

Available online at www.qu.edu.iq/journalcm

JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS

ISSN:2521-3504(online) ISSN:2074-0204(print)

On ideal supra Z_open set in ideal supra topological space

Saja S. Faiad a, Rana B.Yaseenb

Department of Mathematics, College of Education for women , Tikrit University, Tikrit, Iraq. Email: saja.sulimanfaiad771@st.tu.edu.iq

^bDepartment of Mathematics, College of Education for women , Tikrit University, Tikrit, Iraq..Email: zian2016@tu.edu.iq

ARTICLE INFO Article history: Received: 30/05/2025Rrevised form: 21/06/2025Accepted: 25/06/2025Available online: 30/09/2025Keywords: ideal supra space, ideal supra Z_{-} space ABSTRACT This study introduces the ideal supra Z_{-} open set in ideal supra topological space, where its basic properties are defined and examined through illustrative examples and related theorems and the relations between some separation axioms (T_i , i=0,1,2) are generalized and studied over the spaces under study. MSC...

https://doi.org/10.29304/jqcsm.2025.17.32386

1. Introduction and Preliminaries

Ideal topology was first introduced by Kuratowski [4] and Vaidyanathswamy [7]. Further Hamlett and Jankovic also studied the properties of ideal topological spaces in [3] and [13]. In 1983, Mashhourm A.S. [2] established supra topological space (U,μ) and studied supra- continuous maps. The properties of supra topological space were generalized by many other researchers as in [12,5]. In 2008, Yasseen, R.B. el at [11] studied separation axioms in supra topology. The ideal supra topological space was studied by researchers Shyamapada elat. [9,1]. Tamer, S.A. is first to suggest ζ — open sets and some types of ζ — continuous functions on topological spaces [8]. As for researcher, Nadia, she has proven that the ζ — topological spaces are ζ —compact spaces [5]. In 2024, Saja S. Faiad elat proposed the concepts of supra \mathcal{Z} _open sets and studied new properties of them, as well as and supra \mathcal{Z} _continuous functions and some of their properties [10].

Definition 1.1 [10]

A subset Z of (U, μ) is said to be supra Z- open sets $(Z_{\mu} os)$, if $Z \cap cl_{\mu}(H) \neq \emptyset$, $\forall x \in Z$, there exists non-empty supra open set H content x, such that if $Z = \emptyset \to Z \cap cl_{\mu}(H) = \emptyset$ and $Z = H = U \to Z \cap cl_{\mu}(H) = U$.

*Corresponding author

Email addresses: saja.sulimanfaiad771@st.tu.edu.iq

So, the complement of \mathcal{Z}_{μ} os is supra \mathcal{Z} - closed set $(\mathcal{Z}_{\mu}$ and the collections of all $(\mathcal{Z}_{\mu}$ os) $(\mathcal{Z}_{\mu}$ subset of (U, μ) will be denoted by $\mathcal{Z}O(U, \mu)$, $\mathcal{Z}C(U, \mu)$.

Theorem 1.2 [10]: The sets of all \mathcal{Z}_{μ} os is satisfies the conditions of supra topology on U .

- 1. \emptyset ,U ∈ \mathcal{Z} 0(U, μ).
- 2. If $\mathcal{Z}_{\alpha} \in \mathcal{Z}O(U,\mu)$ and $x \in U \mathcal{Z}_{\alpha} \to x \in H_{\alpha}^*$ and $x \in Z_{\alpha}^*$, $\forall \alpha^* \in \Lambda$.

Then (U, μ_Z) is called supra Z-topological space

Definition 1.3 [10]

A function $f:(U, \mu_Z) \to (V, \mu_Z)$ is called supra \mathcal{Z}_{\perp} continuous (\mathcal{Z}_{μ} continuous), if the invers image is \mathcal{Z}_{μ} os in U, for each μ os in V.

Example 1.4[10]

Let
$$\mu_u = \{U, \emptyset, \{b\}, \{a, b\}\}$$
 on $U = \{a, b, c, d\}$, $\mu_u{}^c = \{U, \emptyset, \{a, c\}, \{c\}\}\}$ and $\mu_v = \{V, \emptyset, \{1, 2\}\}$ on $V = \{1, 2, 3\}$, $\mu_v{}^c = \{U, \emptyset, \{3\}\}$. Then
$$\mathcal{Z}O(U, \mu) = \{U, \emptyset, \{a\}, \{b\}, \{a, b\}\}\}$$

$$\mathcal{Z}O(V, \mu) = \{V, \emptyset, \{1\}, \{2\}, \{1, 2\}\}\}$$
 Defined $f: (U, \mu_u) \to (V, \mu_v)$; f (a)=1, f (b)=2, f (c)= f (d) =3. So,
$$f^{-1}(V) = U \in \mathcal{Z}_\mu O(U, \mu);$$

$$f^{-1}(\emptyset) = \emptyset \in \mathcal{Z}_\mu O(U, \mu);$$

$$f^{-1}(\{1, 2\}) = \{a, b\} \in \mathcal{Z}_\mu O(U, \mu).$$
 Then f is \mathcal{Z}_μ _cont.

The aim of this paper is to study the set Z on the ideal supra topological space and to prove some of its properties, as well as to generalize the separation axioms on the space under consideration.

2- \mathcal{Z}_{μ} Separation axioms in supra topological space

Definition 2.1

A subset non-empty \mathcal{A} of (U, μ) , so $\mu_{\mathcal{A}}^*$ is the class of every intersection of \mathcal{A} every element in U, then $(\mathcal{A}, \mu_{\mathcal{A}}^*)$ is supra topological subspace.

Definition 2.2

A (U, μ_Z) is called \mathcal{Z}_{μ} -space if and only if for every pair of distinct points $x, y \in U$, $\exists \, \mathcal{Z}_{\mu}$ -open set that contains one of the points but not the other.

Examples 2.3

Let
$$\mu = \{\emptyset, U, \{1\}\}\$$
 on $U = \{1,2,3\}$, then $\mathcal{Z}_{\mu} = \{\emptyset, U, \{1\}\}$.

So, $1 \neq 2 \rightarrow \{1\} \in \mathcal{Z}_{\mu}$ _O(U, μ) $\rightarrow \{1\} \in \{1\} \land \{2\} \notin \{1\}$; we get (U, $\mu_{\mathcal{Z}}$) is \mathcal{Z}_{μ} _T₀-space. But, if \mathcal{Z}_{μ} _O(U, μ)= { \emptyset , U,{1},{2},{1,2}} on μ = { \emptyset , U,{1,2}} then (U, $\mu_{\mathcal{Z}}$) is not \mathcal{Z}_{μ} _T₀-space.

Proportion 2.4

A space (U, μ_Z) is \mathcal{Z}_{μ} -T₀-space if and only if $\operatorname{cl}_{\mathcal{Z}_u}\{x\} \neq \operatorname{cl}_{\mathcal{Z}_u}\{y\}$, $\forall x, y \in U$; $x \neq y$.

Proof:

Let U be $\mathcal{Z}_{\mu-}T_0$ -space, to prove $\operatorname{cl}_{\mathcal{Z}_{\mu}}\left\{\,x\,\right\} \; \neq \operatorname{cl}_{\mathcal{Z}_{\mu}}\left\{\,y\right\}$, $\forall\;x,y\in\;U$; $x\;\neq y$.

U is $\mathcal{Z}_{\mu-}T_0$ -space and $x \neq y \rightarrow \exists \mathbb{G} \in \mu_{\mathcal{Z}}; (x \in \mathbb{G} \land y \notin \mathbb{G}) \land (x \notin \mathbb{G} \land y \in \mathbb{G}), \text{ let } (x \in \mathbb{G} \land y \notin \mathbb{G}) \rightarrow (x \in \mathbb{G} \land y \in \mathbb{U} / \mathbb{G}), \text{ so}$

 $U/\mathbb{G} \quad \text{is \mathcal{Z}_{μ}-os,} \quad \text{since } \mathbb{G} \, \mathcal{Z}_{\mu}$-os $\longrightarrow \{y\} \subseteq U/\mathbb{G} \longrightarrow \operatorname{cl}_{\mathcal{Z}_{\mu}} \{y\} \subseteq \operatorname{cl}_{\mathcal{Z}_{\mu}} (U/\mathbb{G}) = U/\mathbb{G} \quad \text{(since U/\mathbb{G} \mathcal{Z}_{μ}-c an $\operatorname{cl}_{\mathcal{Z}_{\mu}} (U/\mathbb{G})$) = U/\mathbb{G}. Thus $\operatorname{cl}_{\mathcal{Z}_{\mu}} \{y\}$ $$ $\stackrel{\cdot}{=} \operatorname{cl}_{\mathcal{Z}_{\mu}} \{x\}$ $$ $\neq \operatorname{cl}_{\mathcal{Z}_{\mu}} \{y\}$ $$ $$

By similar way if we take $(x \notin G \land y \in G)$

Conversely;

Let $cl_{\mathcal{Z}_{\mu}}\{x\} \neq cl_{\mathcal{Z}_{\mu}}\{y\}$, $\forall x \neq y \in U$ and U be not \mathcal{Z}_{μ} -T₀-space $\longrightarrow \exists x, y \in U$; $\forall \mathbb{G} \in \mu_{\mathcal{Z}}; x \in \mathbb{G} \longrightarrow y \in \mathbb{G}$, by using defined (2.1)

So,
$$z \in U$$
; $z \in cl_{Z_{\mu}}(x)$(*) $\rightarrow \forall G \in \mu_{Z}$; $Z_{\mu} \in G \land G \cap \{x\} \neq \emptyset$

[since by true : $z \in cl_{Z_{II}}(\mathcal{A}\) \longleftrightarrow \forall \mathbb{G} \in \mu_{\mathcal{Z}}; z \in \mathbb{G} \wedge \mathbb{G} \cap \mathcal{A} \neq \emptyset$]

But, $\mathbb{G} \cap \mathcal{A} \neq \emptyset \longrightarrow x \in \mathbb{G}$ (since the only element in $\{x\}$ is x)

 \therefore all set contains z must contain x. So, we have the following two statements : each \mathcal{Z}_{μ} -os contains z must contains x and each \mathcal{Z}_{μ} -os contains x must contains y \longrightarrow every \mathcal{Z}_{μ} -os contains z must contains y.

$$\rightarrow \forall \mathbb{G} \in \mu_{\mathcal{Z}}; \mathcal{Z}_{\mathfrak{u}} \in \mathbb{G} \land \mathbb{G} \cap \{y\} \neq \emptyset \rightarrow z \in \operatorname{cl}_{\mathcal{Z}_{\mathfrak{u}}}(y) \dots (*)$$

$$\rightarrow \forall z \in \operatorname{cl}_{Z_{II}}(x) \rightarrow z \in \operatorname{cl}_{Z_{II}}(y) \rightarrow \operatorname{cl}_{Z_{II}}\{x\} \subseteq \operatorname{cl}_{Z_{II}}\{y\}$$

By similar way we prove $\operatorname{cl}_{\mathcal{Z}_{\mu}}\{y\}\subseteq\operatorname{cl}_{\mathcal{Z}_{\mu}}\{x\}\to\operatorname{cl}_{\mathcal{Z}_{\mu}}\{x\}=\operatorname{cl}_{\mathcal{Z}_{\mu}}\{y\}$ C!!. Then U is $\mathcal{Z}_{\mu-}T_0$ -space(since $\operatorname{cl}_{\mathcal{Z}_{\mu}}\{x\}\neq\operatorname{cl}_{\mathcal{Z}_{\mu}}\{y\}$).

Definition 2.5

A (U, μ_Z) is $\mathcal{Z}_{\mu_-} T_1$ -space if and only if, for any two distinct points $x, y \in U$, $\exists \mathcal{Z}_{\mu_-} \text{os in } U, \exists \text{ one contains } x \text{ but not } y$, and $\mathcal{Z}_{\mu_-} \text{os in } U \text{ containing } y \text{ but not } x$.

Example 2.6

Let $\mu = \{\emptyset, U, \{2\}, \{2,3\}, \{2,4\}\}\$ on $U = \{2,3,4\}$; so, $\mathcal{Z}_{\mu} = \{\emptyset, U, \{2\}, \{3\}, \{4\}, \{2,3\}, \{2,4\}, \{3,4\}\}\}$, Then, U is $\mathcal{Z}_{\mu} = T_1$ -space.

Let
$$2 \neq 3 \rightarrow \begin{cases} \exists \mathbb{G} = \{2\}s. \ t\{2\} \in \{2\} \land \{3\} \notin \{2\} \\ \exists \mathbb{H} = \{3\}s. \ t\{2\} \notin \{3\} \land \{3\} \in \{3\} \end{cases}$$

Let
$$2 \neq 4 \rightarrow \begin{cases} \exists \mathbb{G} = \{2\}s. \ t\{2\} \in \{2\} \land \{4\} \notin \{2\} \\ \exists \mathbb{H} = \{4\}s. \ t\{2\} \notin \{4\} \land \{4\} \in \{4\} \end{cases}$$

Let
$$3 \neq 4 \rightarrow \begin{cases} \exists \mathbb{G} = \{3\}s. t\{3\} \in \{3\} \land \{3\} \notin \{4\} \\ \exists \mathbb{H} = \{4\}s. t\{3\} \notin \{4\} \land \{4\} \in \{4\} \end{cases}$$

Remark 2.7

 $\forall\,\mathcal{Z}_{\mu-}T_1\text{-space}$ is $\mathcal{Z}_{\mu-}T_0\text{-space}.$ On the contrary, it is not true. As the example

Let
$$\mu_{z} = \{ U, \emptyset, \{3\}, \{1,3\} \}$$
 on $U = \{1,2,3\}$, then $\mathcal{Z}_{\mu} = \{ U, \emptyset, \{1\}, \{3\}, \{1,3\} \}$

Then, U is $\mathcal{Z}_{\parallel} T_0$ -space but not $\mathcal{Z}_{\parallel} T_1$ -space

Theorem 2.8

 $(U,\mu_{\mathcal{Z}})$ is $\mathcal{Z}_{\mu-}T_1\text{-space}$ if all singleton set in U is $\mathcal{Z}_{\mu-}cs$.

Proof

Let U be \mathcal{Z}_{μ} -T₁-space, to prove $\{x\}\mathcal{Z}_{\mu}$ -c, $\forall x \in U$

i.e., U / { x } \mathcal{Z}_{μ} os, we must prove U /{ x } contains $\Re bd_{\mathcal{Z}_{\mu}} \ \forall \ y \in U / \{ \ x \}$

Let $y \in U / \{x\} \rightarrow x \neq y \rightarrow U$ is $Z_{u}T_1$ -space,

$$\rightarrow$$
 \exists \mathbb{G} , $\mathbb{H}_{v} \in \mu_{z}$; $(x \in \mathbb{G} \land y \notin \mathbb{G}) \land (x \notin \mathbb{H}_{v} \land y \in \mathbb{H}_{v})$

$$y \in \mathbb{H}_{y} \land x \notin \mathbb{H}_{y} \longrightarrow \{x\} \cap \mathbb{H}_{y} = \emptyset \Rightarrow \mathbb{H}_{y} \subseteq U / \{x\} \land y \in \mathbb{H}_{y}$$

$$\rightarrow \mathbb{H}_{y} \subseteq U \mathbin{/} \{x\} \forall y \in U \mathbin{/} \{x\} \rightarrow U \mathbin{/} \{x\} \text{contains } \text{n} \text{bd}_{\mathcal{I}_{u}} \ \forall \ y \in U \mathbin{/} \{x\}.$$

 $\therefore U / \{x\} contains \, \mathbf{n}bd_{Z_{II}} \, \forall \, y \in U / \{x\}.$

$$\therefore U / \{x\} \mathcal{Z}_{u} - os \longrightarrow \{x\} \mathcal{Z}_{u} - c \forall x \in U.$$

Conversely;

Let $\{x\}$ is $\mathcal{Z}_{\mu-}c$; $\forall x \in U$. To prove U is $\mathcal{Z}_{\mu-}T_1$ -space, let x, $y \in U$; $x \neq y \rightarrow \{x\}$, $\{y\}$ are $\mathcal{Z}_{\mu-}c$ set $\rightarrow U / \{x\}$, $U / \{y\}$ are $\mathcal{Z}_{\mu-}c$ sets, say $\mathbb{G} = U / \{y\}$, $\mathbb{H} = U / \{x\} \rightarrow (x \in \mathbb{G} \land y \notin \mathbb{G}) \land (x \notin \mathbb{H} \land y \in \mathbb{H})$. Then $(U, \mu_{\mathcal{Z}})$ is $\mathcal{Z}_{\mu-}T_1$ -space

Corollary 2.9: A (U, μ_Z) is a \mathcal{Z}_{μ} _T₁-space, then each finite set is \mathcal{Z}_{μ} _c.

Proof

Let \mathcal{A} be a finite set in $U \to \mathcal{A} = \{x_1, \dots, x_n\} = \bigcup_{i=1}^n \{x_i\} \to \{x_i\} \in \mathcal{Z}_{\mu}_C(U, \mu) \ \forall i \to \bigcup_{i=1}^n \{x_i\} \mathcal{Z}_{\mu}_c.$, Then \mathcal{A} is \mathcal{Z}_{μ}_c .

Definition 2.10

A $(U, \mu_{\mathcal{Z}})$ is said to be a \mathcal{Z}_{μ} -space, if and only if for any two distinct points x, $y \in U$, $\exists \mathcal{Z}_{\mu}$ -o sets \mathbb{G} and \mathbb{H} such that $x \in \mathbb{G}$, $y \in \mathbb{H}$, and the intersection $\mathbb{G} \cap \mathbb{H} = \emptyset$.

Examples 2.11

1-Let μ = {Ø, U,{1,2},{2,3}} on U={1,2,3};

$$\mathcal{Z}_{\mu}$$
0(U, μ) = { \emptyset , U,{1},{2},{3},{1,2},{1,3},{2,3}}. Then, U is \mathcal{Z}{μ} _T₂-space.

2- Let μ = {Ø, U,{1,2}} on U={1,2,3,4}, then \mathcal{Z}_{μ} _0(U, μ)= { Ø, U,{1},{2},{1,2}} , Then, U is not \mathcal{Z}_{μ} _T_1-space

Remark 2.12

 $\forall \mathcal{Z}_{\mu} T_2$ -space is $\mathcal{Z}_{\mu} T_1$ -space. On the contrary, it is not true, as the example

 $(\mathcal{N}, \mu_{\mathcal{Z}(cof)}) \text{ is } \mathcal{Z}_{\mu-}T_1\text{-space. But } (\mathcal{N}, \mu_{\mathcal{Z}(cof)}) \text{ is not } \mathcal{Z}_{\mu-}T_2\text{-space [because if } x \neq y, \exists \ \mathbb{G} = \mathcal{N} \ / \ \{x\} \in \mu_{\mathcal{Z}(cof)}, \ \mathbb{H} = \mathcal{N} \ / \ \{y\} \in \mu_{\mathcal{Z}(cof)} \text{ , but } \mathbb{G} \cap \mathbb{H} \neq \emptyset].$

Proposition 2.13

 Z_{μ} -T_i-space is a hereditary property. Where i=0,1,2

Proof: prove the $\mathcal{Z}_{u-}T_1$ -space.

Let (U, μ_Z) be \mathcal{Z}_{μ} -T₁-space and $(V, \mu_{Z'})$ subspace of U, to prove $(V, \mu_{Z'})$ is \mathcal{Z}_{μ} -T₁-space, let $x, y \in V$; $x \neq y \rightarrow x, y \in U$ (since $V \subseteq U$)

- : U is Z_{u} _1-space \rightarrow ∃ G, $\mathbb{H} \in \mu_Z$; (x ∈ G ∧ y ∉ G) \lor (x ∉ \mathbb{H} ∧ y ∈ \mathbb{H})
- $\rightarrow \mathbb{G} \cap \mathbb{V} \wedge \mathbb{H} \cap \mathbb{V} \in \mu_{Z'}$ (by def. $\mu_{Z'}$)
- \longrightarrow $(x \in \mathbb{G} \cap V \land y \notin \mathbb{G} \cap V) \land (x \notin \mathbb{H} \cap V \land y \in \mathbb{H} \cap V)$.; Then $(V, \mu_{Z'})$ is a \mathcal{Z}_{μ} -T₁-space.

Theorem 2.14

 Z_{u} -T_i-space is a Topological property. Where i=0,1,2

Proof: prove the Z_{μ} -T₂-space

Since $f:(U, \mu_Z) \to (V, \mu_{Z'})$ is bijective \mathcal{Z}_{μ} -cont.

Let $x_1, x_2 \in V$; $x_1 \neq x_2 \rightarrow f^{-1}(x_1), f^{-1}(x_2) \in V$ [$f^{-1} \mathcal{Z}_{\mu}$ _cont.]

: f onto \mathcal{Z}_{u} -function $\rightarrow f^{-1}(x_1) \neq \emptyset$, $f^{-1}(y_2) \neq \emptyset$

 $\text{$:$ f 1-1 $\mathcal{Z}_{\mu_{-}}$ function} \rightarrow \exists \ y_{1} \in V \ ; \ f^{-1}(\ x_{1}) = y_{1} \ \text{and} \ \exists \ y_{2} \in V \ ; \ f^{-1}(\ x_{2}) = y_{2} \ \text{and} \ y_{1} \neq y_{2} \ \text{and} \ y_{1}, y_{2} \in V \ . \ \ `` \ V \ \text{is} \ \mathcal{Z}_{\mu_{-}} T_{2} - y_{2} \ \text{and} \ y_{2} \in \mathcal{Y}_{\mu_{-}} T_{2} - y_{2} \ \text{and} \ y_{3} = y_{2} \ \text{and} \ y_{4} \neq y_{5} \ \text{and} \ y_{5} = y_{5} = y_{5} \ \text{and} \ y_{5} = y_{5$

 $f \quad \text{is} \quad \mathcal{Z}_{\mu_{-}} \quad \text{continuous} \quad \longrightarrow f^{-1}(\mathbb{H}_{1}) = \mathbb{G}_{1}, \\ f^{-1}(\mathbb{H}_{2}) = \mathbb{G}_{2} \in \mu_{\mathcal{Z}} \quad ; \quad \mathbb{G}_{1} \cap \mathbb{G}_{2} = f^{-1}(\mathbb{H}_{1}) \cap f^{-1}(\mathbb{H}_{2}) = f^{-1}(\mathbb{H}_{1} \cap \mathbb{H}_{2}) = f^{-1}(\emptyset) = \emptyset, \\ x_{1} \in \mathbb{G}_{1} \wedge x_{2} \in \mathbb{G}_{2}. \quad \text{Then U is } \mathcal{Z}_{\mu_{-}} T_{2} \text{-space. By similar we prove, if V is } \mathcal{Z}_{\mu_{-}} T_{2} \text{-space, then U is } \mathcal{Z}_{\mu_{-}} T_{2} \text{-space.}$

3- On ideal supra **Z**_open set in ideal supra topological space

I generalized and studied the \mathcal{Z}_{μ} set on the (U, μ, \mathbb{I}) , with proving some theorems and providing examples related. to it . We illustrate this with the following example, which will calculate the \mathcal{Z}_{μ} o set on (U, μ, \mathbb{I}) by denoted $\mathcal{Z}_{\mu}\mathbb{I}$ os.

Remarks 3.1

- 1.The complement of $\mathcal{Z}_{\mathfrak{u}}\mathbb{I}_{-}os$ is ideal supra \mathcal{Z}_{-} closed set $(\mathcal{Z}_{\mathfrak{u}}\mathbb{I}_{-}cs)$.
- 2. The collections of all $(Z_{\mathfrak{u}}\mathbb{I}_{-}os)$ $(Z_{\mathfrak{u}}\mathbb{I}_{-}cs)$ subset of (U, μ, \mathbb{I}) will be denoted by $(\mathcal{Z}O(U, \mu, \mathbb{I}))$, $(\mathcal{Z}C(U, \mu, \mathbb{I}))$.

Example 3.2

Let $\mu = \{\emptyset, U, \{a, b\}, \{a, d\}, \{a, b, d\}\}\$ on $U = \{a, b, c, d\}$; $\mu^c = \{\emptyset, U, \{c, d\}, \{b, c\}, \{c\}\}\}$, with $\mathbb{I} = \{\emptyset, \{b\}\}$. So , $(U, \mu, \mathbb{I}) = \{\emptyset, U, \{b\}, \{a, b\}, \{a, d\}, \{a, b, d\}\}$;

<i>P(U)</i>		$\mathcal{Z}_{\mathfrak{u}}\mathbb{I}-os$
Ø	From def.	Yes
U	From def.	Yes
{a}	∃open set contains a and a∈ {a,b},∋ $\emptyset \neq$ {a,b} \neq U and $\mathbb{S} \cap \overline{\{a,b\}} \rightarrow \mathbb{S} \cap \mathbb{U} \neq \emptyset$	Yes
{b }	∃open set contains b and b ∈ {a,b},∋ Ø ≠ {a,b} ≠ U and $\mathbb{S} \cap \overline{\{a,b\}} \to \mathbb{S} \cap U \neq \emptyset$	Yes
{ c }	$\not\exists$ open set contains c and c∈ U, \ni Ø \neq U = U {since $c \in U = U$	No
{d }	∃open set contains d and $d \in \{a, d\}$, $\ni \emptyset \neq \{a, d\} \neq U$ and $S \cap \overline{\{a, d\}} \rightarrow S \cap U \neq \emptyset$	Yes
{a, b}	$\begin{cases} \exists \text{ open set contains a and a } \in \{a,b\}, \ni \emptyset \neq \{a,b\} \neq U \\ & \text{ and } \mathbb{S} \cap \overline{\{a,b\}} \to \mathbb{S} \cap \mathbb{U} \neq \emptyset \\ \exists \text{ open set contains b and b } \in \{a,b\}, \ni \emptyset \neq \{a,b\} \neq U \\ & \text{ and } \mathbb{S} \cap \overline{\{a,b\}} \to \mathbb{S} \cap \mathbb{U} \neq \emptyset \end{cases}$	Yes
{a, c}	$\begin{cases} \exists \text{ open set contains a and } a \in \{a,b\}, \ni \emptyset \neq \{a,b\} \neq U \\ & \text{ and } \mathbb{S} \cap \overline{\{a,b\}} \to \mathbb{S} \cap U \neq \emptyset \\ \not \exists \text{ open set contains c and } c \in U, \ni \emptyset \neq U = U \\ & \{\text{since } c \in U = U\} \end{cases}$	No
{a, d}	$\begin{cases} \exists \text{ open set contains a and } a \in \{a,b\}, \ni \emptyset \neq \{a,b\} \neq U \\ & \text{ and } \mathbb{S} \cap \overline{\{a,b\}} \to \mathbb{S} \cap \mathbb{U} \neq \emptyset \\ \exists \text{ open set contains d and } d \in \{a,d\}, \ni \emptyset \neq \{a,d\} \neq U \\ & \text{ and } \mathbb{S} \cap \overline{\{a,d\}} \to \mathbb{S} \cap \mathbb{U} \neq \emptyset \end{cases}$	Yes
{ b , c }	$\begin{cases} \exists \text{ open set contains b and b} \in \{a,b\}, \ni \emptyset \neq \{a,b\} \neq U \\ & \text{ and } \mathbb{S} \cap \overline{\{a,b\}} \to \mathbb{S} \cap U \neq \emptyset \\ \not \exists \text{ open set contains c and c} \in U, \ni \emptyset \neq U = U \\ & \{ \text{ since c} \in U = U \} \end{cases}$	No
{b, d}	$\begin{cases} \exists \text{ open set contains } b \text{ and } b \in \{a,b\}, \ni \emptyset \neq \{a,b\} \neq U \\ & \text{and } \mathbb{S} \cap \overline{\{a,b\}} \to \mathbb{S} \cap \mathbb{U} \neq \emptyset \\ \exists \text{ open set contains } d \text{ and } d \in \{a,d\}, \ni \emptyset \neq \{a,d\} \neq U \\ & \text{and } \mathbb{S} \cap \overline{\{a,d\}} \to \mathbb{S} \cap \mathbb{U} \neq \emptyset \end{cases}$	Yes
{c, d}		No
{a, b, c}	$\begin{cases} \exists \text{ open set contains a and } a \in \{a,b\}, \ni \emptyset \neq \{a,b\} \neq U \\ & \text{ and } \mathbb{S} \cap \overline{\{a,b\}} \to \mathbb{S} \cap \mathbb{U} \neq \emptyset \\ \exists \text{ open set contains b and b } \in \{a,b\}, \ni \emptyset \neq \{a,b\} \neq \mathbb{U} \\ & \text{ and } \mathbb{S} \cap \overline{\{a,b\}} \to \mathbb{S} \cap \mathbb{U} \neq \emptyset \\ & \nexists \text{ open set contains c and c } \in \mathbb{U}, \ni \emptyset \neq \mathbb{U} = \mathbb{U} \\ & \{ \text{ since c } \in \mathbb{U} = \mathbb{U} \} \end{cases}$	No
{a, b, d}	$\begin{cases} \exists \text{ open set contains a and } a \in \{a,b\}, \ni \emptyset \neq \{a,b\} \neq U \\ & \text{ and } \mathbb{S} \cap \overline{\{a,b\}} \to \mathbb{S} \cap \mathbb{U} \neq \emptyset \\ \exists \text{ open set contains b and } b \in \{a,b\}, \ni \emptyset \neq \{a,b\} \neq U \\ & \text{ and } \mathbb{S} \cap \overline{\{a,b\}} \to \mathbb{S} \cap \mathbb{U} \neq \emptyset \\ \exists \text{ open set contains d and } d \in \{a,d\}, \ni \emptyset \neq \{a,d\} \neq U \\ & \text{ and } \mathbb{S} \cap \overline{\{a,d\}} \to \mathbb{S} \cap \mathbb{U} \neq \emptyset \end{cases}$	Yes

$$\therefore \mathcal{Z}O(U, \mu, \mathbb{I}) = \{\emptyset, U, \{a\}, \{b\}, \{d\}, \{a, b\}, \{a, d\}, \{b, d\}, \{a, b, d\}\}, \{a, b, d\}\}, \{a, b, d\}\}$$

Remarks 3.3

1.∀ μ _os is μ I_os, but the convers is not true as the example (3.2) ,where {b} ∈ μ I_os , but {b} ∉ μ _os.

2.∀ \mathbb{I}_{os} is $\mu\mathbb{I}_{os}$, but the convers is not true as the example (3.2) ,where $\{a,b\} \in \mu\mathbb{I}_{os}$, but $\{a,d\} \notin \mathbb{I}_{os}$.

Proposition 3.4

Every $\mu \mathbb{I}_{-o}$ ($\mu \mathbb{I}_{-c}$) sets is $\mathcal{Z}_{\mu} \mathbb{I}_{-o}$ ($\mathcal{Z}_{\mu} \mathbb{I}_{-c}$) sets

Proof : Let Z be $\mu \mathbb{I}_o$ sets. Since, $\forall \mu s$ is $\mu \mathbb{I}_o s$ and by using def.(1.1) . Then Z is $\mathcal{Z}_\mu \mathbb{I}_o s$.

But ,the convers is not true as the example (3.2) ,where $\{b,d\} \in \mathcal{Z}_{\mu}\mathbb{I}$ but $\{b,d\} \notin \mu\mathbb{I}_os$.

Remark 3.5

A subset Z of space (U, μ, \mathbb{I}) is $\mathcal{Z}_{\mu}\mathbb{I}$ _clopen if Z are both $(\mathcal{Z}_{\mu}\mathbb{I}_os)$ and $(\mathcal{Z}_{\mu}\mathbb{I}_cs)$,

from the example (3.2), note \emptyset ,U are $\mathcal{Z}_{u}\mathbb{I}_{-}$ clopen sets

Propositions 3.6: $\forall Z_{\mu}$ _os is $Z_{\mu}\mathbb{I}$ _os.

Proof : Let $Z \subseteq (U, \mu)$ is \mathcal{Z}_{μ} _os, by using remarks(3.3(1)) and proposition (3.4), then \mathcal{Z}_{μ} _os is \mathcal{Z}_{μ} \mathbb{I} _os.

Definitions 3.7

1. A subset \mathcal{A} on (U, μ, \mathbb{I}) is ideal supra interior, denoted by $int_{\mathcal{Z}_{\mu}\mathbb{I}}(\mathcal{A})$, defined as the largest $\mu\mathbb{I}_{os}$ contained in \mathcal{A} ; that is, the union of all $\mu\mathbb{I}_{os}$ sets included in \mathcal{A} .

From the example 3.2 with $\mathcal{A} = \{a,b\}$, then $int_{\mathcal{Z}_{i,l}}(\mathcal{A}) = \{a,b\}$

2. A subset \mathcal{A} on (U, μ, \mathbb{I}) is ideal supra closure, denoted by $cl_{Z_{\mu}\mathbb{I}}(\mathcal{A})$, defined as the smallest $\mu\mathbb{I}_cs$ containing \mathcal{A} ; that is, the intersection of all $\mu\mathbb{I}_c$ sets that include \mathcal{A} .

From the example 3.2 with $\mathcal{A} = \{a,b\}$, then $cl_{\mathcal{Z}_{u}\mathbb{I}}(\mathcal{A}) = \{a,b,c\}$

Properties 3.8 : A subset \mathcal{A} of (U, μ, \mathbb{I}) , then

- 1. $int_{\mathcal{Z}_{\shortparallel}\mathbb{I}}(\mathcal{A}) \subseteq \mathcal{A}$
- 2. $\mathcal{A} \in \mu \mathbb{I} \iff int_{Z_{11}\mathbb{I}}(\mathcal{A}) = \mathcal{A}$
- 3. $cl_{Z_{\shortparallel}\mathbb{I}}(\mathcal{A}) \supseteq \mathcal{A}$
- 4. \mathcal{A} is $\mu \mathbb{I}_{os} \Leftrightarrow \mathcal{Z}_{\mu} \mathbb{I}(\mathcal{A}) = \mathcal{A}$
- 5. $x \in \mathcal{Z}_u \mathbb{I}(\mathcal{A}) \iff \forall \mu \mathbb{I}_{-os} S_x \text{ containing } x$, $S_x \cap \mathcal{A} \neq \emptyset$

Proposition 3.9

A subset \mathcal{A} of (U, μ, \mathbb{I}) . Then $int_{\mathcal{I}_{\mu}\mathbb{I}}(\mathcal{A}) = U - cl_{\mathcal{I}_{\mu}\mathbb{I}}(\mathcal{A}^c)$.

Proof: Let $x \in int_{Z_{0}\mathbb{I}}(\mathcal{A})$. Then there is $S \in \mu\mathbb{I}$, $\ni x \in S \subset \mathcal{A}$ and $x \notin U - S$

, i.e., $\mathbf{x} \notin cl_{\mathcal{Z}_{\mu}\mathbb{I}}(U-S)$, since U-S is an $\mu\mathbb{I}_{-}os$. So $\mathbf{x} \notin cl_{\mathcal{Z}_{\mu}\mathbb{I}}(\mathcal{A}^c)$, from definitions (3.7), $cl_{\mathcal{Z}_{\mu}\mathbb{I}}(\mathcal{A}^c) \subset cl_{\mathcal{Z}_{\mu}\mathbb{I}}(U-S)$ and hence $\mathbf{x} \in U-cl_{\mathcal{Z}_{\mu}\mathbb{I}}(\mathcal{A}^c)$.

Conversely ; Suppose that $\mathbf{x} \in U - cl_{Z_{\mathbf{u}}\mathbb{I}}(\mathcal{A}^c)$. So $\mathbf{x} \notin cl_{Z_{\mathbf{u}}\mathbb{I}}(\mathcal{A}^c)$, then there is a

 $\mu \mathbb{I}_{-}o$ set S_x containing x, such that $S_x \cap (\mathcal{A}^c) = \emptyset$. So $S_x \subset \mathcal{A}$. Therefore, $x \in int_{\mathcal{I}_u \mathbb{I}}(\mathcal{A})$. Hence the result.

Now, we generalized the separation axioms through $\mathcal{Z}_{\mu}\mathbb{I}$ open sets in (U, μ, \mathbb{I}) .

Definition 3.10

A space (U, μ, \mathbb{I}) is $\mathcal{Z}_{\mu}\mathbb{I}_{-}T_{0}$ -space iff for all pair of distinct points $x, y \in U, \exists \mathcal{Z}_{\mu}\mathbb{I}_{-}os$ that contains one of the points but not the other.

Examples 3.11

- 1- From the example (2.3), with $\mathbb{I} = \{\emptyset, \{2\}\}$. So , $(U, \mu_{\mathcal{Z}}, \mathbb{I}) = \{\emptyset, U, \{1\}, \{2\}\}$,then $\mathcal{Z}O(U, \mu, \mathbb{I}) = \{\emptyset, U, \{1\}, \{2\}\},$ we get (U, μ, \mathbb{I}) is $\mathcal{Z}_{U}\mathbb{I}_{0}$ -space.
- 2- From the example (2.3), with $\mathbb{I} = \{\emptyset, \{2\}\}$. So, $(U, \mu, \mathbb{I}) = \{\emptyset, U, \{2\}, \{1,2\}\}$, then $\mathcal{Z}O(U, \mu, \mathbb{I}) = \{\emptyset, U, \{1\}, \{2\}, \{1,2\}\}$. So, (U, μ, \mathbb{I}) is not $\mathcal{Z}_{\mu}\mathbb{I}_{-}T_{0}$ -space.

Theorem 3.12

A space (U, μ, \mathbb{I}) is $\mathcal{Z}_{\mu}\mathbb{I}_{-T_0}$ -space iff for every pair of distinct points x, y of U, $\operatorname{cl}_{\mathcal{Z}_{\mu}\mathbb{I}}\{x\} \neq \operatorname{cl}_{\mathcal{Z}_{\mu}\mathbb{I}}\{y\}$.

Proof: By using proposition (2.4) and remarks (3.3), $\forall \mu _os$ is $\mu \mathbb{I}_os$, so the proof.

From the example (3.11), we get $\operatorname{cl}_{Z_{u\mathbb{I}}}(\{1\}) \neq \operatorname{cl}_{Z_{u\mathbb{I}}}(\{2\})$. Hence (U, μ, \mathbb{I}) is $Z_{\mu}\mathbb{I}_{-}T_{0}$ -space.

Definitions 3.13: A space (U, μ, \mathbb{I}) is said to be

1- $\mathcal{Z}_{\mu}\mathbb{I}_{-}T_{1}$ -space iff for any two distinct points x , $y \in U$, $\exists \mathcal{Z}_{\mu}\mathbb{I}_{-}os$ in $U \ni$ one contains x but not y and $\mathcal{Z}_{\mu}\mathbb{I}_{-}os$ in U containing y but not x.

2- $\mathcal{Z}_{\mu}\mathbb{I}_{-T_2}$ -space iff for any two distinct points $x, y \in U, \exists \mathcal{Z}_{\mu}\mathbb{I}_{-OS} \mathbb{G}$ and $\mathbb{H}, \exists x \in \mathbb{G}, y \in \mathbb{H}$, and the intersection $\mathbb{G} \cap \mathbb{H} = \emptyset$.

Examples 3.14

1- From the example (2.6), with $\mathbb{I} = \{\emptyset, \{3\}\}$. So , $(U, \mu, \mathbb{I}) = \{\emptyset, U, \{2\}, \{3\}, \{2,3\}, \{2,4\}\}$,then

 $\mathcal{Z}O(U, \mu, \mathbb{I}) = \{ \emptyset, U, \{2\}, \{3\}, \{2,3\}, \{2,4\}, \{3,4\}\}; \text{ Then } (U, \mu, \mathbb{I}) \text{ is } \mathcal{Z}_{\mu} \mathbb{I}_{-}T_{1} \text{-space.}$

2- From the example (2.11), with $\mathbb{I} = \{\emptyset, \{3\}\}$. So $(U, \mu, \mathbb{I}) = \{U, \emptyset, \{3\}, \{1,2\}, \{2,3\}\}$, then $\mathcal{Z}_{\mu} = \{\emptyset, \{3\}\}$. Then (U, μ, \mathbb{I}) is $\mathcal{Z}_{\mu} = \{\emptyset, \{3\}\}$. Then (U, μ, \mathbb{I}) is $\mathcal{Z}_{\mu} = \{\emptyset, \{3\}\}$.

Theorem 3.15

Every $\mathcal{Z}_{\mu}\mathbb{I}_{-}T_{2}$ -space is $\mathcal{Z}_{\mu}\mathbb{I}_{-}T_{0}$ -space.

Proof: Let (U, μ, \mathbb{I}) be $\mathcal{Z}_{\mu}\mathbb{I}_{-T_2}$ -space, and $x, y \in U, x \neq y$ then, \exists two $\mathcal{Z}_{\mu}\mathbb{I}_{-OS} \mathbb{G}$, $\mathbb{H} \subseteq U, \exists$ $x \in \mathbb{G}$, $y \in \mathbb{H}$, $\mathbb{G} \cap \mathbb{H} = \emptyset$. Since $\mathbb{G} \cap \mathbb{H} = \emptyset$. That is mean $x \in \mathbb{G}$ and $x \notin \mathbb{H}$, $y \notin \mathbb{G}$, $y \in \mathbb{H}$.

Hence (U, μ, \mathbb{I}) is $\mathcal{Z}_{\mu} \mathbb{I}_{-} T_{0}$ -space.

Theorem 3.16

Every $\mathcal{Z}_{u}\mathbb{I}_{T_{i}}$ -space is $\mathcal{Z}_{u}\mathbb{I}_{T_{i-1}}$ -space. On the contrary, it is not true ,where i=0,1,2

Proof : proving $Z_{\parallel}\mathbb{I}_{-}T_{2}$ -space is $Z_{\parallel}\mathbb{I}_{-}T_{1}$ -space.

Let (U, μ, \mathbb{I}) be $\mathcal{Z}_{u}\mathbb{I}_{2}$ -space, and $x, y \in U, x \neq y$ then, $\exists \text{ two } \mathcal{Z}_{u}\mathbb{I}_{2}$ -os

 $\mathbb{G}, \mathbb{H} \subseteq U, \ni x \in \mathbb{G} \text{ and } x \notin \mathbb{H}, y \notin \mathbb{G}, y \in \mathbb{H}, \mathbb{G} \cap \mathbb{H} = \emptyset. \text{ That is mean, } \exists \ \mathcal{Z}_{\mu}\mathbb{I}_{os} \ \mathbb{G} \subseteq U, \ni x \in \mathbb{G} \text{ and } y \notin \mathbb{G}.$ Hence (U, μ, \mathbb{I}) is $\mathcal{Z}_{\mu}\mathbb{I}_{T_1}$ -space..

Example 3.17

From the remark (2.7) with $\mathbb{I} = \{\emptyset, \{1\}\}$, So $(U, \mu, \mathbb{I}) = \{U, \emptyset, \{1\}, \{3\}, \{1,3\}\}$;

 $\mathcal{Z}O(U,\mu,\mathbb{I}) = \{V,\emptyset,\{1\},\{3\},\{1,3\}\}$. Then, (U,μ,\mathbb{I}) is $\mathcal{Z}_{\mu}\mathbb{I}_{-}T_{0}$ -space but not $\mathcal{Z}_{\mu}\mathbb{I}_{-}T_{1}$ -space.

Proposition 3.18

Let (U, μ, \mathbb{I}) be $\mathcal{Z}_{\mu}\mathbb{I}_{-}T_1$ -space iff for each $x \in U$, $\{x\}$ is $\mu\mathbb{I}_{-}cs$.

Proof : Let (U, μ, \mathbb{I}) be $\mu\mathbb{I}_{-}$ topological space, we prove that $\{x\}^c$ is $\mu\mathbb{I}_{-}$ os in U. Let $a \in \{x\}^c$, $a \neq x$ then by (def. (3.13)), $\exists \mathbb{G}_a$ is $\mu\mathbb{I}_{-}$ os in U where \mathbb{G}_a does not contain x. Hence; $a \in \mathbb{G}_a \in \{x\}^c$ and $\{x\}^c = \{\mathbb{G}_a : a \in \{x\}^c\}$. This means $\{x\}^c$ is a union of each $\mu\mathbb{I}_{-}$ o sets thus $\{x\}^c$ is $\mu\mathbb{I}_{-}$ os. Then $\{x\}$ is $\mu\mathbb{I}_{-}$ cs.

Conversely; Let $\{x\}$ is $\mu \mathbb{I}_cs$ in U and let $\{a,b\} \in U$ where $a \neq b$ then $a \in \{b\}^c$, $b \in \{a\}^c$ and $\{b\}^c$, $\{a\}^c$ are $\mu \mathbb{I}_o$ sets in U. Hence (U, μ, \mathbb{I}) is $\mathcal{Z}_u \mathbb{I}_T_1$ -space.

Theorems 3.19

A space (U, μ, \mathbb{I}) be any $\mathcal{Z}_{u}\mathbb{I}_{T_{i}}$ -space, then each $(\mathcal{A}, \mu_{\mathcal{A}}^{*}, \mathbb{I})$ is $\mathcal{Z}_{u}\mathbb{I}_{T_{i}}$ -space, where i = 0,1,2.

Proof; 1- To prove $(\mathcal{A}, \mu_{\mathcal{A}}^*, \mathbb{I})$ is $\mathcal{Z}_{\mu}\mathbb{I}_{-}T_1$ -space

Let $\mathcal{A} \subseteq U$ and $a_1, a_2 \in \mathcal{A}, \ni a_1 \neq a_2, \exists$ two $\mathcal{Z}_{\mu}\mathbb{I}_os \mathbb{G}^*, \mathbb{H}^* \subseteq U \ni a_1 \in \mathbb{G}^*$ and $a_1 \in \mathcal{A}$, then $a_1 \in \mathcal{A} \cap \mathbb{G}^* = \mathbb{G}^{**}$ and $a_2 \in \mathbb{H}^*$ then $a_2 \in \mathcal{A} \cap \mathbb{H}^* = \mathbb{H}^{**}$. Therefore $(\mathcal{A}, \mu_{\mathcal{A}}^*, \mathbb{I})$ is $\mathcal{Z}_{\mu}\mathbb{I}_T_1$ -space

2- To prove $(\mathcal{A}, \mu_{\mathcal{A}}^*, \mathbb{I})$ is $\mathcal{Z}_{\mathfrak{u}} \mathbb{I}_{-} T_2$ -space

Let $a_1, a_2 \in \mathcal{A}$, $\ni a_1 \neq a_2$, since $\mathcal{A} \in \mathcal{U}$, so $a_1, a_2 \in \mathcal{U}$, then \exists two $\mu \mathbb{I}_{-} os \mathbb{G}^*$, $\mathbb{H}^* \subseteq \mathcal{U}$, $\ni a_1 \in \mathbb{G}^*$, $a_2 \in \mathbb{H}^*$ and $\mathbb{G}^* \cap \mathbb{H}^* = \emptyset$. then $a_1 \in \mathcal{A} \cap \mathbb{G}^* \in (\mu_{\mathcal{A}}^*, \mathbb{I})$, $a_2 \in \mathcal{A} \cap \mathbb{H}^* \in (\mu_{\mathcal{A}}^*, \mathbb{I})$, and $(\mathcal{A} \cap \mathbb{G}^*) \cap (\mathcal{A} \cap \mathbb{H}^*) = \emptyset$. Therefore $(\mathcal{A}, \mu_{\mathcal{A}}^*, \mathbb{I})$ is $\mathcal{Z}_{\mathfrak{U}} \mathbb{I}_{-} T_2$ -space.

Remark 3.20

The figure represents the logical relationships some the separation axioms in (U, μ, \mathbb{I}) .

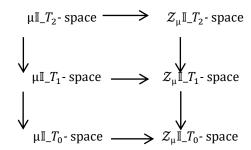


Figure (3-1): The relationships some the separation axioms in (U, μ, \mathbb{I})

The converse of the above remark is need not be true in general, is shown in the

Example 3.21

From the example (2.11,(2)), with $\mathbb{I} = \{\emptyset, \{2\}\}$. So, $(U, \mu, \mathbb{I}) = \{\emptyset, U, \{2\}, \{1,2\}\}$, then

$$\mathcal{Z}O(U, \mu, \mathbb{I}) = \{ \emptyset, U, \{1\}, \{2\}, \{1,2\} \};$$

Then (U, μ, \mathbb{I}) is not $\mathcal{Z}_{\mu}\mathbb{I}_{-}T_{1}$ -space.

Remarks 3.22

1-From the example (3.11,(2)), we get (U, μ, \mathbb{I}) is $\mu \mathbb{I}_{T_0}$ -space but not $\mu \mathbb{I}_{T_1}$ -space.

And also, we get (U, μ, \mathbb{I}) is $\mu \mathbb{I}_{T_0}$ -space but not $\mathcal{Z}_{\mu} \mathbb{I}_{T_0}$ -space.

- 2-From the example (3.11,(1)), we get (U, μ, \mathbb{I}) is $\mathcal{Z}_{\mu}\mathbb{I}_{_T_0}$ -space but not $\mathcal{Z}_{\mu}\mathbb{I}_{_T_1}$ -space.
- 3- From the remark (2.12), with \mathbb{I} we get is $\mathbb{Z}_{\parallel}\mathbb{I}_{-}T_{1}(\mu\mathbb{I}_{-}T_{2})$ -space but not $\mathbb{Z}_{\parallel}\mathbb{I}_{-}T_{2}(\mathbb{Z}_{\parallel}\mathbb{I}_{-}T_{2})$ -space.
- 4-From the example (3.21), we get (U, μ, \mathbb{I}) is $\mu \mathbb{I}_{-}T_{1}(\mu \mathbb{I}_{-}T_{2})$ -space but not $\mathcal{Z}_{\mu}\mathbb{I}_{-}T_{1}(\mathcal{Z}_{\mu}\mathbb{I}_{-}T_{2})$ -space.
- 5- The figure represents the relationships between some the separation axioms in (U, μ, \mathbb{I}) But we note that the converse is not necessarily true.

$$\begin{split} \mathcal{Z}_{\mu}\mathbb{I}_T_2\text{-space} \leftarrow & \quad \mathcal{Z}_{\mu}_T_2\text{-space} \leftarrow & \quad \mu_T_2\text{-space} \\ & \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\ \\ \mathcal{Z}_{\mu}\mathbb{I}_T_1\text{-space} \leftarrow & \quad \mathcal{Z}_{\mu}\mathbb{I}_T_1\text{-space} \leftarrow & \quad \mu_T_1\text{-space} \\ & \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\ \\ \mathcal{Z}_{\mu}\mathbb{I}_T_0\text{-space} \leftarrow & \quad \mathcal{Z}_{\mu}_T_0\text{-space} \leftarrow & \quad \mu_T_0\text{-space} \end{split}$$

Figure (3-2): The relationships some the separation axioms in (U, μ, \mathbb{I})

Conclusion: In our work we have provided new concepts supra \mathcal{Z} on the ideal supra topological space and to prove some of its properties, as well as to generalize the separation axioms on the space under consideration.

References

- [1] A. A. Abdulfatah and H. J. Ali, "Some results on supra semi preopen sets," to be published in AIP Conf. Proc., (2024).
- [2] A. S. Mashhour, "On supra topological spaces," Indian J. Pure Appl. Math., vol. 14, (1983), pp. 502-510.
- [3] D. Jankovic and T. R. Hamlett, "New topologies from old via ideals," Amer. Math. Monthly, vol. 97, no. 4, (1990), pp. 295-310.
- [4] K. Kuratowski, Topology, vol. 1. New York, NY, USA: Academic Press, 1966.
- [5] N. A. Hameed and T. H. Jassim, "ζ-Compactness in ζ-Topological spaces," M.Sc. thesis, Coll. Educ. for Women, Tikrit Univ., (2023).
- [6] O. R. Sayed and T. Noiri, "On supra-b-open sets and supra b-continuity on topological spaces," Eur. J. Pure Appl. Math., vol. 3, no. 2, (2010), pp. 295–302.
- [7] R. Vaidyanathaswamy, Set topology. Boston, MA, USA: Courier Corporation, (1960).
- [8] S. A. Tamer and T. H. Jasim, "ζ-Open Sets and ζ-Continuity," Tikrit J. Pure Sci., vol. 28, no. 3,(2023), pp. 96–100.
- [9] S. Modak and S. Mistry, "Ideal on supra topological space," Int. J. Math. Anal., vol. 6, no. 1, (2012), pp. 1-10.
- [10] S. S. Faiad and R. B. Yasseen, "Supra topological spaces via supra Z-open," in AIP Conf. Proc. (2nd ICSR-2024), Tikrit Univ., accepted for publication, 2024.
- [11] T. H. Jassim, R. B. Yasseen, and N. E. Arif, "On some separation axioms of supra topological spaces," Tikrit J. Pure Sci., vol. 13, no. 2, (2008), pp. 59-62...
- [12] T. M. Al-Shami, "Some results related to supra topological spaces," J. Adv. Stud. Topol., vol. 7, no. 4, (2016), pp. 283-294.
- [13] T. R. Hamlett, "Ideals in topological spaces and the set operator ψ," Boll. Un. Mat. Ital., vol. 7, (1990), pp. 863–874.