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ABSTRACT

Conventional facial recognition struggles with individuals sharing near-identical facial
features, particularly monozygotic twins. This research introduces a robust, real-time
methodology to overcome this by integrating geometric, textural, and dynamic facial
characteristics. The framework employs Multi-Task Cascaded Convolutional Networks
(MTCNN) for face detection and alignment, followed by FaceNet for 128-dimensional facial
embedding generation. MediaPipe's 468-point facial landmark extraction quantifies subtle
structural variations via transformation matrix analysis and blend-shape evaluation,
capturing static geometric discrepancies and dynamic micro-expressions. Validated on 7,200-
image dataset (70% training, 30% testing), the system achieved 97.73% accuracy, operating
efficiently on consumer-grade GPUs. This approach significantly enhances biometric
technology, offering improved identity verification for genetically similar individuals in
critical security applications like border control and secure access management, thereby
addressing a key limitation in current facial recognition systems.

1. Introduction

Facial recognition technology has gone through significant advancements in recent years, positioning it as
a cornerstone application in biometrics and computer vision. Despite these strides, distinguishing
between individuals with highly similar facial structures such as identical twins remain a critical
challenge. Even state-of-the-art deep learning-based models often experience elevated false acceptance
rates when attempting to differentiate between identical twins. Their nearly indistinguishable facial
features frequently surpass the capabilities of conventional recognition algorithms, leading to significant
limitations in real-world applications [1] [2]. Challenges in twin discrimination are particularly evident in
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high-stakes fields like security and forensics, in which precise identification is critical. Existing methods
often struggle to handle these edge cases due to the subtle geometric similarities shared by identical
twins, which traditional recognition systems fail to differentiate. These challenges highlight the gaps in
current methods, which rely primarily on static facial features, neglecting the dynamic variations
between identical individuals. The novelty lies in integrating cutting-edge technologies like Multi-Task
Cascaded Convolutional Networks (MTCNN), FaceNet, and MediaPipe to overcome these issues. This
framework introduces a dynamic approach, utilizing facial landmark analysis, transformation matrix
comparisons, and blend-shape evaluations to address the twin discrimination problem. Multi-Task
Cascaded Convolutional Networks (MTCNN) is employed for precise face detection, where FaceNet
generates embeddings for facial comparison, and MediaPipe extracts hundreds of facial landmarks. This
combination allows the system to capture subtle geometric differences, even among identical twins,
which were previously difficult to detect [3,4]. The contributions of this work are illustrated in four
aspects:

1. Methodological Innovation: A multi-modal approach that integrates geometric, textural, and
dynamic facial features to differentiate identical twins with high precision.

2. Real-Time Efficiency: The system operates efficiently on consumer-grade GPUs, making it viable
for deployment in resource-constrained environments.

3. Comprehensive Evaluation: Rigorous validation on a diverse dataset, including monozygotic
and dizygotic twins, demonstrates superior performance in terms of accuracy, False Acceptance
Rate (FAR), and false rejection rate (FRR).

4. The Accuracy of Facial Recognition: Systems is fundamentally challenged by the biological
similarities of identical (monozygotic) twins. Sharing nearly 100% of their DNA, identical twins
develop with almost indistinguishable craniofacial structures the underlying bone framework
that dictates the size, shape, and position of key facial features. Algorithms in most recognition
systems are trained to map these macroscopic geometric and textural features to a unique
identity. However, when two different identities share the same fundamental facial blueprint, the
system struggles to differentiate them. This creates a classic problem of high inter class similarity.
Facial recognition models, like those using FaceNet, work by converting a face into a numerical
vector or "embedding." The system is trained to ensure that embeddings for the same person are
clustered closely together in a mathematical space, while embeddings for different people are
pushed far apart. For identical twins, their facial embeddings are naturally generated very close to
one another. This proximity often causes one twin's embedding to fall within the valid acceptance
threshold of the other, resulting in a high rate of false acceptances. Distinguishing between them
therefore requires moving beyond static, genetically determined features. The solution lies in
identifying and quantifying subtle phenotypic variations that accumulate throughout life due to
epigenetic factors and different life experiences. These include micro-features like unique
freckles, moles, or scars, as well as dynamic cues such as subtle differences in facial muscle
movement and expression. Technologies that can capture these minute details, such as the dense
landmark detection offered by MediaPipe, are essential for overcoming the biological limitations
posed by identical twins.

The remainder of this paper is organized as follows: Section 2 reviews related work in twin
differentiation and facial recognition. Section 3 details the proposed methodology, including dataset
composition, preprocessing, and the integration of MTCNN, FaceNet, and MediaPipe. Section 4 presents
the system architecture and its components. Section 5 discusses experimental results and performance
analysis. Finally, Section 6 concludes the paper and outlines future research direction.

2. Related Work
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The differentiation of identical twins remains one of the most challenging tasks in biometric
authentication owing to the extremely subtle inter-class variabilities. The literature over the past decade
has explored a range of methodologies from conditional face recognition algorithms to advanced deep
learning architectures employing multi-modal fusion to address these challenges. Although each method
attains commendable performance, the maximum achievable accuracies remain consistently below 94%,
underscoring the intrinsic difficulty of twin differentiation in security-critical environments. In the
following discussion, the key contributions are presented due a time sequence, emphasizing their
methodological innovations, performance benchmarks, and practical implications as shown in table 1
below.

Table 1- Summary of the studies on twins’ definitions

Ref. Authors & Year Objective Method / Techniques Used Dataset Accuracy
Used
[S] R.delLoyola Identify twins using Single-Shot Detector (SSD) Private mAP:
Furtado e specialized training on architecture with split training  Dataset 0.4563
Sardinha, 2019 critical features on critical and non-critical (Mary),
images 0.3861
(Ashley)
[6] S.Arunkumar,R. Evaluate the performance Comparative performance ORL, Yale 92%
Sharma, D. of human face recognition analysis of various face Face
Kumar, and V. techniques in challenging  recognition methods Database
Puranik, 2019 scenarios
[7] C. Akin, U. Kacar, Enhance recognition Hierarchical score-level fusion = Custom 94.74%
& M. Kirci, 2019  accuracy in twins using of ear and voice features using  Collected
multimodal biometrics classical and deep learning Dataset
models
[8] Chen, L., Li,H, & Toinvestigate the impact A multi-task learning Not 93.7%
Zhang, W.,, 2020  of pose and expression framework that Specified
variations on identical simultaneously learns identity
twin face recognition. features and pose/expression-
invariant features.
[9] Patel, S, & Singh, To evaluate the Comparative study of several Custom ArcFace:
R, 2021 performance of state-of- deep architectures including Twin 94.8%
the-art deep learning ResNet, VGG-Face, and ArcFace Dataset
models on a challenging on a custom twin dataset.
identical twin dataset.
[10] Sun,Z.,Wang Y, To develop arobust face Generative Adversarial Not 96.1%
& Liy, J., 2022 recognition system Network (GAN) used to Specified
capable of distinguishing  synthesize facial aging and de-
between identical twins aging, combined with a deep
under various conditions.  CNN for feature extraction.
[11] Jacob,]., & To enhance twin A two-stream CNN ND- 95.5%
recognition by fusing architecture where one stream  TWINS-
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Thomas, A, 2022 facial features with processes the full face and the 2009-2010
periocular (eye region) other processes the periocular
biometric data. region, with feature-level
fusion.
[12] Alshammari, N., To improve the Deep learning model with a Twins 95.2%
& Algahtani, A., discrimination of identical focus on learning subtle facial  Days
2023 twins by focusing on dissimilarities using a triplet Festival
micro-facial features. loss function and attention Dataset
mechanisms.
[13] Liuy X, Zhao, Q., To leverage 3D facial data 3D point cloud registration Not 97.3%
& Ren, J., 2024 to overcome the and analysis of facial curvature Specified

limitations of 2D images and geometric features usinga (3D Data)
in twin differentiation. PointNet-based architecture.

3. Methodology

The proposed methodology combines multiple state-of-the-art techniques namely, MTCNN, FaceNet,
MediaPipe’s 468-point facial landmark extraction, transformation matrix analysis, and blend-shape
evaluation to robustly differentiate identical and non-identical twins. These approaches are integrated
into a real-time system that accommodates facial alterations resulting from surgical procedures.

1.

Dataset Composition: the dataset consists of 7,200 curated facial images collected from three
primary sources: Kaggle: 4,000 images extracted from publicly available twin datasets (licensed
under CC BY-SA 4.0), Facebook Groups: 2,500 images sourced from public forums such as “Twin
Look-Alikes” and “Find My Doppelginger.” These images were processed to anonymize the non-
consented faces by blurring, in accordance with ethical guidelines, and Web Crawling: 700 images
of celebrity twins (e.g., Mary-Kate and Ashley Olsen) acquired under Creative Commons licenses.
Demographic Breakdown: Gender Distribution 55% female, 45% male, Ethnic Composition,
60% Caucasian, 25% Asian, 10% of African descent, and 5% mixed ethnicity, and Twin Pair Types
the dataset includes 1,200 monozygotic (identical) twin pairs and 800 dizygotic (fraternal) twin
pairs.

Training Configuration: The experimental setup utilized state-of-the-art deep learning
frameworks and robust hardware configurations to ensure efficient training and accurate results:
Frameworks and Libraries TensorFlow 2.6, Keras 2.8 for model development, and MediaPipe
0.8.9 for enhanced face detection.

Hardware Specifications: GPU: NVIDIA RTX 3070 with 8GB VRAM, CPU: AMD Ryzen 5 7600x
operating at 4.7 GHz, Memory: 32GB DDR5 RAM.

Hyperparameter and Model Settings:
e FaceNet: the parameters ($,;=0.9, B,=0.999) with Learning Rate (1073) and Batch Size
(32)
e MTCNN: Non-Maximum Suppression (NMS) Threshold with (0.7) and Minimum Face Size
(20px)

e MediaPipe: Configuration (Utilized in static image mode) and Detection Confidence
Threshold (0.8).
Dataset Split: To ensure robust evaluation while preserving the twin and non-twin ratios, the
dataset was split as Training Set: 70% (5,040 images) and Testing Set: 30% (2,160 images). This
configuration made it possible to balance the dataset effectively and validate the performance of
the models under diverse conditions.



A.H.Nsaif, R. A.Hasan, Journal of Al-Qadisiyah for Computer Science and Mathematics VOL.17.(3) 2025,pp.Comp 133-152 5

3.1 Pre-Processing

Prior to feeding images into MTCNN or FaceNet, several essential pre-processing steps are conducted to
enhance robustness and reduce computational complexity, Table 2 describes the equations and related
terms for pre-processing.

Table 2- Equations and related terms for pre-processing

Step

Equation, Description & Parameter Details

Conversion to
Grayscale [16]

Icray = 0.2989 - R + 0.5870 - G + 0.1140 - B v e e e .. (1)

Although color information can be helpful in certain contexts, many deep learning pipelines either convert images to
grayscale or normalize each color channel separately. A common grayscale conversion uses the weighted sum of the
red, green, blue channels, where :

o[ "gray" = Grayscale intensity (the resulting grayscale pixel value.

*R = Red channel value of the original image pixel.

*G = Green channel value of the original image pixel.

*B = Blue channel value of the original image pixel.

+0.2989,0.5870, 0.1140 = Luminance coefficients representing the human eye’s sensitivity to each color channel. The
green channel contributes the most because the human eye is most sensitive to green light.

Resizing the
Image [16]

_Gw _0H

X oY N S ¢/ |

This equation is commonly used in image preprocessing or coordinate normalization tasks, where pixel coordinates
from one image size are mapped or scaled to another, where :

e X=Scaled x-coordinate in the target image or normalized space.

e Y=Scaled y-coordinate in the target image or normalized space.

¢  x=0riginal x-coordinate in the source image.

¢  y=0riginal y-coordinate in the source image.

e w=Width of the target image or desired coordinate space.

¢  h=Heightof the target image or desired coordinate space.

o W=Width of the source/original image.

o H=Height ofthe source/original image.

Normalization

[16]

IRESIZE

To limit pixel intensity values to a standard range (e.g, [0,1] or [—1,1]), a common min-max normalization is employed,
where:

¢ I orm = Normalized intensity value, scaled between 0 and 1.

* |,.size = Resized image intensity value, the pixel value after resizing.

* 255 = Maximum possible pixel value in an 8-bit grayscale or RGB image (since pixel values range from 0 to 255).

3.2 Multi-Task Cascaded Convolutional Networks (MTCNN)

MTCNN is employed for precise face detection and initial landmark localization. It leverages a cascaded
architecture of three convolutional neural networks (P-Net, R-Net, and O-Net) to detect faces in multiple
stages, progressively refining bounding boxes and landmark estimates as shown in Table 3 describe the
equations and related terms for MTCNN:

Table 3 - Equations and related terms for MTCNN
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Stage Equation, Description, and Parameters
Stage One (P-Net) [16]. E,(D)=0(W, x I +bp) e (4)
Description: Generates preliminary region proposals and eliminates a large fraction of false positives .
Parameters:

¢ E, (1) Output of the transformation at point p
1

¢ 0 : Activation function (defined here as commonly a sigmoid function o (x) = ypet ReLU).
* W, Weight matrix (learnable parameters that scale the input).
o [: Input image (or feature map).
* b, : Bias term (a learnable parameter that helps in shifting the activation function).
Stage Two (R-Net) [16]. Fr(X) =0(Wg * X + bg) e ... (5)
Description: Refines candidate regions through a secondary CNN that discards most remaining non-face
detections
Parameters:
o F (X): Output of the function F, applied to input X.
* g: Activation function (as defined in Stage One).
o Wy : Weight matrix (learnable parameters that scale the input).
« X: Input vector or feature representation.
* by, : Bias term (a learnable parameter that shifts the activation function).
Stage Three (0-Net) [16]. E,(Y)=cW,*Y +bg) ... (6)
Description: Outputs final bounding boxes and primary landmarks (e.g, eyes, nose, mouth corners) with
high precision.
Parameters:

o F,(Y): Output of the function F, applied to input¥.

» 0: Activation function (referenced as in Stage One).

o W, : Weight matrix (learnable parameters that scale the input).

« Y: Input vector or feature representation.

* b, : Bias term (a learnable parameter that shifts the activation function).

This cascade design has been shown to reduce computational overhead while maintaining accuracy in
real-time applications [20].

3.3 Facenet

FaceNet is utilized to generate fixed-dimensional embedding vectors that encapsulate the essential
geometric and textural attributes of each face [20]. These embeddings facilitate efficient twin
differentiation in a Euclidean space as shown in table 4 below describe the equations and related terms
FaceNet:

Table 4- Equations and related terms for FaceNet

Stage Equation, Description, and Parameters
Embeddlng f = f9 (Ialigned)J """""" (7)
Generation
[20] Each face is mapped to a 128-dimensional vector, ensuring a compact yet highly discriminative

¢ f Output function (can represent extracted features, predictions, or embeddings).
* fo Parameterized function (typically a deep learning model or neural network with parameters 6).
* Liignea Aligned input image (an image that has undergone preprocessing such as scaling, rotation, or normalization
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to ensure consistency in structure).
6 Trainable parameters (weights and biases of the model).

FaceNet 128
Distance Metric d(4,B) = Z (A= B) e (8)
i=
Once a face embedding is extracted, the Euclidean distance is used to measure similarity [22].

¢ d(A, B): Distance between two vectors 4 and B.

» A: First feature vector (of length 128).

* B: Second feature vector (of length 128).

* A;, B;Individual components of vectors A and B at index .

* The summation is performed over all 128 dimensions.
Loss Function L =max(0,1l f(A) = f(P) I? =Il f(A) = fF(N) II*+ a) ... (9)
(Triplet Loss)

FaceNet is trained using triplet loss, which forces embeddings of the same individual (anchor and positive) to cluster
tightly while pushing apart embeddings of different individuals (negative) [23]. This is critical for handling high
similarity faces such as identical twins.

» L: Loss function value (ensuring proper separation of embeddings).

» max()ReLU function (ensures loss is non-negative).

* f (A)Feature embedding of the anchor sample A.

* f (P)Feature embedding of the positive sample P (same class as 4).

¢ f (N)Feature embedding of the negative sample N (different class from A).

e|l f(A) — f(P) II?: Squared Euclidean distance between anchor and positive (should be minimized).
e|l f(A) — f(N) II?: Squared Euclidean distance between anchor and negative (should be maximized).
« a: Margin parameter (ensures separation between positive and negative distances).

By transforming each pre-processed and aligned face into a robust feature vector, FaceNet mitigates the
impact of lighting and poses variations key contributors to false acceptance in traditional methods.

3.4 Mediapipe’s 468-Point Facial Landmark Extraction

While MTCNN provides the initial detection and basic landmark locations, MediaPipe is integrated to
extract a dense set of 468 landmarks across the entire face [16][17]. This high-resolution landmark map
offers the following advantages:

e Dense Geometric Coverage: Includes contours of the jawline, cheeks, forehead, and other subtle
regions often overlooked by sparse landmark methods.

o Expression Sensitivity: Captures slight facial deformations, making it possible to distinguish
even identical twins exhibiting near-identical static features.

e Real-Time Efficiency: MediaPipe’s graph-based processing pipeline is optimized for real-time
applications, accommodating on-the-fly detection and tracking of landmark movements [18].

This granular landmark set forms the foundation for transformation matrix analysis and blend-shape
evaluations, both of which are vital for detecting small yet meaningful differences in twin faces.

3.5 Transformation Matrix Analysis

Drawing on earlier studies that highlight the value of geometric transformations in twin differentiation
[20], the system computes and compares 4x4 transformation matrices derived from the dense facial
landmarks. Each transformation matrix encodes how the face must be rotated, scaled, and translated to
align with a canonical reference pose:
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1. Computation: The system identifies key facial regions (e.g., eyes, nose, mouth) among the 468
landmarks, then calculates the transformation required to normalize each face to a standard
orientation.

2. Element-wise Absolute Differences: The matrix for one face is subtracted from that of another
on an element-by-element basis. Even small discrepancies can indicate genuine geometric
variation.

3. Statistical Thresholding: Mean, maximum, and standard deviation of these element-wise
differences are compared against empirically determined thresholds, effectively discriminating
between highly similar faces (identical twins) and those that are moderately or significantly
different (non-identical twins or unrelated individuals) as shown in table 5 below the stages and
related equations [20][19][16].

Table 5- Equations of the stages and terms

Stage/Process Equation & Parameters
Mean 1 & O O
Difference Mean Dif ference = - Z |7 = 1,°| ... (10)
i=1

e Mean Difference = The average absolute difference between two sets of values.

e n =Total number of elements in the dataset.

e >, =Summation over all n elements.

o Tl(i)= Value from the first dataset or measurement at index i.
o T2(1)= Value from the second dataset or measurement at index i.
o | TP —TY |= Absolute difference between corresponding values from T;and Ty

Max Absolute Max (4) = max; [TY = TP ... (11)
Difference Where:

e Max (A) = Maximum absolute difference between corresponding values from two datasets.
e max;= Maximum operator (finds the largest value over all indices i).
o T1(1)= Value from the first dataset or measurement at index i.

o Tz(i)= Value from the second dataset or measurement at index i.
o | Tl(l) - Tz(l) |= Absolute difference between corresponding values from T; and T,at index i.

Standard 1 N
Deviation o= Nz (d; —Mean)? ... .........(12)
i=1

Where:

o= Standard deviation (spread or dispersion of the dataset).
N = Total number of data points in the dataset.

d;= Individual data point at index i.

Mean = Average of the data points.

Ly
Mean ==, d;
YN, =Summation over all N data points.

(d; — Mean)?= Squared deviation of each data point from the mean.

Transformation A= |(My)i; — (M)ip)| e (13)
Matrix Transformation Matrix Comparisons: When comparing two 4x4(or similarly sized) transformation
Comparisons matrices M1 and M2 [24], the element-wise absolute difference is

Where:

e A;;=Absolute difference between the elements at the i row and j column in the two matrices.
e (M,);;= Element of matrix M, at position (i, /).
e (M,);;= Element of matrix M,at position (i, j).
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o | |= Absolute value operator, which gives the non-negative difference between the two matrix
elements.

Notably, this approach retains its discriminative power even when individuals share almost all
macroscopic facial features, as identical twins often do.

3.6 Blend-Shape Evaluation

To further amplify the system'’s sensitivity to minimal facial differences, a blend-shape evaluation module
quantifies micro-level expression changes [17]. Blend-shapes measure the extent of local deformations in
facial muscles such as eyebrow raises or lip curls by assigning numerical scores to each movement as

shown in table 6 below the blend-shape evaluation stages, equations and parameters:

Table 6- Blend-shape evaluation stages, equations and parameters

Stage/Process Equation & Parameters
Neutral S=S,+2XM, a;Bjuecen.. (14)
Baseline

Everyone’s face in a relaxed state is considered the anchor.

e S =Final value or result after summing the initial value and weighted contributions of B;.
e S, =Initial value or baseline (starting point).

. ™. =Summation over the m terms.
e a;= Weight or coefficient for the i term, typically representing how much influence the
B; term has.

e B;= Contribution or basis of the i term (e.g., basis function, feature, or matrix term).
¢ m = Number of terms being summed.

Parameter As the subject changes expressions, the system calculates a score for each blend-shape parameter
Extraction

Absolute 2.8B, = BV = BP Lo (15)
Difference

Computation

. B,El)Score for blend-shape parameter k in Figure 1 (e.g., Twin 1).
B,EZ): Score for blend-shape parameter k in Figure 2 (e.g., Twin 2).

e AB,: Absolute difference between the scores for parameter k.
Scores from two faces are subtracted to reveal even fractional disparities. These data points

provide critical cues for distinguishing identical twins who may mimic each other’s standard
poses but rarely replicate intricate micro-expressions perfectly [16][17]

4. The Proposed system

Facial recognition has emerged as a pivotal application in biometrics and computer vision, enabling a
broad spectrum of real-world applications, including identity verification, and forensic investigations.

1.

2.

Face Detection: The system employs MTCNN for precise face localization and landmark
extraction.

Feature Embedding Extraction: Using FaceNet, facial embeddings are generated to facilitate
identity comparison and differentiation.

Facial Landmark Analysis: MediaPipe is incorporated to track and analyze facial landmarks,
providing detailed structural insights crucial to the analysis. Identity Verification and
Authentication: The system categorizes individuals based on their facial similarity, outputting
results such as "The Same Person" or "Not the Same Person" to aid in identity validation, medical
diagnostics, and forensic analysis. The combination of MTCNN, FaceNet, and MediaPipe ensures a
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robust, scalable, and efficient facial recognition solution, making it suitable for applications in
security (airports Federal Authority for Identity, Citizenship, Customs & Port digital Security),
healthcare, and forensic science. By leveraging advanced deep learning models and image
processing techniques, the system offers enhanced precision in identical twin recognition facial
identity validation, addressing critical challenges in modern facial recognition technology, as
shown in figure 1 below.

i

Face Load dataset of Preprocessing MT CININ:
Recognition twin’'simages |—"| g@rayscale, Resize, Face
Model Norm alized Detection

Compare Extract 468 facial
embeddings using Landmarks

Fuclidean distance

IS distance
threshold?

! 4

w7 e

[ Different people ]

Identical (twins)

Fig. 1- The proposed system for twin and surgical operations
4.1 Image Loading and Preprocessing

Preprocessing is a fundamental step in optimizing the robustness and uniformity of facial recognition
systems. The process begins with image acquisition, where specified file paths are used to load images.
MediaPipe’s face detection tools process these images after ensuring compatibility in the Standard Red
Green Blue (sRGB) color space. Error-handling mechanisms log, and bypass corrupted or inaccessible
images, maintaining system reliability during both training and testing phases. Once loaded, the images
undergo a structured preprocessing pipeline to standardize their format for deep learning models:

1. Grayscale Conversion: Reduces computational complexity by eliminating color channels while
preserving luminance, which is critical for feature extraction.

2. Image Resizing: Uniformly scales all images to 224x224 pixels, ensuring consistency with deep
learning architecture such as FaceNet and MTCNN.

3. Pixel Value Normalization: Rescales intensity values from [0,255] to [0,1], stabilizing numerical
computations and accelerating model convergence. These preprocessing operations enhance data
quality, ensuring accurate facial landmark detection and seamless integration into recognition
pipelines.

4.2 Multi-Task Cascaded Convolutional Networks (MTCNN) for real-time face

Detection and Alignment MTCNN is a state-of-the-art face detection and alignment algorithm designed
for real-time applications. It operates using a cascaded structure of three convolutional neural networks
(CNNs), that work together to detect faces and key facial landmarks (eyes, nose, and mouth). MTCNN
ensures precise face localization, landmark extraction, and alignment, making it a robust tool for
biometric identification and facial recognition. Face Detection, as shown in table 7 below.

Table 7- Comprehensive MTCNN Processing
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Stage Function Bounding False Positive Face Facial
Box Reduction (%) classification Landmark
Refinement Threshold Detection
(%)
P-Net Initial face region proposals Initial 40% 0.6 N/A
(Proposal using sliding window candidate
Network), technique. Applies generation

question (4) convolutional layers to

generate bounding box
proposals and refine them
by eliminating false
positives.

R-Net Refines candidate face 80% 80% 0.7 N/A
(Refinement regions received from P-Net
Network) by applying additional
question (5) convolutional layers,

filtering out false
detections, and improving
bounding box accuracy.

O-Net
(Output
Network)
question (6)

Final bounding box 95%
refinement and facial

landmark detection.

Extracts five key landmarks:

Near ground-truth
level

0.8

Left eye, Right

eye, Nose, Left

mouth corner,
Right mouth

Left eye, Right eye, Nose, corner
Left mouth corner, Right
mouth corner.

Key aspects for landmark detection are as following:

1.

Facial Landmark Detection & Face Alignment: MTCNN detects key facial landmarks to ensure
precise face alignment, improving biometric identification accuracy, especially in challenging
cases like identical twin differentiation.

Multi-Stage Refinement & Robustness: MTCNN’s cascaded structure enhances recognition
system reliability by minimizing false positives and optimizing landmark alignment, reducing
errors from pose, scale, or orientation variations.

Enhanced FaceNet Performance: By improving landmark consistency, MTCNN strengthens
FaceNet’s embedding quality, boosting verification and authentication accuracy.

Critical Applications: MTCNN is vital for high-precision tasks such as forensic investigations and
access control, where robust facial recognition is essential.

Technical Workflow & Security: The system workflow (illustrated in Figures 2(a) and 2(b))
demonstrates its technical process and security enhancements, table 8 details landmark
coordinates.

Table 8 - Facial Landmark Detection Results

Landmark Coordinates (%, y)

Left Eye (0.425, 0.305)
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Right Eye (0.575, 0.305)

Nose (0.500, 0.450)

Left Mouth Corner (0.420, 0.600)

Right Mouth Corner (0.580, 0.600)

(a) R-Net Output (b) P-Net Output (c) O-Net Output
(Refined) (Initial face Proposals)  (Initial face Detection +Landmarks)

Fig 2- The output of MTCNN three layers in image

4.3 Deep Learning-Based Facial Recognition (FaceNet)

FaceNet is a deep learning model designed for face recognition and verification by transforming facial
images into 128-dimensional feature embeddings. This embedding-based approach enables identity
verification by mapping faces into Euclidean space, where the distance between feature vectors
corresponds to facial similarity.

4.3.1 Processing Pipeline

FaceNet receives pre-processed and aligned faces from MTCNN, ensuring standardized positioning before
feature extraction. The processing pipeline consists of the following stages:

Stage 1: Face Detection & Alignment, MTCNN detects facial landmarks, aligns the face, and crops the
detected region for uniformity.

Stage 2: Feature Embedding Generation, FaceNet converts the aligned face into a 128-dimensional
feature vector, uniquely representing identity.

Stage 3: Similarity Calculation, Euclidean distance measures facial similarity, determining identity
verification results.

Stage 4: Twin Differentiation & Classification, based on statistical thresholds, faces are classified as
identical twins, non-identical twins, or different individuals. Table 9 presents Euclidean distance values
for FaceNet embeddings, demonstrating identity verification. A 0.6 threshold balances accuracy,
minimizing false positives and negatives.

Table 9- Threshold conditions
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Euclidean Distance Threshold (0.6) Classification
0.1173 0.6 Identical Twins
4.1968 0.6 Different Individuals

4.3.2 Key concepts in FaceNet architecture

Embedding Generation: Similar faces are clustered in Euclidean space, while different individuals are
placed further apart, and Triplet Loss Function: Ensures that an anchor image is closer to a positive (same
person) than a negative (different person).

4.4 Role of 468 Facial Landmarks in Twin differentiation & cosmetic transformation analysis

By accurately mapping facial features, the system provides robust identity verification, minimizing the
risk of unauthorized access. The proposed system detects 468 facial landmarks, enabling detailed
analysis of facial geometry. This enhances both standard facial recognition and advanced security
applications, allowing for: Differentiation of similar-looking individuals (e.g. identical twins). And
monitoring cosmetic transformations to maintain authentication accuracy.

4.4.1 Blend-Shape evaluation

A key aspect of facial analysis is blend-shape evaluation, which quantifies facial expressions and
movements. This evaluation helps in comparing two facial conditions (e.g., two images of the same
person), and measuring subtle changes in facial structures. To compute the difference between two
conditions, the system calculates the absolute difference for each blend-shape parameter using the
equation (15) Neutral Blend-Shape as a Baseline. The neutral blend-shape represents the face in a relaxed
state, free from expressions like frowning, smiling, or eyebrow movement. It serves as a reference for
detecting deviations. The blend-shape scores in Table 10 demonstrate this concept. The neutral
parameter score is 0.0000 for both Figure 2(a) and Figure 2(b), meaning. The face remains in its baseline
state in both instances, and since no deviation occurs, the absolute difference is 0.0000. Table 10 presents
the Blend-Shape Score Differences for Figures 3 , confirming the model's accuracy in detecting subtle
facial variations.

Fig. 3 - Twin 1 and Twin 2 Face Blend shapes
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Table 10- Blend-Shape Score Differences Calculated based on the equation (15)

Inde Blend- Score Score Absolut Index Blen Score Score Absolut Inde Blend- Score Score Absolut
X Shape Fig Fig Diff. d- Fig Fig Diff. X Shape Fig Fig Diff.
1) (2) Shap (1) (2) 1) (2)
e
1 Neutr 0.00 0.00 0.000 19 eyelL  (app 0.16 0.0132 37 mouth  0.00 0.00 0.0001
al 0 0 ookU rox 81 (approx Lower 00 01
pRig 0.18 ) Down
ht* 13) Left
2 browD 0.22 0.00 0.2250 20 eyeS 0.67 0.59 0.0780 38 mouth  0.00 0.00 0.0002
ownlLe 68 18 quint 24 44 Lower 00 02
ft Left Down
Right
3 browD 0.19 0.39 0.2055 21 eyeS 0.67 0.60 0.0762 39 mouth 0.08 0.04 0.0371
ownRi 39 94 quint 76 14 PressL 25 54
ght Right eft
4 browl  0.00 0.00 0.0039 22 eyeW (app 0.10 0.0990 40 mouth 0.07 0.11 0.0479
nnerU 48 09 ideLe rox 34 (approx Press 13 92
p fe* 0.00 ) Right
44)
5 browO 0.00 0.00 0.0009 23 eyeW 0.00 0.00 0.0007 41 mouth  0.00 0.00 0.0015
uterU 25 16 ideRi 44 51 Pucke 00 15
pLeft ght r
6 browO 0.00 0.00 0.0023 24 jawF  0.00 0.00 0.0001 42 mouth  0.00 0.00 0.0003
uterU 29 06 orwa 00 01 Right 00 03
pRight rd
7 cheek  0.00 0.00 0.0000 25 jawL  0.00 0.00 0.0006 43 mouth  0.00 0.00 0.0066
Puff 00 00 eft 00 06 RollLo 19 85
wer
8 cheek  0.00 0.00 0.0000 26 jawO  0.00 0.00 0.0015 44 mouth  0.00 0.00 0.0022
Squint 00 00 pen 00 15 RollUp 00 22
Left per
9 cheek  0.00 0.00 0.0000 27 jawF  0.00 0.00 0.0001 45 mouth  0.00 0.03 0.0241
Squint 00 00 orwa 00 01 Shrug 75 16
Right rd Lower
10 eyeBli 0.11 0.08 0.0311 28 jawL  0.00 0.00 0.0006 46 mouth  0.00 0.00 0.0052
nkLeft 94 83 eft 00 06 Shrug 22 74
Upper
11 eyeBli  0.09 0.15 0.0548 29 jawO  0.00 0.00 0.0015 47 mouth 0.02 0.02 0.0054
nkRig 929 47 pen 00 15 SmilelL 41 95
ht eft
12 eyeLo 0.02 0.07 0.0507 30 mout 0.00 0.00 0.0005 48 mouth 0.01 0.02 0.0042
okDo 86 93 hClos 00 05 Smile 80 22
wnLef e Right
t
13 eyeLo 0.07 0.07 0.0023 31 mout 0.01 0.02 0.0078 49 mouth  0.00 0.01 0.0069
okDo 46 23 hDim 62 40 Stretc 64 33
wnRig pleLe hLeft

ht

ft




A.H.Nsaif, R. A.Hasan, Journal of Al-Qadisiyah for Computer Science and Mathematics VOL.17.(3) 2025,pp.Comp 133-152 15

14 eyeLo (app 0.01 0.0200 32 mout 0.00 0.00 0.0073 50 mouth  0.00 0.00 0.0025
okInL rox 73 (approx hDim 97 24 Stretc 12 37
eft* 0.03 ) pleRi hRight
73) ght
15 eyeLo (app 0.17 0.1664 33 mout 0.00 0.00 0.0049 51 mouth  0.00 0.00 0.0001
okInRi rox 44 (approx hFro 00 49 Upper 00 01
ght* 0.00 ) wnLe UpLeft
80) ft
16 eyeLo (app 0.03 0.0195 34 mout 0.00 0.00 0.0071 52 mouth  0.00 0.00 0.0002
okOut rox 07 (approx hFro 09 80 Upper 00 02
Left* 0.01 ) wnRi UpRig
12) ght ht
17 eyeLo (app 0.18 0.1445 35 mout 0.00 0.00 0.0001
okOut rox 63 (approx hFun 03 02
Right*  0.04 ) nel
18)
18 eyeLo (app 0.15 0.0117 36 mout 0.00 0.00 0.0027
okUpL rox 15 (approx hLeft 00 27
eft* 0.16 )
32)

From these blend-shape scores and their derived metrics (mean, max, and standard), deviation of the
results, significant dissimilarities between the two sets of facial expressions most notably in eyebrow and
eye region parameters. When combined with transformation-matrix analysis in the next section, these
findings strongly support that the faces belong to different individuals, or at minimum “identical twins’
differentiation” under conventional threshold criteria.

4.4.2 Transformation Matrix Analysis

The proposed system utilizes facial transformation matrices and blend-shape scores to enhance identity
verification, particularly for differentiating between identical twins in high-security environments.
Challenges in Twin Differentiation, Identical twins pose a significant challenge to biometric
authentication systems due to their nearly identical static facial features. However, subtle geometric
differences exist and can be detected using transformation matrices. By aligning each detected face into a
canonical position, the system compares both: Geometric Features - Structural differences in facial shape.
And expression-Based Features - Variations in muscle movements using blend-shape scores.

Transformation Matrices in Face Analysis: A facial transformation matrix captures the spatial alignment
and orientation of a face in 3D space. This 4x4 matrix encapsulates:

A facial transformation matrix captures the spatial alignment and orientation of a face in 3D space.
This 4x4 matrix encapsulates: Rotations (r;;) ,Translations (ty,t,,t,), and , Scaling and Shear
transformations

1 Tz Tz by

. o Ty Tpz t
The transformation matrix is formally represented as: T = 22723 Y| Where:
T31 T3z T33 U
0 0 0 1
e 7;Tepresents rotation elements (and potentially scale/shear).

oty ty,tare translation components in 3D space.
e T is the final transformation matrix used for facial alignment and differentiation?

4.4.3 Transformation matrices justification
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Even though identical twins share nearly indistinguishable static features, transformation matrices help
expose minute structural deviations that traditional face recognition models might overlook. By
incorporating blend-shape analysis, which measures expression-based differences, the system enhances
its accuracy. Calculating the absolute difference between blend-shape scores further refines identity
verification by detecting subtle expression-based discrepancies.

4.4.4. Robust identity verification in high-security settings

This dual approach comparing geometric features and expression metrics ensures high precision in
biometric authentication. It is particularly useful in high-security environments, such as airports and
government facilities, where distinguishing between near-identical individuals is critical for preventing
unauthorized access. Table 11 provides transformation matrix results extracted from Figure 4 (identical
twins), demonstrating how these matrixes effectively differentiate between subjects with the
Computation of Element-wise Absolute Differences For each element based on the above matrix shown
below, calculated based on the equation (13).

Facial Landmarks and Pose Axes

Fig. 4- Facial landmarks and pose Axes for twin 1 + twin 2

Table 11- Transformation Matrices calculations

Index Position Transformation Transformation The computed differences (rounded to
[row, col] Matrix of the twin1l Matrix of the twin2 six decimal places)
1 [1,1] 9.99673903e-01 9.99598861e-01 0.000075
2 [1,2] 1.19476370e-03 2.59169638e-02 0.024722
3 [1,3] -2.55111381e-02 -1.13830632e-02 0.014128
4 [1,4] -2.19862744e-01 -3.30771506e-01 0.110909
5 [2,1] -1.30367070e-03 -2.65320987e-02 0.025228
6 [2,2] 9.99989867e-01 9.97980595e-01 0.002009
7 [2,3] -4.25244868e-03 -5.76997101e-02 0.053447
8 [2,4] -1.36512017e+00 -1.17669058e+00 0.188430
9 [3,1] 2.55058017e-02 9.86468233e-03 0.015641

10 [3,2] 4.28424543e-03 5.79784997e-02 0.053694
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11 [3,3] 9.99665678e-01 9.98268843e-01 0.001397
12 [3,4] -2.57771301e+01 -2.62933006e+01 0.516171
13 [4,1] 0.00000000e+00 0.00000000e+00 0.000000
14 [4,2] 0.00000000e+00 0.00000000e+00 0.000000
15 [4,3] 0.00000000e+00 0.00000000e+00 0.000000
16 [4,4] 1.00000000e+00 1.00000000e+00 0.000000

These values suggest structural differences between the two faces. Typically, faces from the same

individual in a similar pose have only minor discrepancies in their transformation matrices.

5. Results, discussion and analysis

The evaluation protocol incorporated a robust 5-fold cross-validation on the training set, allowing for
meticulous hyperparameter optimization particularly for batch size and learning rate. This approach,
combined with comprehensive metrics such as overall accuracy, FAR, FRR, and precision-recall curves,

establishes a solid foundation for validating model performance.

5.1 Overall system performance

The system achieved an overall accuracy of 97.73% as shown in table 12 below and the confusion
matrix, derived from testing on 2160 samples as shown in table 13 below. The system has a robust ability

to differentiate between identical twins, non-identical twins, and unrelated individuals.

Table 12- Testing Set 2160 Samples

Actual \ Predicted  Identical Twins Non-ldentical Twins Different Individuals Total
Identical Twins 412 18 5 435
Non-Identical Twins 10 528 12 550
Different Individuals 3 8 1164 1,175
Table 13 - Performance Metrics
Metric Value Descriptions
Overall Accuracy 97.73% reflects robust performance across classes.
Precision (Identical Twins) 94.70% High precision ensures minimal false acceptance of impostors as identical
twins.
Recall (Identical Twins) 94.71% Captures 94.7% of true identical twin pairs.
F1-Score (Identical Twins) 94.70% Balanced precision/recall for identical twins.
Precision (Different Ind.) 99.07% Very few unrelated individuals are misclassified as twins.
False Acceptance Rate (FAR) 0.84% Only 0.84% of impostors (non-twins) incorrectly accepted as genuine.
False Rejection Rate (FRR) 5.29% The genuine identical twins were incorrectly rejected. In biometric systems,

performance is characterized by the inverse relationship between the False
Acceptance Rate (FAR) and the False Rejection Rate (FRR). The proposed
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system is intentionally calibrated for a high-security posture, prioritizing a
minimal FAR. This focus is demonstrated by the exceptionally low FAR of
0.84%, confirming the system's robustness against impostor attempts. The
resulting FRR of 5.29% is a direct and anticipated consequence of the
stringent operating threshold required to achieve this security level. This
trade-off is a deliberate design choice, prioritizing the prevention of
unauthorized access over the occasional inconvenience of a false rejection,
which is standard practice in critical security applications.

5.2 The proposed system analysis

The system's high accuracy is a result of its specialized components effectively handling challenging
recognition scenarios. A key challenge in twin recognition is the variability in capture conditions, such as
facial angle and movement. The system's "Blend-Shapes (Dynamic)" component is specifically designed to
address this by analyzing dynamic facial data. As the results show, this component is particularly crucial
when subjects are in similar poses, helping to mitigate errors and improve distinction between
individuals. While structural features provide the primary discriminative power, this dynamic analysis
adds a critical layer of robustness against pose variations. The following table summarizes quantitative
results, component performance analysis, and threshold selection as shown in table 14.

Table 14- The proposed system analysis

Aspect/Analys Metric/Component Key Finding, Values and Purpose
is Type

Separability (Implied) Near-perfect (value 0.992 noted), High model discriminative power
between pairs.

Overall Precision-Recall Precision (P) = 0.978 at Recall (R) = 0.95, Reliable classification of
Performance (Identical Twins) identical twins.
Confusion matrix 412 out of 435 correctly identified, High True Positive Rate for twin
(Identical Twins) identification.

Confusion Matrix (Non- 1164 out of 1175 correctly rejected (99.07% Prec.), Very high accuracy

Twins) in rejecting non-related individuals.
Component Transformation Matrices Mean Diff (A_mean): 0.0629 (twins) vs 0.142 (non), Structural features
Performance (Structure) are consistently discriminative.

Blend-Shapes (Dynamic) A_mean: 0.0192; Reduced FRR by 9% in specific cases, Crucial for
similar poses, less overall impact than structure.

Threshold Method (FaceNet Empirical grid search on 500 validation pairs, Optimized threshold
Selection Distance) setting.
Goal Maximize metric (unspecified) by balancing factors, Balances

recognizing same twin’s vs separating non-twins.

The proposed system represents a significant advancement over traditional facial recognition, which
typically fails when identifying identical twins. Its strength lies in a specialized architecture that analyzes
both subtle, static geometric differences via Transformation Matrices and dynamic facial expressions
using Blend-Shapes. This dual approach provides high discriminative power, achieving 97.73% accuracy
and proving robust against real-world capture variations like changes in pose and angle. While this
performance is highly effective for critical security applications like border control and secure access, the
system is not yet suitable for high-precision use cases. The inherent error rate, though small, is too
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significant for forensic or medical fields where near-perfect accuracy is a strict and non-negotiable
requirement.

6. Conclusion

This work presents a novel, real-time biometric identification system that significantly advances the state-of-the-art in twin
differentiation and facial identity verification. By integrating robust face detection via MTCNN, precise feature embedding
using FaceNet, and dense facial landmark extraction through MediaPipe. The proposed framework effectively captures both
static geometric and dynamic expression-based cues. The fusion of transformation matrix analysis with blend-shape
evaluation enables the detection of subtle structural deviation even among near-identical twin pairs, resulting in an overall
accuracy of 97.73% and near-perfect separability as indicated by 0.992. This multi-faceted approach not only outperforms
traditional deep learning models, such as VGGFace and ResNet-50, but also demonstrates substantial improvements in key
metrics like false acceptance and false rejection rates. The system capability to adapt to both high-security and forensic
applications, as well as its potential in monitoring transformations, underscores its practical significance in real-world
biometric authentication scenarios. In general, the research contributes to a comprehensive and scalable solution that bridges
the critical gap in biometric recognition systems, particularly for individuals with highly similar facial morphologies. Future
work may explore further optimization of dynamic feature extraction and the integration of multimodal biometric data to
enhance robustness and adaptability in increasingly complex environments.
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