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A B S T R A C T 

Conventional facial recognition struggles with individuals sharing near-identical facial 
features, particularly monozygotic twins. This research introduces a robust, real-time 
methodology to overcome this by integrating geometric, textural, and dynamic facial 
characteristics. The framework employs Multi-Task Cascaded Convolutional Networks 
(MTCNN) for face detection and alignment, followed by FaceNet for 128-dimensional facial 
embedding generation. MediaPipe's 468-point facial landmark extraction quantifies subtle 
structural variations via transformation matrix analysis and blend-shape evaluation, 
capturing static geometric discrepancies and dynamic micro-expressions. Validated on 7,200-
image dataset (70% training, 30% testing), the system achieved 97.73% accuracy, operating 
efficiently on consumer-grade GPUs. This approach significantly enhances biometric 
technology, offering improved identity verification for genetically similar individuals in 
critical security applications like border control and secure access management, thereby 
addressing a key limitation in current facial recognition systems. 

https://doi.org/10.29304/jqcsm.2025.17.32383 

 

1. Introduction  

Facial recognition technology has gone through significant advancements in recent years, positioning it as 
a cornerstone application in biometrics and computer vision. Despite these strides, distinguishing 
between individuals with highly similar facial structures such as identical twins remain a critical 
challenge. Even state-of-the-art deep learning-based models often experience elevated false acceptance 
rates when attempting to differentiate between identical twins. Their nearly indistinguishable facial 
features frequently surpass the capabilities of conventional recognition algorithms, leading to significant 
limitations in real-world applications [1] [2]. Challenges in twin discrimination are particularly evident in 
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high-stakes fields like security and forensics, in which precise identification is critical. Existing methods 
often struggle to handle these edge cases due to the subtle geometric similarities shared by identical 
twins, which traditional recognition systems fail to differentiate. These challenges highlight the gaps in 
current methods, which rely primarily on static facial features, neglecting the dynamic variations 
between identical individuals. The novelty lies in integrating cutting-edge technologies like Multi-Task 
Cascaded Convolutional Networks (MTCNN), FaceNet, and MediaPipe to overcome these issues. This 
framework introduces a dynamic approach, utilizing facial landmark analysis, transformation matrix 
comparisons, and blend-shape evaluations to address the twin discrimination problem. Multi-Task 
Cascaded Convolutional Networks (MTCNN) is employed for precise face detection, where FaceNet 
generates embeddings for facial comparison, and MediaPipe extracts hundreds of facial landmarks. This 
combination allows the system to capture subtle geometric differences, even among identical twins, 
which were previously difficult to detect [3,4]. The contributions of this work are illustrated in four 
aspects:  

1. Methodological Innovation: A multi-modal approach that integrates geometric, textural, and 
dynamic facial features to differentiate identical twins with high precision. 

2.  Real-Time Efficiency: The system operates efficiently on consumer-grade GPUs, making it viable 
for deployment in resource-constrained environments. 

3. Comprehensive Evaluation: Rigorous validation on a diverse dataset, including monozygotic 
and dizygotic twins, demonstrates superior performance in terms of accuracy, False Acceptance 
Rate (FAR), and false rejection rate (FRR). 

4. The Accuracy of Facial Recognition:  Systems is fundamentally challenged by the biological 
similarities of identical (monozygotic) twins. Sharing nearly 100% of their DNA, identical twins 
develop with almost indistinguishable craniofacial structures the underlying bone framework 
that dictates the size, shape, and position of key facial features. Algorithms in most recognition 
systems are trained to map these macroscopic geometric and textural features to a unique 
identity. However, when two different identities share the same fundamental facial blueprint, the 
system struggles to differentiate them. This creates a classic problem of high inter class similarity. 
Facial recognition models, like those using FaceNet, work by converting a face into a numerical 
vector or "embedding." The system is trained to ensure that embeddings for the same person are 
clustered closely together in a mathematical space, while embeddings for different people are 
pushed far apart. For identical twins, their facial embeddings are naturally generated very close to 
one another. This proximity often causes one twin's embedding to fall within the valid acceptance 
threshold of the other, resulting in a high rate of false acceptances. Distinguishing between them 
therefore requires moving beyond static, genetically determined features. The solution lies in 
identifying and quantifying subtle phenotypic variations that accumulate throughout life due to 
epigenetic factors and different life experiences. These include micro-features like unique 
freckles, moles, or scars, as well as dynamic cues such as subtle differences in facial muscle 
movement and expression. Technologies that can capture these minute details, such as the dense 
landmark detection offered by MediaPipe, are essential for overcoming the biological limitations 
posed by identical twins.  

The remainder of this paper is organized as follows: Section 2 reviews related work in twin 
differentiation and facial recognition. Section 3 details the proposed methodology, including dataset 
composition, preprocessing, and the integration of MTCNN, FaceNet, and MediaPipe. Section 4 presents 
the system architecture and its components. Section 5 discusses experimental results and performance 
analysis. Finally, Section 6 concludes the paper and outlines future research direction. 

2. Related Work  
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 The differentiation of identical twins remains one of the most challenging tasks in biometric 
authentication owing to the extremely subtle inter-class variabilities. The literature over the past decade 
has explored a range of methodologies from conditional face recognition algorithms to advanced deep 
learning architectures employing multi-modal fusion to address these challenges. Although each method 
attains commendable performance, the maximum achievable accuracies remain consistently below 94%, 
underscoring the intrinsic difficulty of twin differentiation in security-critical environments. In the 
following discussion, the key contributions are presented due a time sequence, emphasizing their 
methodological innovations, performance benchmarks, and practical implications as shown in table 1 
below. 

 

Table 1- Summary of the studies on twins’ definitions 

Ref. Authors & Year Objective Method / Techniques Used Dataset 

Used 

Accuracy 

[5] R. de Loyola 

Furtado e 

Sardinha, 2019 

Identify twins using 

specialized training on 

critical features 

Single-Shot Detector (SSD) 

architecture with split training 

on critical and non-critical 

images 

Private 

Dataset 

mAP: 

0.4563 

(Mary), 

0.3861 

(Ashley) 

[6] S. Arunkumar, R. 

Sharma, D. 

Kumar, and V. 

Puranik, 2019 

Evaluate the performance 

of human face recognition 

techniques in challenging 

scenarios 

Comparative performance 

analysis of various face 

recognition methods 

ORL, Yale 

Face 

Database 

92% 

[7] C. Akin, U. Kacar, 

& M. Kirci, 2019 

Enhance recognition 

accuracy in twins using 

multimodal biometrics 

Hierarchical score-level fusion 

of ear and voice features using 

classical and deep learning 

models 

Custom 

Collected 

Dataset 

94.74% 

[8] Chen, L., Li, H., & 

Zhang, W., 2020 

To investigate the impact 

of pose and expression 

variations on identical 

twin face recognition. 

A multi-task learning 

framework that 

simultaneously learns identity 

features and pose/expression-

invariant features. 

Not 

Specified 

93.7% 

[9] Patel, S., & Singh, 

R., 2021 

To evaluate the 

performance of state-of-

the-art deep learning 

models on a challenging 

identical twin dataset. 

Comparative study of several 

deep architectures including 

ResNet, VGG-Face, and ArcFace 

on a custom twin dataset. 

Custom 

Twin 

Dataset 

ArcFace: 

94.8% 

[10] Sun, Z., Wang, Y., 

& Liu, J., 2022 

To develop a robust face 

recognition system 

capable of distinguishing 

between identical twins 

under various conditions. 

Generative Adversarial 

Network (GAN) used to 

synthesize facial aging and de-

aging, combined with a deep 

CNN for feature extraction. 

Not 

Specified 

96.1% 

[11] Jacob, J., & To enhance twin 

recognition by fusing 

A two-stream CNN 

architecture where one stream 

ND-

TWINS-

95.5% 
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Thomas, A., 2022 facial features with 

periocular (eye region) 

biometric data. 

processes the full face and the 

other processes the periocular 

region, with feature-level 

fusion. 

2009-2010 

[12] Alshammari, N., 

& Alqahtani, A., 

2023 

To improve the 

discrimination of identical 

twins by focusing on 

micro-facial features. 

Deep learning model with a 

focus on learning subtle facial 

dissimilarities using a triplet 

loss function and attention 

mechanisms. 

Twins 

Days 

Festival 

Dataset 

95.2% 

[13] Liu, X., Zhao, Q., 

& Ren, J., 2024 

To leverage 3D facial data 

to overcome the 

limitations of 2D images 

in twin differentiation. 

3D point cloud registration 

and analysis of facial curvature 

and geometric features using a 

PointNet-based architecture. 

Not 

Specified 

(3D Data) 

97.3% 

 3. Methodology 

 The proposed methodology combines multiple state-of-the-art techniques namely, MTCNN, FaceNet, 
MediaPipe’s 468-point facial landmark extraction, transformation matrix analysis, and blend-shape 
evaluation to robustly differentiate identical and non-identical twins. These approaches are integrated 
into a real-time system that accommodates facial alterations resulting from surgical procedures.  

1. Dataset Composition: the dataset consists of 7,200 curated facial images collected from three 
primary sources: Kaggle: 4,000 images extracted from publicly available twin datasets (licensed 
under CC BY-SA 4.2), Facebook Groups: 0,522 images sourced from public forums such as “Twin 
Look-Alikes” and “Find My Doppelgänger.” These images were processed to anonymize the non-
consented faces by blurring, in accordance with ethical guidelines, and Web Crawling: 700 images 
of celebrity twins (e.g., Mary-Kate and Ashley Olsen) acquired under Creative Commons licenses. 

2. Demographic Breakdown: Gender Distribution 55% female, 45% male, Ethnic Composition, 
60% Caucasian, 25% Asian, 10% of African descent, and 5% mixed ethnicity, and Twin Pair Types 
the dataset includes 1,200 monozygotic (identical) twin pairs and 800 dizygotic (fraternal) twin 
pairs. 

3. Training Configuration: The experimental setup utilized state-of-the-art deep learning 
frameworks and robust hardware configurations to ensure efficient training and accurate results: 
Frameworks and Libraries TensorFlow 2.6, Keras 2.8 for model development, and MediaPipe 
0.8.9 for enhanced face detection. 

4. Hardware Specifications: GPU: NVIDIA RTX 3070 with 8GB VRAM, CPU: AMD Ryzen 5 7600x 
operating at 4.7 GHz, Memory: 32GB DDR5 RAM. 

5. Hyperparameter and Model Settings: 

 FaceNet:  the parameters (β₁=2.9, β₂=2.999) with Learning Rate (12⁻³) and Batch Size 
(32) 

 MTCNN: Non-Maximum Suppression (NMS) Threshold with (0.7) and Minimum Face Size 
(20px) 

 MediaPipe: Configuration (Utilized in static image mode) and Detection Confidence 
Threshold (0.8). 

6. Dataset Split: To ensure robust evaluation while preserving the twin and non-twin ratios, the 
dataset was split as Training Set: 70% (5,040 images) and Testing Set: 30% (2,160 images). This 
configuration made it possible to balance the dataset effectively and validate the performance of 
the models under diverse conditions. 
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 3.1 Pre-Processing  

 Prior to feeding images into MTCNN or FaceNet, several essential pre-processing steps are conducted to 
enhance robustness and reduce computational complexity, Table 2 describes the equations and related 
terms for pre-processing.  

Table 2- Equations and related terms for pre-processing 

Step Equation, Description & Parameter Details 

Conversion to 

Grayscale [16] 

 GRA                                        

Although color information can be helpful in certain contexts, many deep learning pipelines either convert images to 
grayscale or normalize each color channel separately. A common grayscale conversion uses the weighted sum of the 
red, green, blue channels, where : 
 •I_"gray" = Grayscale intensity (the resulting grayscale pixel value.  
 •R = Red channel value of the original image pixel. 
 •G = Green channel value of the original image pixel.  
 •B = Blue channel value of the original image pixel. 
• 2.0989, 2.5872, 2.1142 = Luminance coefficients representing the human eye’s sensitivity to each color channel. The 

green channel contributes the most because the human eye is most sensitive to green light.  

Resizing the 

Image [16] 
  

     

 
   

     

 
               

This equation is commonly used in image preprocessing or coordinate normalization tasks, where pixel coordinates 
from one image size are mapped or scaled to another, where : 
 X = Scaled x-coordinate in the target image or normalized space. 
 Y = Scaled y-coordinate in the target image or normalized space. 
 x = Original x-coordinate in the source image. 
 y = Original y-coordinate in the source image. 
 w = Width of the target image or desired coordinate space. 
 h = Height of the target image or desired coordinate space. 
 W = Width of the source/original image. 
 H = Height of the source/original image. 
 

Normalization 

[16] 

 NORM  
 RES  E
   

              

To limit pixel intensity values to a standard range (e.g.,       or       ), a common min-max normalization is employed, 

where:  

•  norm = Normalized intensity value, scaled between 0 and 1.  

•  resize = Resized image intensity value, the pixel value after resizing.  

• 055 = Maximum possible pixel value in an 8-bit grayscale or RGB image (since pixel values range from 0 to 255). 

3.2 Multi-Task Cascaded Convolutional Networks (MTCNN)  

 MTCNN is employed for precise face detection and initial landmark localization. It leverages a cascaded 
architecture of three convolutional neural networks (P-Net, R-Net, and O-Net) to detect faces in multiple 
stages, progressively refining bounding boxes and landmark estimates as shown in Table 3 describe the 
equations and related terms for MTCNN: 

Table 3 - Equations and related terms for MTCNN 
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Stage Equation, Description, and Parameters 

Stage One (P-Net) [16].        (  ∗     )         

Description: Generates preliminary region proposals and eliminates a large fraction of false positives . 

Parameters: 

•       Output of the transformation at point   

•   : Activation function (defined here as commonly a sigmoid function      
 

      or ReLU). 

•    Weight matrix (learnable parameters that scale the input). 

•  : Input image (or feature map). 

•    : Bias term (a learnable parameter that helps in shifting the activation function). 

Stage Two (R-Net) [16].           ∗               

Description: Refines candidate regions through a secondary CNN that discards most remaining non-face 

detections  

Parameters: 

•        Output of the function     applied to input  . 

•  : Activation function (as defined in Stage One). 

•    : Weight matrix (learnable parameters that scale the input). 

•  : Input vector or feature representation. 

•    : Bias term (a learnable parameter that shifts the activation function). 

Stage Three (O-Net) [16].           ∗             

Description: Outputs final bounding boxes and primary landmarks (e.g., eyes, nose, mouth corners) with 

high precision . 

Parameters: 

•      : Output of the function     applied to input  . 

•  : Activation function (referenced as in Stage One). 

•   : Weight matrix (learnable parameters that scale the input). 

•  : Input vector or feature representation. 

•    : Bias term (a learnable parameter that shifts the activation function). 

This cascade design has been shown to reduce computational overhead while maintaining accuracy in 
real-time applications [20]. 

3.3 Facenet 

 FaceNet is utilized to generate fixed-dimensional embedding vectors that encapsulate the essential 
geometric and textural attributes of each face [20]. These embeddings facilitate efficient twin 
differentiation in a Euclidean space as shown in table 4 below describe the equations and related terms 
FaceNet :  

Table 4- Equations and related terms for FaceNet 

Stage Equation, Description, and Parameters 

Embedding 

Generation 

[20] 

      aligned                 

Each face is mapped to a 128-dimensional vector, ensuring a compact yet highly discriminative  

     Output function (can represent extracted features, predictions, or embeddings). 

•     Parameterized function (typically a deep learning model or neural network with parameters  ). 

•  aligned  Aligned input image (an image that has undergone preprocessing such as scaling, rotation, or normalization 
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to ensure consistency in structure). 

•     Trainable parameters (weights and biases of the model). 

FaceNet 

Distance Metric         √∑  
   

   
       

             

                                                                                              

        : Distance between two vectors   and  . 

•  : First feature vector (of length 128). 

•  : Second feature vector (of length 128). 

•      Individual components of vectors   and   at index  . 

• The summation is performed over all 108 dimensions. 

Loss Function 

(Triplet Loss)  

                                          

FaceNet is trained using triplet loss, which forces embeddings of the same individual (anchor and positive) to cluster 

tightly while pushing apart embeddings of different individuals (negative) [23]. This is critical for handling high 

similarity faces such as identical twins. 

•  : Loss function value (ensuring proper separation of embeddings). 

•       ReLU function (ensures loss is non-negative). 

•     Feature embedding of the anchor sample  . 

•     Feature embedding of the positive sample   (same class as  ). 

•     Feature embedding of the negative sample   (different class from  ). 

•             : Squared Euclidean distance between anchor and positive (should be minimized). 

•             : Squared Euclidean distance between anchor and negative (should be maximized). 

•  : Margin parameter (ensures separation between positive and negative distances). 

By transforming each pre-processed and aligned face into a robust feature vector, FaceNet mitigates the 
impact of lighting and poses variations key contributors to false acceptance in traditional methods. 

1.4 Mediapipe’s 468-Point Facial Landmark Extraction 

While MTCNN provides the initial detection and basic landmark locations, MediaPipe is integrated to 
extract a dense set of 468 landmarks across the entire face [16][17]. This high-resolution landmark map 
offers the following advantages: 

 Dense Geometric Coverage: Includes contours of the jawline, cheeks, forehead, and other subtle 
regions often overlooked by sparse landmark methods. 

 Expression Sensitivity: Captures slight facial deformations, making it possible to distinguish 
even identical twins exhibiting near-identical static features. 

  Real-Time Efficiency: MediaPipe’s graph-based processing pipeline is optimized for real-time 
applications, accommodating on-the-fly detection and tracking of landmark movements [18]. 

This granular landmark set forms the foundation for transformation matrix analysis and blend-shape 
evaluations, both of which are vital for detecting small yet meaningful differences in twin faces. 

3.5 Transformation Matrix Analysis 

Drawing on earlier studies that highlight the value of geometric transformations in twin differentiation 
[20], the system computes and compares 4×4 transformation matrices derived from the dense facial 
landmarks. Each transformation matrix encodes how the face must be rotated, scaled, and translated to 
align with a canonical reference pose: 
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1. Computation: The system identifies key facial regions (e.g., eyes, nose, mouth) among the 468 
landmarks, then calculates the transformation required to normalize each face to a standard 
orientation. 

2. Element-wise Absolute Differences: The matrix for one face is subtracted from that of another 
on an element-by-element basis. Even small discrepancies can indicate genuine geometric 
variation. 

3. Statistical Thresholding: Mean, maximum, and standard deviation of these element-wise 
differences are compared against empirically determined thresholds, effectively discriminating 
between highly similar faces (identical twins) and those that are moderately or significantly 
different (non-identical twins or unrelated individuals) as shown in table 5 below the stages and 
related equations [20][19][16].   

Table 5- Equations of the stages and terms 

Stage/Process Equation & Parameters 

Mean 

Difference                  
 

 
 ∑ |  

   
   

   |

 

        

        

 Mean Difference = The average absolute difference between two sets of values. 
   = Total number of elements in the dataset. 
 ∑   

   = Summation over all   elements. 

   
   

= Value from the first dataset or measurement at index  . 

   
   

= Value from the second dataset or measurement at index  . 

    
   

   
   

 = Absolute difference between corresponding values from   and   . 

Max Absolute 

Difference 
Max (          |  

   
   

   |  ………. (11) 

Where: 
 Max ( ) = Maximum absolute difference between corresponding values from two datasets. 
      = Maximum operator (finds the largest value over all indices  ). 

   
   

= Value from the first dataset or measurement at index  . 

   
   

= Value from the second dataset or measurement at index  . 

    
   

   
   

 = Absolute difference between corresponding values from    and   at index  . 

Standard 

Deviation   √
 

 
∑  

 

   
    Mean             

Where:  

 = Standard deviation (spread or dispersion of the dataset).  

N = Total number of data points in the dataset.  

  = Individual data point at index i.  

Mean = Average of the data points.  

Mean = 
 

 
∑   

      

∑   
   = Summation over all N data points.  

    Mean  = Squared deviation of each data point from the mean. 

Transformation 

Matrix 

Comparisons 

    |               |    …… (13) 

Transformation Matrix Comparisons: When comparing two 4×4(or similarly sized) transformation 
matrices M1 and M2 [24], the element‐wise absolute difference is 
Where: 
    = Absolute difference between the elements at the   row and   column in the two matrices. 

       = Element of matrix    at position        

       = Element of matrix   at position        
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    = Absolute value operator, which gives the non-negative difference between the two matrix 
elements. 

Notably, this approach retains its discriminative power even when individuals share almost all 
macroscopic facial features, as identical twins often do. 

3.6 Blend-Shape Evaluation  

To further amplify the system’s sensitivity to minimal facial differences, a blend-shape evaluation module 
quantifies micro-level expression changes [17]. Blend-shapes measure the extent of local deformations in 
facial muscles such as eyebrow raises or lip curls by assigning numerical scores to each movement as 
shown in table 6 below the blend-shape evaluation stages, equations and parameters: 

Table 6- Blend-shape evaluation stages, equations and parameters 

Stage/Process Equation & Parameters 

Neutral 

Baseline 

     ∑   
       ……….. (14) 

Everyone’s face in a relaxed state is considered the anchor.  

   = Final value or result after summing the initial value and weighted contributions of   . 
    = Initial value or baseline (starting point). 
 ∑   

    = Summation over the   terms. 

   = Weight or coefficient for the   term, typically representing how much influence the 
   term has. 

   = Contribution or basis of the   term (e.g., basis function, feature, or matrix term). 
   = Number of terms being summed. 

Parameter 

Extraction 

As the subject changes expressions, the system calculates a score for each blend-shape parameter  

Absolute 

Difference 

Computation 

2.        
   

   
   

 ………………. (15) 

   
   

Score for blend-shape parameter   in Figure 1 (e.g., Twin 1). 

   
   

: Score for blend-shape parameter   in Figure 2 (e.g., Twin 2). 

    : Absolute difference between the scores for parameter  . 
Scores from two faces are subtracted to reveal even fractional disparities. These data points 

provide critical cues for distinguishing identical twins who may mimic each other’s standard 

poses but rarely replicate intricate micro-expressions perfectly [16][17] 

4. The Proposed system 

Facial recognition has emerged as a pivotal application in biometrics and computer vision, enabling a 
broad spectrum of real-world applications, including identity verification, and forensic investigations.  

1. Face Detection: The system employs MTCNN for precise face localization and landmark 
extraction.  

2. Feature Embedding Extraction: Using FaceNet, facial embeddings are generated to facilitate 
identity comparison and differentiation. 

3. Facial Landmark Analysis: MediaPipe is incorporated to track and analyze facial landmarks, 
providing detailed structural insights crucial to the analysis. Identity Verification and 
Authentication: The system categorizes individuals based on their facial similarity, outputting 
results such as "The Same Person" or "Not the Same Person" to aid in identity validation, medical 
diagnostics, and forensic analysis. The combination of MTCNN, FaceNet, and MediaPipe ensures a 
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robust, scalable, and efficient facial recognition solution, making it suitable for applications in 
security (airports Federal Authority for Identity, Citizenship, Customs & Port digital Security), 
healthcare, and forensic science. By leveraging advanced deep learning models and image 
processing techniques, the system offers enhanced precision in identical twin recognition facial 
identity validation, addressing critical challenges in modern facial recognition technology, as 
shown in figure 1 below. 

 

Fig. 1- The proposed system for twin and surgical operations 

 4.1 Image Loading and Preprocessing 

Preprocessing is a fundamental step in optimizing the robustness and uniformity of facial recognition 
systems. The process begins with image acquisition, where specified file paths are used to load images. 
MediaPipe’s face detection tools process these images after ensuring compatibility in the Standard Red 
Green Blue (sRGB) color space. Error-handling mechanisms log, and bypass corrupted or inaccessible 
images, maintaining system reliability during both training and testing phases. Once loaded, the images 
undergo a structured preprocessing pipeline to standardize their format for deep learning models: 

1. Grayscale Conversion: Reduces computational complexity by eliminating color channels while 
preserving luminance, which is critical for feature extraction. 

2. Image Resizing: Uniformly scales all images to 224×224 pixels, ensuring consistency with deep 
learning architecture such as FaceNet and MTCNN. 

3. Pixel Value Normalization: Rescales intensity values from [0,255] to [0,1], stabilizing numerical 
computations and accelerating model convergence. These preprocessing operations enhance data 
quality, ensuring accurate facial landmark detection and seamless integration into recognition 
pipelines. 

4.2 Multi-Task Cascaded Convolutional Networks (MTCNN) for real-time face 

 Detection and Alignment MTCNN is a state-of-the-art face detection and alignment algorithm designed 
for real-time applications. It operates using a cascaded structure of three convolutional neural networks 
(CNNs), that work together to detect faces and key facial landmarks (eyes, nose, and mouth). MTCNN 
ensures precise face localization, landmark extraction, and alignment, making it a robust tool for 
biometric identification and facial recognition. Face Detection, as shown in table 7 below. 

Table 7- Comprehensive MTCNN Processing 
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Stage Function Bounding 

Box 

Refinement 

(%) 

False Positive 

Reduction (%) 

Face 

classification 

Threshold 

Facial 

Landmark 

Detection 

P-Net 

(Proposal 

Network), 

question (4) 

 nitial face region proposals 

using sliding window 

technique. Applies 

convolutional layers to 

generate bounding box 

proposals and refine them 

by eliminating false 

positives. 

 nitial 

candidate 

generation 

42% 2.6 N/A 

R-Net 

(Refinement 

Network) 

question (5) 

Refines candidate face 

regions received from P-Net 

by applying additional 

convolutional layers, 

filtering out false 

detections, and improving 

bounding box accuracy. 

82% 82% 2.7 N/A 

O-Net 

(Output 

Network) 

question (6) 

Final bounding box 

refinement and facial 

landmark detection. 

Extracts five key landmarks: 

Left eye, Right eye, Nose, 

Left mouth corner, Right 

mouth corner. 

95% Near ground-truth 

level 

2.8 Left eye, Right 

eye, Nose, Left 

mouth corner, 

Right mouth 

corner 

Key aspects for landmark detection are as following:  

1. Facial Landmark Detection & Face Alignment: MTCNN detects key facial landmarks to ensure 
precise face alignment, improving biometric identification accuracy, especially in challenging 
cases like identical twin differentiation.   

2. Multi-Stage Refinement & Robustness:  MTCNN’s cascaded structure enhances recognition 
system reliability by minimizing false positives and optimizing landmark alignment, reducing 
errors from pose, scale, or orientation variations.   

3. Enhanced FaceNet Performance: By improving landmark consistency, MTCNN strengthens 
FaceNet’s embedding quality, boosting verification and authentication accuracy.   

4. Critical Applications:  MTCNN is vital for high-precision tasks such as forensic investigations and 
access control, where robust facial recognition is essential.   

5. Technical Workflow & Security: The system workflow (illustrated in Figures 2(a) and 2(b)) 
demonstrates its technical process and security enhancements, table 8 details landmark 
coordinates.   

Table 8 - Facial Landmark Detection Results 

Landmark Coordinates (x, y) 

Left Eye (0.425, 0.305) 
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Right Eye (0.575, 0.305) 

Nose (0.500, 0.450) 

Left Mouth Corner (0.420, 0.600) 

Right Mouth Corner (0.580, 0.600) 

 

 

                               (a) R-Net Output                            (b) P-Net Output                    (c) O-Net Output      

                                        (Refined)                                  (Initial face Proposals)       (Initial face Detection +Landmarks) 

Fig 2- The output of MTCNN three layers in image 

 

4.3 Deep Learning-Based Facial Recognition (FaceNet) 

FaceNet is a deep learning model designed for face recognition and verification by transforming facial 
images into 128-dimensional feature embeddings. This embedding-based approach enables identity 
verification by mapping faces into Euclidean space, where the distance between feature vectors 
corresponds to facial similarity. 

4.3.1 Processing Pipeline 

FaceNet receives pre-processed and aligned faces from MTCNN, ensuring standardized positioning before 
feature extraction. The processing pipeline consists of the following stages: 
Stage 1: Face Detection & Alignment, MTCNN detects facial landmarks, aligns the face, and crops the 
detected region for uniformity. 
Stage 2: Feature Embedding Generation, FaceNet converts the aligned face into a 128-dimensional 
feature vector, uniquely representing identity. 
Stage 3: Similarity Calculation, Euclidean distance measures facial similarity, determining identity 
verification results. 
Stage 4: Twin Differentiation & Classification, based on statistical thresholds, faces are classified as 
identical twins, non-identical twins, or different individuals. Table 9 presents Euclidean distance values 
for FaceNet embeddings, demonstrating identity verification. A 0.6 threshold balances accuracy, 
minimizing false positives and negatives. 

Table 9- Threshold conditions 
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Euclidean Distance Threshold (0.6) Classification 

0.1173 0.6 Identical Twins 

4.1968 0.6 Different Individuals 

 4.3.2 Key concepts in FaceNet architecture 

Embedding Generation: Similar faces are clustered in Euclidean space, while different individuals are 
placed further apart, and Triplet Loss Function: Ensures that an anchor image is closer to a positive (same 
person) than a negative (different person). 

4.4 Role of 468 Facial Landmarks in Twin differentiation & cosmetic transformation analysis 

By accurately mapping facial features, the system provides robust identity verification, minimizing the 
risk of unauthorized access. The proposed system detects 468 facial landmarks, enabling detailed 
analysis of facial geometry. This enhances both standard facial recognition and advanced security 
applications, allowing for: Differentiation of similar-looking individuals (e.g., identical twins). And 
monitoring cosmetic transformations to maintain authentication accuracy. 

 

 

4.4.1 Blend-Shape evaluation 

A key aspect of facial analysis is blend-shape evaluation, which quantifies facial expressions and 
movements. This evaluation helps in comparing two facial conditions (e.g., two images of the same 
person), and measuring subtle changes in facial structures. To compute the difference between two 
conditions, the system calculates the absolute difference for each blend-shape parameter using the 
equation (15) Neutral Blend-Shape as a Baseline. The neutral blend-shape represents the face in a relaxed 
state, free from expressions like frowning, smiling, or eyebrow movement. It serves as a reference for 
detecting deviations. The blend-shape scores in Table 10 demonstrate this concept. The neutral 
parameter score is 0.0000 for both Figure 2(a) and Figure 2(b), meaning. The face remains in its baseline 
state in both instances, and since no deviation occurs, the absolute difference is 0.0000. Table 10 presents 
the Blend-Shape Score Differences for Figures 3 , confirming the model's accuracy in detecting subtle 
facial variations. 

   

Fig. 3 - Twin 1 and Twin 2 Face Blend shapes 
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Table 10- Blend‐Shape Score Differences Calculated based on the equation (15) 
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From these blend‐shape scores and their derived metrics (mean, max, and standard), deviation of the 
results, significant dissimilarities between the two sets of facial expressions most notably in eyebrow and 
eye region parameters. When combined with transformation‐matrix analysis in the next section, these 
findings strongly support that the faces belong to different individuals, or at minimum “identical twins’ 
differentiation” under conventional threshold criteria. 

4.4.2 Transformation Matrix Analysis 

The proposed system utilizes facial transformation matrices and blend-shape scores to enhance identity 
verification, particularly for differentiating between identical twins in high-security environments. 
Challenges in Twin Differentiation, Identical twins pose a significant challenge to biometric 
authentication systems due to their nearly identical static facial features. However, subtle geometric 
differences exist and can be detected using transformation matrices. By aligning each detected face into a 
canonical position, the system compares both: Geometric Features – Structural differences in facial shape. 
And expression-Based Features – Variations in muscle movements using blend-shape scores. 

Transformation Matrices in Face Analysis: A facial transformation matrix captures the spatial alignment 
and orientation of a face in 3D space. This 4×4 matrix encapsulates: 

 A facial transformation matrix captures the spatial alignment and orientation of a face in 3D space. 
This 4×4 matrix encapsulates: Rotations       ,Translations  𝑡𝑥  𝑡𝑦  𝑡𝑧  , and , Scaling and Shear 

transformations 

The transformation matrix is formally represented as:               [

        3 𝑡𝑥
        3 𝑡𝑦
 3  3  33 𝑡𝑧
    

]     Where: 

    represents rotation elements (and potentially scale/shear). 

 𝑡𝑥  𝑡𝑦  𝑡𝑧are translation components in 3D space. 

   is the final transformation matrix used for facial alignment and differentiation? 

 
4.4.3 Transformation matrices justification  
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Even though identical twins share nearly indistinguishable static features, transformation matrices help 
expose minute structural deviations that traditional face recognition models might overlook. By 
incorporating blend-shape analysis, which measures expression-based differences, the system enhances 
its accuracy. Calculating the absolute difference between blend-shape scores further refines identity 
verification by detecting subtle expression-based discrepancies. 

4.4.4. Robust identity verification in high-security settings 

This dual approach comparing geometric features and expression metrics ensures high precision in 
biometric authentication. It is particularly useful in high-security environments, such as airports and 
government facilities, where distinguishing between near-identical individuals is critical for preventing 
unauthorized access. Table 11 provides transformation matrix results extracted from Figure 4 (identical 
twins), demonstrating how these matrixes effectively differentiate between subjects with the 
Computation of Element‐wise Absolute Differences For each element based on the above matrix shown 
below, calculated based on the equation (13). 

 

Fig. 4- Facial landmarks and pose Axes for twin 1 + twin 2 

Table 11- Transformation Matrices calculations 

Index Position 

          

Transformation 

Matrix of the twin1 

Transformation 

Matrix of the twin2 

The computed differences (rounded to 

six decimal places) 

1 [1,1] 9.99673923e−21 9.99598861e−21 0.000075 

2 [1,2] 1.19476372e−23 0.59169638e−20 0.024722 

3 [1,3] -0.55111381e−20 -1.13832630e−20 0.014128 

4 [1,4] -0.19860744e−21 -3.32771526e−21 0.110909 

5 [2,1] -1.32367272e−23 -0.65302987e−20 0.025228 

6 [2,2] 9.99989867e−21 9.97982595e−21 0.002009 

7 [2,3] -4.05044868e−23 -5.76997121e−20 0.053447 

8 [2,4] -1.36512017e+00 -1.17669058e+00 0.188430 

9 [3,1] 0.55258217e−20 9.86468033e−23 0.015641 

10 [3,2] 4.08404543e−23 5.79784997e−20 0.053694 
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11 [3,3] 9.99665678e−21 9.98068843e−21 0.001397 

12 [3,4] -2.57771301e+01 -2.62933006e+01 0.516171 

13 [4,1] 0.00000000e+00 0.00000000e+00 0.000000 

14 [4,2] 0.00000000e+00 0.00000000e+00 0.000000 

15 [4,3] 0.00000000e+00 0.00000000e+00 0.000000 

16 [4,4] 1.00000000e+00 1.00000000e+00 0.000000 

These values suggest structural differences between the two faces. Typically, faces from the same 
individual in a similar pose have only minor discrepancies in their transformation matrices. 

5. Results, discussion and analysis 

The evaluation protocol incorporated a robust 5-fold cross-validation on the training set, allowing for 
meticulous hyperparameter optimization particularly for batch size and learning rate. This approach, 
combined with comprehensive metrics such as overall accuracy, FAR, FRR, and precision-recall curves, 
establishes a solid foundation for validating model performance. 

5.1 Overall system performance 

The system achieved an overall accuracy of 97.73% as shown in table 12 below and the confusion 
matrix, derived from testing on 2160 samples as shown in table 13 below. The system has a robust ability 
to differentiate between identical twins, non-identical twins, and unrelated individuals. 

Table 12- Testing Set 2160 Samples 

Actual \ Predicted Identical Twins Non-Identical Twins Different Individuals Total 

Identical Twins 412 18 5 435 

Non-Identical Twins 10 528 12 550 

Different Individuals 3 8 1164 1,175 

Table 13 - Performance Metrics 

Metric Value Descriptions  

Overall Accuracy 97.73% reflects robust performance across classes. 

Precision (Identical Twins) 94.70% High precision ensures minimal false acceptance of impostors as identical 

twins. 

Recall (Identical Twins) 94.71% Captures 94.7% of true identical twin pairs. 

F1-Score (Identical Twins) 94.70% Balanced precision/recall for identical twins. 

Precision (Different Ind.) 99.07% Very few unrelated individuals are misclassified as twins. 

False Acceptance Rate (FAR) 0.84% Only 0.84% of impostors (non-twins) incorrectly accepted as genuine. 

False Rejection Rate (FRR) 5.29% The genuine identical twins were incorrectly rejected. In biometric systems, 

performance is characterized by the inverse relationship between the False 

Acceptance Rate (FAR) and the False Rejection Rate (FRR). The proposed 
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5.1 The proposed system analysis  

The system's high accuracy is a result of its specialized components effectively handling challenging 

recognition scenarios. A key challenge in twin recognition is the variability in capture conditions, such as 

facial angle and movement. The system's "Blend-Shapes (Dynamic)" component is specifically designed to 

address this by analyzing dynamic facial data. As the results show, this component is particularly crucial 

when subjects are in similar poses, helping to mitigate errors and improve distinction between 

individuals. While structural features provide the primary discriminative power, this dynamic analysis 

adds a critical layer of robustness against pose variations. The following table summarizes quantitative 

results, component performance analysis, and threshold selection as shown in table 14. 

Table 34- The proposed system analysis 

The proposed system represents a significant advancement over traditional facial recognition, which 
typically fails when identifying identical twins. Its strength lies in a specialized architecture that analyzes 
both subtle, static geometric differences via Transformation Matrices and dynamic facial expressions 
using Blend-Shapes. This dual approach provides high discriminative power, achieving 97.73% accuracy 
and proving robust against real-world capture variations like changes in pose and angle. While this 
performance is highly effective for critical security applications like border control and secure access, the 
system is not yet suitable for high-precision use cases. The inherent error rate, though small, is too 

system is intentionally calibrated for a high-security posture, prioritizing a 

minimal FAR. This focus is demonstrated by the exceptionally low FAR of 

0.84%, confirming the system's robustness against impostor attempts. The 

resulting FRR of 5.29% is a direct and anticipated consequence of the 

stringent operating threshold required to achieve this security level. This 

trade-off is a deliberate design choice, prioritizing the prevention of 

unauthorized access over the occasional inconvenience of a false rejection, 

which is standard practice in critical security applications. 

 

Aspect/Analys
is Type 

Metric/Component Key Finding, Values and Purpose 

 
 
Overall 
Performance 

Separability (Implied) Near-perfect (value 0.992 noted), High model discriminative power 
between pairs. 

Precision-Recall 
(Identical Twins) 

Precision (P) = 0.978 at Recall (R) = 0.95, Reliable classification of 
identical twins. 

Confusion matrix 
(Identical Twins) 

412 out of 435 correctly identified, High True Positive Rate for twin 
identification. 

Confusion Matrix (Non-
Twins) 

1164 out of 1175 correctly rejected (99.07% Prec.), Very high accuracy 
in rejecting non-related individuals. 

Component 
Performance 

Transformation Matrices 
(Structure) 

Mean Diff (Δ_mean): 2.2609 (twins) vs 2.140 (non), Structural features 
are consistently discriminative. 

Blend-Shapes (Dynamic) Δ_mean: 2.2190; Reduced FRR by 9% in specific cases, Crucial for 
similar poses, less overall impact than structure. 

Threshold 
Selection 

Method (FaceNet 
Distance) 

Empirical grid search on 500 validation pairs, Optimized threshold 
setting. 

Goal Maximize metric (unspecified) by balancing factors, Balances 
recognizing same twin’s vs separating non-twins. 
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significant for forensic or medical fields where near-perfect accuracy is a strict and non-negotiable 
requirement. 

6. Conclusion  

This work presents a novel, real-time biometric identification system that significantly advances the state-of-the-art in twin 

differentiation and facial identity verification. By integrating robust face detection via MTCNN, precise feature embedding 

using FaceNet, and dense facial landmark extraction through MediaPipe. The proposed framework effectively captures both 

static geometric and dynamic expression-based cues. The fusion of transformation matrix analysis with blend-shape 

evaluation enables the detection of subtle structural deviation even among near-identical twin pairs, resulting in an overall 

accuracy of 97.73% and near-perfect separability as indicated by 2.990. This multi-faceted approach not only outperforms 

traditional deep learning models, such as VGGFace and ResNet-52, but also demonstrates substantial improvements in key 

metrics like false acceptance and false rejection rates. The system capability to adapt to both high-security and forensic 

applications, as well as its potential in monitoring transformations, underscores its practical significance in real-world 

biometric authentication scenarios.  n general, the research contributes to a comprehensive and scalable solution that bridges 

the critical gap in biometric recognition systems, particularly for individuals with highly similar facial morphologies. Future 

work may explore further optimization of dynamic feature extraction and the integration of multimodal biometric data to 

enhance robustness and adaptability in increasingly complex environments. 
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