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1. Introduction

Geometric function theory is one of the most striking areas in mathematical analysis that has raised interest of
many researchers since the beginning of 20th century. Teodor et al. [24], this branch of complex analysis is highly
fascinating because of its applications in other fields, like model mathematical physics, fluid dynamics, fractional
calculus, linear and nonlinear integreable system theory and theory of partial differential equations. Geometric
Function Theory deals with the theory of univalent and k-valent functions and it is associated with geometry
properties of analytic functions. The theory of k-valent functions occupies a central position in complex analysis,
supported by its wide applications in mathematical modeling, engineering, and physical sciences (see
[1,10,12,13,23]). Recent developments emphasize the importance of studying special classes of k-valent analytic
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functions that exhibit richer geometric and structural properties when constructed through the Hadamard product
(convolution). These constructions provide insight into important geometric features such as coefficient.

Consider the family A, of functions that are k-valent and analytic in the open unit disk U = {z:z € Cand |z| <
1}, normalized in a standard form:

f(z) =2z"+ Z a,z", {z€UkeN={123,..}}. (1.1)

n=k+1
In this paper, we focus on a specific subclass 3 consisting of functions f € A, which are analytic and k-valent in
the open unit disk U of the form:

[oe]

f(2) =z" - Z a,z", a, =0,k €N. (1.2)

n=k+1

Recent advancements in the theory of k-valent functions further highlight their critical role in complex analysis an
its applications [4,13,19,20,23,27,28,29].
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Figure 1: 2D Plot Representing complex function behaviors for k-valent classes: % , % k=3

And can be expressed using a particular representation involving Hadamard product (or convolution) of two
functions f is defined by (1.2) and g

[oe]

9() = 7% — Z byz", by >0,k€EN, (13)
n=k+1
is provided by
F@=2= ) abz"=(g+N@. (14)
n=k+1

For f(z) € 3y, denote by S;, («) also K, (a) the classes of k-valently starlike also convex functions of order « also
0 < a < k,inthat order (see [5,6,14,15,16]), characterized by:

zf'(2)
Re{ [0 } > a, (1.5)
and
2" (2)
Re{1'+-};zgy}'> «a. (]d6)

It is derived from equations (1.5) and (1.6) that
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zf'(2)
k

f(@) € K (a) & € Si(a). 1.7

Refer to Goodman [9] for further insight.

Also, several authors defined C, (8, @) and C; (B, @) as the categories of k-valently close-to-convex functions also
encompass quasi-convex functions of order S also type « satisfying, in that order (see [2,3,11]) withk =1,

Re{zf,(z)} >B,  (9(2) €Si(@),B=0,a<k) (1.8)
g(Z) ’ k ’ = Y )
Re L(Z))’ > B (g(2) EKp(a),B =0,a < k). (1.9)
g,(Z) ) k ) = Y
It follows from (1.8) and (1.9) that
. zf'(z)
f@) e (B a) & € Ci (B, ). (1.10)

This research is structured to Initially, delineate the new subclass of k-valent functions precisely, followed by a
detailed examination of their coefficient inequality, symmetric distortion and growth properties, closure theorems,
and radii of starlikeness and convexity. Further sections are dedicated to discussing applications in fluid dynamics,
signal processing, image warping, and cryptographic systems, illustrating the broad utility of the newly defined
function class.

2. Coefficient Inequality

Definition (2.1): A function f € T, is said to belong to the subclass M'S, (a, 4, B,v) if and only if

aZZ_k(f * g)u(z) _ (ﬂ. _ ,B)Zl_k(f * g)’(z)
A Fe gy @)+ 72 Fr @ —kA—p)| ¥ 2.1)

wherez€eU,0<a<1,0<A<pB<1ly=0andkeN={123,..}.

The subsequent theorem provides the requisite and adequate condition for the function f(z) € M'S, (a, 4, 5, 7).
Theorem (2.1): Let f € 3. Then f € M'S;(a, 4, 5, y) if and only if

Y [ +a-p+al—m)+ylab, <y +k@i-D+1D,  @2)

n=k+1
wherezeU,0<a<1,0<A<pB<1ly=0alsokeN={123,..}.
Proof: Assume that the inequality (2.2) is valid. Consider |z| = 1 then, we possess

laz?7*(f x )" (2) — A = Bzt *(f * ) (D] — |21 (f * 9)'(2) +yz7*(f * g)(2) — k(A — B)|

= lak(k—1) = (1 = Bk — Z a,by[A— B — a(n — Dlnz"*| - [k - Z a,b,(n+ Pz +y — k(A — B)
n=k+1 n=k+1

< Z [n(1+2- B8 +a(l—n) +ylanb, — (k +7) + ak(k — 1) < 0,

n=k+1
by hypothesis using the principle of maximum modulus, we get f € MS,(a, 4, B8, y).

Conversely, assume that f € M'S, (a, A, 8, 7). Then the inequality must hold for all n, and we can write
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az’*(f x9)"(2) — A= P)z'*(f x 9)'(2)

ak(k = 1) = (= Bk = Xpsr anbuld = B — a(n = Dlnz"*

27k (fxg) (2) +yz TR (f * g)(2) — k(A — )

<1,

k= i1 @b+ y)zv % +y —k(A—pB)

because Re(z) < |z| For any z, it follows that

e | —D) ~ Q= Pk~ Fiis1 Gnbald ~ B~ a(n — Dlnz"*
) k=Yg @by +y)z" " +y — k(A - p)

Permitting z — 17, in terms of real numbers, therefore allowing us to express (2.3) as
Z [n(l +1-B+a(l —n)) + y]anbn <y+k(a(1-k)+1).
n=k+1
Ultimately, sharpness ensues if we proceed

3 y+k(a(1—k)+1)
[n(1+l—[f +a(l —n)) +y]bnz

f(2) = z* n o on>k+1

Corollary (2.1): If f characterized by (1.2) is classified within the category M'S, (a, 4, B,y). Subsequently

L y+k@-R+D
n = [n(1+2-B+a(l—n))+v|b,’

The parity in (2.4) is achieved regarding the function f specified in (2.4).
Leta = =1 =1andy = 0intheorem (2.1), we get the following corollary:
Corollary (2.2): If f defined by (1.2) is in the subclass M'S; (1,1,1,0), then

p(2—k)

<— > .
an_[n(Z—n)]bn' n=>k+1,keN

Corollary (2.2)
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Figure 2 : Plot 3D Corollary (2.2)
Leta = =1 =0andy = 1intheorem (2.1), we get the following corollary:

Corollary (2.3): If f defined by (1.2) is in the subclass M'S; (0,0,0,1), then
1+k

< .
=90 b,

n=>k+1keN.

n>k+1,keN.

} <1. (23)

(2.4)

(2.5)
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Corollary (2.3)
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Figure 3 : Plot 3D Corollary (2.3)

3. Symmetric Distortion and Growth Properties
We obtain symmetric distortion and growth theorems for the subclass M'S, (@, 4, 8, 7).
Theorem (3.1): If f € MS,(a, A, B,7), then for |z| = r < 1 the following inequalities hold:

k(a(1—-k)+1
- [)E1++ /ga—(ﬁ) +3/]-|l_’k-31 rt i@l <t

y+k(a(1—k)+1)
[A+2=P8)+¥]brsa

rk+l 3.1

and

_(k+1)(y+k(a(1—k)+1)) k+D@y+k(ac1-k)+1))
[T+ 2=F) +V]biss [A+2=PB) +V]bss

Proof: Since f € M'S, (a, A, B,7), then by theorem (2.1), the coefficients satisfy

krk-1

rk <|f'@)| < krk + rk. (3.2)

[oe]

Za <y+k(a(1—k)+1)
R T R

n=1
Hence
- y+k(a(l—k)+1)
| Z|S|Z|k+2a z|th < rk 4kt
2 2, Onwele] [+ A= B) + 1lbirs
and

[oe]

2 121 = ) el =7k =7

n=1

ey Y HE@1 -0 +1)
[(A+2=PB) +y]biss

Thus proof (3.1). Now we need to proof (3.2)

[oe]
@IS 121+ ) a2l
n=1

If' @) < klz|*" + Z Anir(n+ k) 2|1
n=1

o, k+ Dy +k(al-k)+1)
< krt [+ 2= P + 7lhens

k

and
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@I 212 =)ty
n=1
If' @] = klz|** - Z @y (n+ k) 2|7
n=1

(k+ D@y +k(e(1—k)+ 1))
[(A+2=8) +y]bgss

k

> krkt —

3D Plot of |f(z)| (Growth), |f'(z)| (Distortion) with Bounds
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Figure 4 : 3D Plot of Symmetric Distortion and Growth Bounds

4. Closure Property
In the subsequent theorems, we demonstrate the closure property for the class M'S, (a, A, B,7).

Theorem (4.1): Let the sequence of functions f; € M'S(a, A, B,y) forall j = 1,2,--, ¢ defined by:

[oe]

fj(Z):zk_ Z an; 2", (an'jZO,nEN,jzljzj...[)_

n=k+1

Then the function defined by:
h(z) =zF - Z e, 2", (e, =0,n€N)

is also a constituent of the class M'S, (a, A, 8, y), where
?
1
én =zZan_]-, n=123,:-.

j=1

Proof: Because each f; € M'S(a, 4, B,v), then by theorem (2.1) that

Z [n(l +1-B+a(l —n)) +y]an,jbn <y+k(a(1—-k)+1),

n=k+1

forevery j = 1,2,--- . Hence

oo 0 k4
Z [n(1+/1—,8+0((1—n))+y]enbn= Z [n(1+/1—,8+a(1—n))+y]bn %Za"'j

n=k+1 n=k+1 j=1
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=%i< i [n(1+2-B+al—n)) +V]bnan,j>

j=1 \n=k+1

t
D (r+k@d =1 + 1) =y + k(a(1— k) + 1.

j=1

<

| -

According to theorem (2.1), it consequently follows that A(z) € M'S, (a, A, 8,7).
Theorem (4.2): The class M'S, (a, 4, 8, V) is a convex set.

Proof: Let f;(2) and f,(z) be the arbitrary elements of M'S,(a,4,8,y). Then for everye (0 < € < 1), we shall
demonstrate that

1 -98fi(2) +ef,(2) € MS(a, A, B,7).

Thus, we have

A -9fi(2) +ef,(2) =z - Z [(1 —&)a,; + eaniz]z".
n=k+1
Hence

B i [n(1+/1—,8+a(1—n))+y]b
B y+k(a(l-—k)+1)

z [(1 —&a,; + £an‘2]
n=k+1

B - [n(1+A-B+a(l—n))+v]b, C [n(1+2—=p+a(l—n)+7y]b,
(-9 ) S a e e ),

n=k+1 n=k+1

<1
YT k@l —-R+ 1 tnz <1

This completes the proof.
5. Radii of Starlikeness and Convexity

In the subsequent theorems, we examine the radii of starlikeness and convexity.

Theorem (5.1): Consider f € M'S,(a, A, B,y). Then f is k-valent starlike of order ¢ (0 <o < k) in the disk
|z| < r =1, inwhich

1
o [k= )1+ A - B +a(l —n) +y]b, [ 51
" T kGl 0 DI o + 20 e
The result is sharp for the function f defined by (2.4).
Proof: It is adequate to demonstrate that
zf'(2)
+h|<k-o 5.2
@ e
but
zf'(2) + kf (2) o1+ K)ay |z
f@ T 1= a2l

Consequently, (5.2) will be fulfilled if
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Y i+ K)ay, |z

L= Yok Gz

<k-o,

or if

n—o+k
—a,|z|"* < 1. (5.3)

n=k+1

Since f € MS,(a, A, B,v), we have

i [n(1+l—ﬁ+a(1—n))+y]anbn<1
y+k(a(1—k)+1) -

n=k+1

Hence, (5.3) will true if

n_a+k|z|”+k< [n(1+2-B +a(l—n)+yla,b,

k—o - y+k(a(1—k)+1) ’

or equivalently

(k= a)[n(1+2-p+a(l —n) +y]b, e

lz] <
[y + k(a1 —k)+ 1D](n— o+ 2k)

,n=>k+ 1.

Theorem (5.2): Let f € M'S,(a, A, B,y). Then f is k-valent convex of order ¢ (0 < ¢ < k) in the disk |z| <7 =1,
where

k(k — 0)[n(1 +A-B+a(l- n)) + y]bn]ﬁ

=i 5.4
S L TR T e@ =0 + DI -0 + 20 G
The result is sharp for the function f defined by (2.4).
Proof: It is adequate to demonstrate that
zf"(z
|]]:,(§))+k+1 <k-o, (5.5)
but
2f"(@) + (k + Df' @] _ Lnzgsan(n + l)ay |z|"**
f'(@) T k= Xl anlz|E
Consequently, (5.5) will be fulfilled if
X s n(n+ ka, |z
© e Sk-o
k— Z:n=k+1 anlzl
orif
- nn—o+k)
z Wanlzln”‘ <1. (56)
n=k+1
Dueto f € MS,(a, 4, B,v), will be true if
n(n—o+k) 2|+ < [n(1+2-B+a—n)+y]|a,b,

k(k — o) - y+k(a(l—k)+1) ’
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or equivalently

k(k—a)[n(1+2—-B+a(l—n))+v]b, =

< | T ke =0 + DIti—o + 20 '

n=>k+ 1.

6. Weighted mean and Extreme points

In the next theorem, we discuss the extreme points for the functions in the subclass M'S, (a, A, 8,v)

y+k(a(1-k)+1)
[n(1+2-B+a(1-n))+y|by

Theorem (6.1): Let f,, (z) = z* and f,,(z) = z* —

only if can be articulated as

z", n=k+ 1.Then f € MS,(a, A, B,y) if and

fl2) = ‘;.lozk+1 ann(z): W, = 0and Z;O:k+1wn =1-W,.

|[Proof: Let f(2) = Yo js i W [ (2), Wy, =0and X3, . W, =1—-W,

[oe]

_ gk Z y+k(a(1—k)+1) n
- L "n(1+2-B+a(l—n))+ylb,
Since
- [n(1+/1—,8+a(1—n))+y]bn y+k(a(l—k)+1) W
y+k(a(1—-k)+1) Tn(1+2A-B+a(t—n)+ylb, "

n=k+1

Hence f € M'S, (a, A, B, 7).
Conversely, suppose that f € M'S,(a,4,8,7). As

o < y+pla(l-k)+1)
"T[n(1+A-B+ad—n))+vy|b,’

n=>k+1, k € N.

Setting

_ [n(1+21-B+al—n)+v]b,
Wn =t G-+ 1

and
Wk = 1 - Z Wn;
n=k+1
it therefore follows that

f@= ) Wi

n=k+1
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Magnitude of f(z) in 3D Complex Plane
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Figure 5 : Plot 2D,3D Extreme points

Definition (6.1): Let f; and f, attend the subclass M'S, (a, 4, 8,y). The weighted mean w, of f; and f, is expressed
as

1
we(2) =§[(1—t)f1(z)+(1+t)f2(z)], 0<t<1. (6.1)

Theorem (6.2): The weighted mean of any two functions f; and f, in M'S, (a, A, B,y) is also belongs to the subclass
MS, (a, 2, B,7).

Proof: By Definition (6.1), we possess

[oe]

1 1
(@) =511 = DA@ + (1 +0L@] =2 = Y 2[4~ Day, + (1 + D)o,

n=k+1

Since f; and f; are in the class M'S, (@, 4, B,7), so by theorem (2.1), we get

Z [n(1+A-B+a(l—n)) +vy]ap by <y +k(a(1—k)+1)

n=k+1
and
> (142 + a1 =m) +ylagsb, < + k@ — k) + 1.
n=k+1
Hence,
- 1
D [n(1+ A= g+ e =m) +71b, (5101 = Oy, + (1 +0a,0])
n=k+1

1 N 1 N
=3 1-19) n;rl[n(l +A-B+a(l—n))+ylbyay, + 5(1 +1t) ng;l[n(l +A-B+a(l—n))+ylbyan,

<y+k(a(l-k)+1).

Therefore, w,(z) € MS,(a, 1, B,7).
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7. Applications of the New Subclass of k-valent Functions Defined via Hadamard Product

The newly investigated class of k-valent functions, defined through the Hadamard product, demonstrates broad
applicability across various scientific and engineering domains. Owing to their geometric and analytic
characteristics, these functions contribute significantly to modeling and optimization tasks in the following areas:

7.1 Application in Fluid Dynamics

The radii of starlikeness and convexity associated with the studied class (Theorems 5.1 and 5.2) offer crucial
insights into modeling the flow of incompressible fluids over complex geometries with multiple singularities. These
radii act as natural boundary constraints, optimizing fluid transport systems and aiding in the analysis of
phenomena such as boundary layer separation in both aerodynamics and hydrodynamics. Such boundary
conditions are essential in modern fluid dynamics simulations, as discussed in [2].

Complex Flow Field with Colored Streamlines

L 1 1 ! s 1

2 1 C 2

7.2 Application in Signal Proc'i:'gsul';fgs : Plot 2D complex application fluid dynamic

Due to the convolutional structure of the Hadamard product, the defined function class is well-suited for frequency-
domain filtering operations. It enables the design of analytic filters with controlled distortion, thereby improving
signal clarity and fidelity in systems involving amplitude and phase modulation. Hadamard based analytic filters
have been proven to be effective in various signal processing techniques in recent studies [10].

pisualizationof Filtsred Slanal 'anced 3D Visualization of Hadamard-Filtered Sic

05 Laamad P
| [ o~
wcde0.0 pe——
-05 — v

Figure 7 : Plot 3D complex application Signal Processing
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7.3 Application in Image Warping and Conformal Mapping

The distortion and the growth properties of this class of functions (Theorem 3.1) have an important application to
image deformations within augmented and virtual reality. These properties allow to obtain realistic and structurally
correct modifications, that are crucial in interactive environments with high geometric fidelity needs. The use of
conformal maps in the context of virtual and augmented reality systems is discussed in [25,26] as well.

i nade We aviaContormal \
mage Warping via Conformal Map mage Warping via Conformal Map

1

Figure 8 : Plot 3D complex application Image Warping and Conformal Mapping

7.4 Application in Cryptographic Systems

The analytic properties and extremal properties of the new class of p-valent functions established by the authors
could be exploited as a mathematical framework that can be applicable in cryptographic context. Especially the
complicated geometry aspect, as well as the fact that these functions are multivalent, has lead to the construction of
nonlinear transformations which are sensitive to the initial conditions—nice feature to have for the secure
communication protocols. In particular, the Hadamard product-based construction makes it possible to construct
complex analytic mappings that are suitable as cryptographic tools in stream ciphers and pseudorandom number
generators. Furthermore, as was the case with the extremal point characterization (Theorem 6.1) and the weighted
mean (Theorem 6.2), one can design key-dependent transformation schemes with free recourse to both
unpredictability and strong diffusion properties. These instantiations are also sound with respect to the basic needs
of modern cryptographic systems, contrary, in particular for the case of 4 properties of the SWIDH phenomenon,
and in a cryptographic context This work is based on elliptic curve cryptography and chaos-based encryption
techniques. The inclusion of such classes of functions into cryptographic algorithms could improve the security
since it would become more resistant to linear and differential attacks. Another recent study, entitled Hadamard
Product Arguments and Their Applications, available in the IACR ePrint archive shows how Hadamard products can
be applied to the design of efficient and secure cryptographic protocols. This work supports the relevance of
Hadamard-based constructions in Cryptography [8].

Cryptographic Key Space via p-Valent Function

Figure 9 : Plot 3D complex application Cryptographic Systems
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8. Conclusions and Future Studies
8.1 Conclusions

In this paper, we define and study a new class of k-valent functions defined by Hadamard product in the open unit
disk. Some geometric properties of the class are established with rigorous analysis, including coefficient
inequalities, bounds on distortion and growth, closure theorems, radii of starlikeness and convexity, extreme points,
and weighted means. The sharpness of results is demonstrated with some extremal functions. These findings help
further broaden an understanding of multivalent function theory while laying a foundation for further exploration
in complex analysis applications where Hadamard products meet with geometric function theory. Future research,
based on the recent findings in multivalent function theory, can apply these results further toward more
generalized classes or other branches like dynamic systems or signal processing to develop new and improved
models in engineering and applied sciences [7,13,14,17,18].

8.2 Future Studies

Investigation of Fractional-Order k-valent Functions Extend the current class to fractional-order derivatives and
integrals, analyzing how the Hadamard product interacts with non-integer operators in complex analysis.
Development of Computational Models Build and test computational algorithms for approximating and simulating
the geometric properties (like distortion and growth) of the new k-valent function class.

Applications in Modern Fluid Mechanics Apply the geometric properties of the defined function class to model
complex, real-world fluid flow phenomena, including turbulence and multi-phase flow dynamics.

Integration with Cryptographic Key Generation Explore the use of extremal properties of the k-valent class in
designing secure key generation protocols for post-quantum cryptography.

Extension to Multidimensional Complex Spaces Generalize the newly defined function class from the complex plane
to higher-dimensional complex manifolds, investigating how the Hadamard product behaves in several complex
variables.
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