Page 52- 58 On Jordan*- Centralizers On Gamma Rings With Involution

Rajaa C .Shaheen Department of Mathematics, College of Education, University of Al-Qadisiya, Al-Qadisiya, Iraq.

Abstract

Let M be a 2-torsion free Γ -ring with involution satisfies the condition $x \alpha y \beta z = x \beta y \alpha z$ for all x,y,z \in M and α , $\beta \in \Gamma$ an additive mapping *: M \rightarrow Mis called Involution if and only if $(\alpha \alpha b)^* = b^* \alpha a^*$ and $(a^*)^* = a$. In section one of this paper ,we prove if M be a completely prime Γ -ring and T:M \rightarrow M an additive mapping such that $T(\alpha \alpha a) = T(a) \alpha a^*$ (resp., $T(\alpha \alpha a) = a^* \alpha T(a)$)holds for all $a \in M, \alpha \in \Gamma$. Then T is an anti- left *centralizer or M is commutative (res.,an anti- right* centralizer or M is commutative) and so every Jordan* centralizer on completely prime Γ -ring M is an anti- *centralizer (resp., every Jordan* right centralizer) on Γ -ring has a commutator right non-zero divisor(resp., on Γ -ring has a commutator left non-zero divisor) is an anti- left *centralizer on Γ -ring has a commutator non –zero divisor is an anti- right * centralizer on Γ -ring has a commutator non –zero divisor is an anti-* centralizer on Γ -ring has a commutator non –zero divisor is an anti-* centralizer on Γ -ring has a commutator non –zero divisor is an anti-* centralizer on Γ -ring has a commutator non –zero divisor is an anti-* centralizer on Γ -ring has a commutator non –zero divisor is an anti-* centralizer on Γ -ring has a commutator non –zero divisor is an anti-* centralizer on Γ -ring has a commutator non –zero divisor is an anti-* centralizer on Γ -ring has a commutator non –zero divisor is an anti-* centralizer on Γ -ring has a commutator non –zero divisor is an anti-* centralizer on Γ -ring has a commutator non –zero divisor is an anti-* centralizer on Γ -ring has a commutator non –zero divisor is an anti-* centralizer on Γ -ring has a commutator non –zero divisor is an anti-* centralizer on Γ -ring has a commutator non –zero divisor is an anti-* centralizer on Γ -ring has a commutator non –zero divisor is an anti-* centralizer on Γ -ring has a commutator non –zero divisor is an anti-* centralizer on Γ -ring has a commutator non –zero divisor is an anti

Key wards : Γ -ring, involution, prime Γ -ring, semi-prime Γ -ring, left centralizer, Left* centralizer, Right centralizer, Right* centralizer, centralizer, Jordan *centralizer.

1-Introduction

Throughout this paper, M will represent Γ -ring with center Z. In [8] B.Zalar proved that anyJordan left (resp.,right)centralizer on a 2-torsion free semiprime ring is a left (resp.,right)Centralizer . In [3] authors proved that anyJordan left (resp.,right) σ - centralizer on a 2-torsion free R has a commutator right (resp., left) non- zero divisor is a left (resp.,right) σ -Centralizer . In [7] Vukman proved that if R is2-torsion free semi-prime ring and T:R \rightarrow R be an additive mapping such that $2T(x^2)=T(x)x+xT(x)$ holds for all $x,y \in R$. Then T is left and right centralizer.In [6] Rajaa C.Shaheen defined Jordan centralizer on Γ -ring and showed that the existence of a non-zero Jordan centralizer Ton a 2-torsion free completely prime Γ -ring M which satisfies the condition $x \alpha y \beta z = x \beta y \alpha z$ for all $x,y,z \in M$ and $\alpha, \beta \in \Gamma$ implies either T is centralizer or M is commutative Γ -ring.We should mentioned the *reader that the concept of* Γ *-ring was* introduced by Nobusawa[5] and generalized by Barnes[1],as follows

Let M and Γ be additive abelian groups, M is called a Γ -ring if for any $x,y,z \in M$ and $\alpha, \beta \in \Gamma$, the following conditions are satisfied (1) $x \alpha y \in M$ (2) $(x+y) \alpha z=x \alpha z+y \alpha z$ $x(\alpha + \beta)z=x \alpha z+x \beta z$ $x \alpha (y+z)=x \alpha y+x \alpha z$ (3) $(x \alpha y) \beta z=x \alpha (y \beta z)$ means properties of Γ ring users obtained by means research such as [2]

many properties of Γ -ring were obtained by many research such as [2]

Let A,B be subsets of a Γ -ringM and Λ a subset of Γ we denote A Λ B the subset of M consisting of all finite sum of the form $\sum a_i \lambda_i b_i$ where $a_i \in A, b_i \in B$ and $\lambda_i \in \Lambda$. Aright ideal(resp.,left ideal) of a Γ -ring M is an additive subgroup I of M such that $I \Gamma M \subset I$ (resp., $M \Gamma I \subset I$).If I is a right and left ideal inM,then we say that I is an ideal .M is called a 2-torsion free if 2x=0 implies x=0 for all $x \in M.A \Gamma$ -ringM is called prime if a $\Gamma M \Gamma b=0$ implies a=0 or b=0 and M is called completely prime if a $\Gamma b=0$ implies a=0 or b=0(a, b $\in M$),Since a $\Gamma b \Gamma a \Gamma b \subset a \Gamma M \Gamma b$,then every completely prime Γ -ring is prime.A Γ -ring M is called semi-prime if a $\Gamma M \Gamma a=0$ implies a=0 and M is called completely semi-prime if a $\Gamma M \Gamma a=0$ implies a=0 and M is called completely semi-prime if a $\Gamma M \Gamma a=0$ implies a=0 and M is called completely semi-prime if a $\Gamma M \Gamma a=0$ implies a=0 and M is called completely semi-prime if a $\Gamma M \Gamma a=0$ implies a=0 and M is called completely semi-prime if a $\Gamma M \Gamma a=0$ implies a=0 and M is called completely semi-prime if a $\Gamma M \Gamma a=0$ implies a=0 and M is called completely semi-prime if a $\Gamma a=0$ implies a=0(a \in M)

Let R be a ring, A left(right) centralizer of R is an additive mapping T:R \rightarrow R which satisfies T(xy)=T(x)y(T(xy)=xT(y)) for all x, y \in R.A Jordan centralizer be an additive mapping T which satisfies T(x \circ y)=T(x) \circ y=x \circ T(y).

A Centralizer of R is an additive which is both left and right centralizer. An easy computation shows that every centralizer is also a Jordan centralizer. Many Papers work about the problem every Jordan centralizer be centralizer such as in[8]. In [6] Rajaa work this problem on some kind of Γ -ring. In this paper we define Jordan *centralizer on Γ -ring with involution* and study this concept on some kind of Γ -ring with involution.

Now ,we shall give the following definition which are basic in this paper.

Definition1.2

Let M be a $\Gamma\text{-ring}$ with involution* and let $T{:}M \to M$ be an additive map ,T is called

Left* centralizer of M,if for any $a, b \in M$ and $\alpha \in \Gamma$, the following condition satisfy $T(a \alpha b)=T(a) \alpha b^*$,

Right* centralizer of M,if for any a,b \in M and $\alpha \in \Gamma$, the following condition satisfy

 $T(a \alpha b) = a^* \alpha T(b),$

Jordan left* centralizer if for all $a \in M$ and $\alpha \in \Gamma$, the following condition satisfy

 $T(a \alpha a) = T(a) \alpha a^*$

Jordan Right* centralizer_if for all $a \in M$ and $\alpha \in \Gamma$, the following condition satisfy

 $T(a \alpha a) = a^* \alpha T(a)$

Jordan* centralizer of M, if for any $a, b \in M$ and $\alpha \in \Gamma$, the following condition satisfy $T(a \alpha b+b \alpha a)=T(a) \alpha b^*+b^* \alpha T(a)=a^* \alpha T(b)+T(b) \alpha a^*$.

Now we shall prove the following Lemmas which are necessarily to prove our main result in this paper.

Lemma 1.3

Let M be a 2-torsion free Γ -ring with involution* and let T:M \rightarrow M be an additive mapping which satisfies T(a α a)=T(a) α a*,(resp., T(a α a)= a* α T(a)) for all a \in M and $\alpha \in \Gamma$, then the following statement holds for all a,b,c \in M and α , $\beta \in \Gamma$,

- (i) $T(a \alpha b+b \alpha a)=T(a) \alpha b^*+T(b) \alpha a^*$ (resp., $T(a \alpha b+b \alpha a)=a^* \alpha T(b)+b^* \alpha T(a)$)
- (ii) Especially if M is 2-torsion free and $a \alpha b \beta c = a \beta b \alpha c$ for all $a,b,c \in M$ and $\alpha, \beta \in \Gamma$ then

$$T(a \alpha b \beta a) = T(a) \alpha b^* \beta a^* (resp., T(a \alpha b \beta a) = a^* \alpha b^* \beta T(a))$$

(iii) $T(a \alpha b \beta c + c \alpha b \beta a) = T(a) \alpha b^* \beta c^* + T(c) \alpha b^* \beta a^*.$ (resp., $T(a \alpha b \beta c + c \alpha b \beta a) = a^* \alpha b^* \beta T(c) + c^* \alpha b^* \beta T(a)$

Proof

(i) Since $T(a \alpha a) = T(a) \alpha a^*$ for all $a \in M$ and $\alpha \in \Gamma$,.....(1) Replace a by a+b in (1), we get $T(a \alpha b+b \alpha a)=T(a) \alpha b^{*}+T(b) \alpha a^{*}....(2)$ (ii) by replacing b by a β b+b β a, $\beta \in \Gamma$ W=T(a α (a β b+b β a)+(a β b+b β a) α a) =T(a) α (a β b+b β a)*+T(a β b+b β a) α a* = T(a) α (a β b)*+T(a) α (b β a)*+ (T(a) β b*+T(b) β a*) α a* Since * is involution, then W = T(a) α (b* β a*)+T(a) α (a* β b*)+T(a) β b* α a*+T(b) β a* α a* Since $a \alpha b \beta c = a \beta b \alpha c$, then W=T(a) α (a* β b*)+2T(a) α (b* β a*)+T(b) β a* α a* On the other hand W = T(a α (a β b+b β a)+(a β b+b β a) α a) =T(a α (a β b)+a α (b β a)+(a β b) α a+(b β a) α a) $=T(a \alpha a \beta b+b \beta a \alpha a)+2T(a \alpha b \beta a)$ =T(a) α a* β b*+T(b) β a* α a*+2T(a α b β a) By comparing these two expression of W, we get

 $2T(a \alpha b \beta a) = 2T(a) \alpha b^* \beta a^*$ Since M is 2-torsion free ,then $T(a \alpha b \beta a) = T(a) \alpha b^* \beta a^*....(3)$ (iii)In (3) replace a by a+c ,to get $T(a \alpha b \beta c+c \alpha b \beta a) = T(a) \alpha b^* \beta c^* + T(c) \alpha b^* \beta a^*....(4)$

Theorem 1.4

Let M be a 2-torsion free completely prime Γ -ring which satisfy the condition $x \alpha y \beta z = x \beta y \alpha z$ for all $x, y, z \in M$, α , $\beta \in \Gamma$, and let $T: M \to M$ be an additive mapping which satisfies $T(a \alpha a) = T(a) \alpha a^*$, for all $a \in M$ and $\alpha \in \Gamma$, then $T(a \alpha b) = T(b) \alpha a^*$, for all $a, b \in M$ and $\alpha \in \Gamma$ or M is commutative Γ -ring.

Proof

By [Lemma 1.3,(iii)], we have $T(a \alpha b \beta c + c \alpha b \beta a) = T(a) \alpha b^* \beta c^* + T(c) \alpha b^* \beta a^*$ Replace c by $b\alpha$ a W=T(a α b β (b α a)+(b α a) α b β a) =T(a) $\alpha b^* \beta a^* \alpha b^* + T(b \alpha a) \alpha b^* \beta a^*$ On the other hand $W = T((a \alpha b) \beta (b \alpha a) + (b \alpha a) \alpha (b \beta a))$ = T(a) α b* β b* α a*+T(b α a) β a* α b* By comparing these two expression of W, we get $T(b \alpha a) \beta (a \alpha b - b \alpha a)^* + T(a) \alpha b^* \beta (b \alpha a - a \alpha b)^* = 0$ T(b α a) β (a α b-b α a)* - T(a) α b* β (a α b-b α a)*=0 $(T(b \alpha a) - T(a) \alpha b^*) \beta (a \alpha b - b \alpha a)^* = 0....(5)$ Since M is completely prime Γ -ring ,then either T(b α a)- T(a) α b*=0 or (a α b-b α a)=0 if T(b α a)- T(a) α b*=0then T(b α a)= T(a) α b* so T is an anti-left *centralizers. and if $a \alpha b - b \alpha a = 0$ for all $a, b \in M$ and $\alpha \in \Gamma$, then M is commutative Γ -ring

Theorem 1.5

Let M be a 2-torsion free completely prime Γ -ring which satisfy the condition $x \alpha y \beta z = x \beta y \alpha z$ for all $x, y, z \in M$, α , $\beta \in \Gamma$, and and let T:M \rightarrow M be an additive mapping which satisfies $T(a \alpha a) = a^* \alpha T(a)$ for all $a \in M$ and $\alpha \in \Gamma$, then $T(a \alpha b) = b^* \alpha T(a)$ for all $a, b \in M$ and $\alpha \in \Gamma$ or M is commutative Γ -ring.

Proof

From[Lemma 1.3,(iii)], we have for all $a, b, c \in M$ and α , $\beta \in \Gamma$,

Journal of Al-Qadisiyah for Computer Science and Mathematics Vol. 3 No.1 Year 2011

T(a α b β c+c α b β a)=a* α b * β T(c)+c* α b* β T(a).....(6) In (6) replace c by a α b, then W= T(a α b β(a α b) + (a α b) α b β a) =a* α b* β T(a α b)+ b* α a* β b* α T(a) on the other hand W = T(a α b β(a α b) + (a α b β (b α a))) =b* α a* β T(a α b)+a* α b* β b* α T(a) by comparing these two expression of W, we get (a α b-b α a)* β (T(a α b)-b* α T(a))=0.....(7) since M is completely prime Γ-ring,then either (T(b α a)-b* α T(a))=0 ⇒ T(a α b)=b* α T(a) and so T is an anti- right *centralizers or a α b-b α a=0 ⇒ a α b=b α a ⇒M is commutative Γ-ring <u>Corollary 1.6</u>:- Every Jordan* centralizer of 2-torsion free completely prime Γring M which satisfy the condition x α y β z=x β y α z for all x,y,z ∈ M, α, β ∈ Γ, is an anti-*centralizer on M or M is commutative.

2-Jordan* Centralizers On Some Gamma Ring

Theorem 2.1

Let M be a 2-torsion free Γ -ring which satisfy the condition $x \alpha y \beta z = x \beta y \alpha z$ for all $x, y, z \in M$, α , $\beta \in \Gamma$ and has a commutator right nonzero divisor and let T:M \rightarrow M be an additive mapping which satisfies $T(a \alpha a) = T(a) \alpha a^*$ for all $a \in M$ and $\alpha \in \Gamma$, then $T(a \alpha b) = T(b) \alpha a^*$ for all $a, b \in M$ and $\alpha \in \Gamma$.

Proof

from (5), we have $(T(b \alpha a) - T(a) \alpha b^*) \beta (a \alpha b - b \alpha a)^* = 0$ if we suppose that $\delta(b,a) = T(b\alpha a) - T(a)\alpha b^*$ and $[a,b]^* = (a\alpha b - b\alpha a)^*$ then $\delta(b,a) \beta$ [a,b]*=0 for all a,b \in M and $\alpha, \beta \in \Gamma$ (9) Since M has a commutator right non-zero divisor , then $\exists x, y \in M, \alpha \in \Gamma$ such that if for every $c \in M$, $\beta \in \Gamma$ $c \beta [x,y] = 0 \Rightarrow c = 0$ since * is involution ,we have $\delta(\mathbf{y},\mathbf{x}) = \beta$ [x,y]=0and SO $\delta(x,y)=0....(10)$ replace a by a+x $\delta(b,a+x) \beta$ [a+x,b]*=0 and so by () and () $\delta(b,x) \beta [a,b]^* + \delta(b,a) \beta [x,b]^* = 0$(11) Now replace b by b+y

Journal of Al-Qadisiyah for Computer Science and Mathematics Vol. 3 No.1 Year 2011

δ(b+y,x) β [a,b+y]*+ δ(b+y,a) β [x,b+y]*=0and so by (10) and (11),we get δ(b,x) β [a,b]*+ δ(y,x) β [a,b]*+ δ(b,x) β [a,y]*+ δ(y,x) β [a,y]*+δ(b,a) β [x,b]*+ δ(y,a) β [x,b]*+ δ(b,a) β [x,y]*+ δ(y,a) β [x,y]*=0by (11),we get δ(a,b) β [x,y]*- δ(x,y) β [a,y]*=0then δ(a,b) β [x,y]*=0,and so δ(a,b)=0 for all a,b∈M and α ∈ ΓT(a α b)= T(b) α a* ⇒ T Is anti- left *centralizer of M.

Theorem 2.2

Let M be a 2-torsion free Γ -ring with involution which satisfy the condition $x \alpha y \beta z = x \beta y \alpha z$ for all $x, y, z \in M$, α , $\beta \in \Gamma$ and has a commutator left non-zero divisor and let T:M \rightarrow M be an additive mapping which satisfies $T(a \alpha a) = a^* \alpha T(a)$ for all $a \in M$ and $\alpha \in \Gamma$, then $T(a \alpha b) = a^* \alpha T(b)$ for all $a, b \in M$ and $\alpha \in \Gamma$.

Proof

From[Lemma 1.3,(iii)], we have T(a α b β c+c α b β a)=a* α b* β T(c)+c* α b* β T(a)....(12) In (12) replace c by b α a ,then W=T(a α b β (b α a) +(b α a) α b β a) $=a^* \alpha b^* \beta T(b \alpha a) + b^* \alpha a^* \beta b^* \alpha T(a)$ on the other hand W=T(a α (b β b) α a +(b α a) α (b β a)) $=a^* \alpha b^* \beta b^* \alpha T(a) + b^* \alpha a^* \beta T(b \alpha a)$ by comparing these two expression of W, we get $a^* \alpha b^* \beta (T(b \alpha a) - b^* \alpha T(a)) - b^* \alpha a^* \beta (T(b \alpha a) - b^* \alpha T(a)) = 0$ then if we suppose $B(b,a) = (T(b \alpha a) - b^* \alpha T(a))$ *β B(b,a)=[a,b] * $\beta B(a,b)=0$ for all [a,b] a,b∈M ,α, $\beta \in \Gamma$ (13) Since M has a commutator left non-zero divisor then $\exists x, y \in M$, $\alpha \in \Gamma$ such that if for every $c \in M$, $\beta \in \Gamma$, [x,y] $\beta c=0 \Rightarrow c=0$ then by (13), we have $[\mathbf{x},\mathbf{y}] \ \beta \ \mathbf{B}(\mathbf{x},\mathbf{y}) = 0 \Longrightarrow \mathbf{B}(\mathbf{x},\mathbf{y}) = 0....(14)$ in (13) replace a by a+x $[a+x,b] * \beta B(a+x,b)=0$ then by (13) $[x,y] * \beta B(a,b)+[a,b] * \beta B(x,b)=0....(15)$ Now replace b by b+y

 $[x,b+y] * \beta B(a,b+y)+[a,b+y] * \beta B(x,b+y)=0$ then by using (14) and (15),we get $[x,y] * \beta B(a,b)=0$ and since [x,y] is a commutator left non-zero divisor then $B(a,b)=0 \Rightarrow T(a \alpha b)=a* \alpha T(b)$ which is mean that T is an anti- right *centralizer

Corrolary2.3

Let M be a 2-torsion free Γ -ring with involution which satisfy the condition $x \alpha y \beta z = x \beta y \alpha z$ for all $x, y, z \in M$, α , $\beta \in \Gamma$, has a commutator non-zero divisor and let T:M \rightarrow M be a Jordan *centralizer then T is *centralizer

Acknowledgment

the authors grateful to the referee for several suggestions that helped to improved the final version of this paper .

References

[1]W.E.Barnes"On the Γ-ring of Nabusawa", PacificJ.Math., 18(1966), 411-422.

[2]Y.Ceven,"Jordan left derivations on completely prime Gamma rings", Fenbilimleri Dergisi(2002) cilt 23 say 12.

[3]W.Cortes and C.Haetinger"On Lie ideals and left Jordan σ - centralizers of 2-torsion free rings", Math.J.Okayama Univ.51(2009), 111-119.

[4]I.N.Herstein"Topics in ring theory "University of Chicago press,1969.

[5]N. Nabusawa"On a generalization of the ring theory" ,Osaka J.Math .,1(1964).

[6] Rajaa C.Shaheen"On Centralizers on Some Gamma Ring"Journal Al-Qadisiya for pure science", 12, 2, (2007) 219-229

[7] J.Vukam"An identity related to centralizers in semi-prime rings", Comment .Math.Univ.Carolinae,40,3(1999)447-456.

[8]B.Zalar"On centralizers of semi-prime rings" Comment.Math.Univ.Carolinae 32(1991)609-614

الخلاصة

قدمنا في هذا البحث دراسة حول تطبيق جوردان المركزي على بعض الحلقات من نوع كاما