open subsets of X  has a non empty intersection.  

 

Proof:  

Let BA,  be open subsets of X  such that BA . It is clear 

that BA  is an open subset of X  and BA,  are open in BA . Then BA  

is not connected set which is a contradiction since BA  is openb   subset 

of X . Therefore  BA .  

Preposition 1.20 

If each openb   subset of X  is  connectedb  , then every pair of non 

empty open set subset of X  has a non empty intersection.  

Proof:  

Let each openb   subset of X  is connectedb  . Since each 

connectedb   is connected, then by proposition 1.19 every pair of non 

empty subset of X  has a non empty intersection.  

 

Remark 1.21  

The converse of preposition 1.20 is not true as shown by the 

following example. 

  

Example 1.22  

We consider the topological space ),( TX where  cbaX ,,  and 

  baXT ,,, . Let  baA ,  is openb   set then  ,AT A  . Then openb   

sets is A  are   baA ,,, . It is clear every pair of non-empty subsets  of X  

has a non empty intersection but A  is openb   subset of X  and it is not 

connectedb  . 

  

Preposition 1.23  
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If each openb   subset of X  is connectedb  , then each openb   

subset of X  is connected.  

 

Proof:  

It follows since every connectedb   set is connected.  

 

Remark 1.24  

The converse of preposition 1.23 is not true as shown by the 

following example.  

 

Example 1.25  

We consider the topological space given in example 1.22, then 

 baA ,  is connected but A  is not connectedb  .  

 

 

Section Two 

SpacesT B
  

Definition 2.1 ]5[  

A topological space ),( TX  is called spaceT D   iff the set of limit 

points of any singeleton is closed . On the other hand  ,a topological space 

),( TX  is called spaceI   iff each open subset of X  is connected.  

 

 

 

Definition 2.2  

Atopological space  ),( TX  is called spaceT B   iff the set of b-limit of any 

sington is closedb  .  
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We shall prove later that SpaceT B   and SpaceT D  are equivalent if 

the space is SpaceMI  . The following example show that the SpaceT D  

and SpaceT B   are not equivalent in general.  

 

Example 2.3  

Let  edcbaX ,,,,  and        XdadedbadcadcaT X ,,,,,,,,,,,,,,   be 

a topological on X . The openb   set  ,,, dca  ,,, eba  

          ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, edcbedbedcadcbaedadbadadedbadca

            Xbadcbedceddbea ,,,,,,,,,,,,,,,  . It is clear that X  is SpaceT B  . 

But X  is not SpaceT D  . Since    eb 
/

 and  e  is not closed . 

 

Definition 2.4  

Let ),( TX  be a topological space, then ),( TX  is called BTo (resp.,B-

T1) iff for every Xyx ,  such that yx   , there exists a openb   set 

containing x  but not y or (resp- and) a openb   set containing y  but not 

x .  

 

Proposition 2.5  

Let ),( TX  be a topological space. If for every  xXx
b/

, is 

closedb  set , then ),( TX  is a BTo-space.   

 

Proof :  

Let  Xyx ,  such that yx  . Then either  
b

xy


 , in which case 

 
c

b

xNy


  is a openb   set contain y  which does not contain  
b

xyorx


  . 

Then  xy
b/

 . Hence  xNx

c

b/

  is a openb   set which does not contain 

y . If ,Nxx  then  xx
b/

 . Hence for each Vx is openb   set contain 
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      xxVxx, which is a contradiction . Then Nx  contain x  . 

Therefore ),( TX  is spaceBTo .  

 

Proposition 2.6  

Every spaceT B   is spaceBTo .  

  

Proof: 

This follows immediately from proposition 2.5.  

 

Proposition 2.7 

A topological space ),( TX  is spaceBT 
1

 iff    
b

xx


  for each Xx .  

 

Proof:  

Let ),( TX  be a spaceBT 
1

 and Xx . If  xXy  , then there exist 

openb   set such that Gy  and GXx   . Hence  
b

xy


  and    xx
b




. 

Conversely suppose that    xx
b




 , for each Xx . Let Xzy ,  with zy   . 

then    yy
b




 implies that  
c

b

y


 is openb   set contain z  but not y . Also, 

   yz
b




 implies that  
c

b

z


 is openb   set contain y  but not z  . thus ),( TX  is 

spaceTB .  

 

Proposition 2.8  

Every spaceBT 
1

 is  spaceT B
 . 

  

Proof:  
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In a spaceBT 
1

 X .    xx
b




for all Xx . Hence    xx
b


/

. 

Therefore    xx
bb b // /

 . Then  x
b/

  is closedb  . Hence the space is 

spaceT B
 . 

 

Definition 2.9 ]1[  

An spaceI   ),( TX  is called a maximal spaceI   if for any 

topological U on X  such that UT  , then ),( UX  is not an spaceI  . We 

shall denote a maximal spaceI   briefly by spaceMI   . 

  

Proposition 2.10 ]1[  

Let ),( TX  be a spaceMI   . If ),( TX  is T1-space . Then :  

      some ,:),(  XxforAxATX    

xx ,  for some Xx  .  

 

Proposition 2.11  

Let ),( TX  be a spaceT 
1

. Then ),( TX  is SpaceTB   iff it is 

SpaceT D .  

 

Proof:  

Let ),( TX  be a spaceT 
1

. Then      xx
b//

 for each Xx  . then 

for  xXx
/

,  and  x
b/

 are closed and hence they are closedb   set. 

Therefore ),( TX  is SpaceTB  . Iff it is SpaceTD   .  

 

 

 

Proposition 2.12  
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Let ),( TX  be a spaceMI  , and is not spaceT 1 . Then ),( TX  is 

SpaceTB   iff  it is SpaceTD  .  

 

Proof:  

Let ),( TX  be a spaceMI   which is not spaceT 1 . Then xxTX ,),(   

for some Xx   (By proposition 2.10). thus   x
/

 for each  xx  and 

   xXx  / therefore  x
/
 is closed for each Xx . Since in this space 

the openb   sets are the same as open sets, then  x
/

 is closed iff  x
b/

 is 

closedb   for each Xx . Therefore ),( TX  is spaceT B
  iff it is 

spaceTD
 .  

 

Theorem 2.13 

Let ),( TX  be a spaceMI  . Then ),( TX  is spaceT B
  iff it is 

spaceTD
 .  

 

Proof: 

The theorem follows immediately from proposition 2.12, 2.11 .  
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