

Available online at www.qu.edu.iq/journalcm

JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS

ISSN:2521-3504(online) ISSN:2074-0204(print)

Novel Third-Order Differential Subordination and Superordination Results for Meromorphic p-valent Functions Involving a New Hadamard Product Operator

Bassim Kareem Mihsina, Waggas Galib Atshanb,*, Shatha S. Alhilyc

ac Department of Mathematics, College of Science Mustansiriyah University, Baghdad, Iraq.Email: basmk3756@gmail.com ; shathamaths@omstansiriyah.edu.iq

^b Department of Mathematics, College of Science, University Al-Qadisiyah, Diwaniyah, Iraq.Email: waggas.galib@qu.edu.iq

ARTICLEINFO

Article history:
Received: 14/7/2025
Rrevised form: 21/08/2025
Accepted: 27/08/2025
Available online: 30/09/2025

Keywords:

Analytic function, Meromorphic pvalent function, Hadamard Product, Differential Superordination, Subordination, Dominant, Subordinant, Sandwich Theorem.

ABSTRACT

The purpose of this paper is to derive many third-order differential superordination and subordination results. As a result, sandwich-type theorem for meromorphic p-valent function class involving the celebrated by operator $F_{e,i,p,(d_1,d_2)}f(z)$ are established. Also, to make a relation between the current results and the previous works that distinguished out.

MSC..

https://doi.org/10.29304/jqcsm.2025.17.32405

1. Introduction

Assume $\mathcal{H}=\mathcal{H}(U)$ is a class of functions are analytic in the open unit disk $U=\{z:z\in\mathbb{C},|z|<1\}$, and that \mathbb{C} is a complex plane. Consider $\mathcal{H}[a,n]$ to be a subclass of \mathcal{H} with the following functions when a positive number n is added to $a\in\mathbb{C}$.

$$f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \cdots, a \in \mathbb{C}.$$

*Corresponding author: Waggas Galib Atshan

Email addresses: waggas.galib@qu.edu.iq

Communicated by 'sub etitor'

In addition, we suppose that $\mathcal{H}_1 = \mathcal{H}[1,1]$. Assume that f_1 and f_2 are analytic functions in \mathcal{H} . If there is a Schwarz function $\omega(z)$ to be analytic, with $|\omega(z)| < 1$ and $\omega(0) = 0$, where $f_1(z) = f_2(\omega(z))$, $z \in U$. The function f_1 is considered as a subordinate to the function f_2 , which is represented as $f_1 < f_2$ or $f_1(z) < f_2(z)$.

In addition, if f_2 be an univalent function within U. On can obtain ([17,18]).

$$f_1(z) < f_2(z) \Leftrightarrow f_1(0) = f_2(0) \text{ and } f_2(U) \subset f_1(U), (z \in U).$$

Differential subordination inequalities can be generalized to include variables with complex forms. Assume \mathcal{A}^* pointed to a class of all functions and had the following relation.

$$f(z) = \frac{1}{z^{p}} + \sum_{n=0}^{\infty} a_{n+p} z^{n+p}$$
 (1.1)

which be analytic and meromorphic p-valent function within punctured unit disk $U^* = U \setminus \{0\} = \{z \in \mathbb{C}: 0 < |z| < 1\}$.

Let f_1 and f_2 be functions defined by (1.1), the convolution (or Hadamard product) of f_1 and f_2 be defined as follows:

$$(f_1 * f_2)(z) = \frac{1}{z^p} + \sum_{n=0}^{\infty} a_{n+p} b_{n+p} z^{n+p}.$$

The following is the definition of the function $\Pi_p(d_1, d_2; z)$. (cf. [16])

$$\Pi_{p}(d_{1}, d_{2}; z) = \frac{1}{z^{p}} + \sum_{n=0}^{\infty} \left| \frac{(d)_{n+1}}{(d)_{n+1}} \right| z^{n+p},$$

where $p\in\mathbb{N},d_1\in\mathbb{C}\backslash\{0\}$, ($d_2\in\mathbb{C}\backslash\mathbb{Z}_o^-$) and $(\delta)_n$ such that $\mathbb{Z}_o^-=0,-1,-2,...$

and $(\delta)_n$ be the Pochhammer symbol.

We have the linear operator $L_p(d_1, d_2; z)$ on \mathcal{A}^* by taking the convolution (or Hadamard product) of $f \in \mathcal{A}^*$ with function $\Pi_p(d_1, d_2; z)$ as in the form below (cf. [3]).

$$L_{p}(d_{1}, d_{2}; z) = \Pi_{p}(d_{1}, d_{2}; z) * f(z) = \frac{1}{z^{p}} + \sum_{n=0}^{\infty} \left| \frac{(d_{1})_{n+2}}{(d_{2})_{n+2}} \right| a_{n+p} z^{n+p}.$$

$$(1.2)$$

Ponnusamy and Juneja's initial study was in 1992, when they presented the third-order differential subordination notion [19].

In 2011, Antonino and Miller [4] introduced basic concepts to the extended theory of differential subordination for second-order within an open unit disk. Case of third-order was introduced by Mocanu and Miller [18].

For other conditions, several studies investigated second, third, and fourth-order differential subordination. (cf. [1,2,5,6,7,8,9,10,11,12,13,14,15,20,21,22,23,24,25,26,27]).

Using the analytical formulas provided in the paper's introduction, we were able to produce new definition, which we regard to be a principal tool in our work.

Definition (1.1): Let $\in \mathcal{A}^*$. We define the new operator $F_{e,i,p,(d_1,d_2)}f(z): \mathcal{A}^* \to \mathcal{A}^*$, where

$$F_{e,i,p,(d_1,d_2)}f(z) = \frac{\tau_p(z,e,i)}{z^p i^{-e}} * L_p(d_1,d_2;z) = \frac{1}{z^p} + \sum_{n=0}^{\infty} \left(\frac{i}{i+n+p}\right)^e \left|\frac{(d_1)_{n+2}}{(d_2)_{n+2}}\right| a_{n+p} z^{n+p} , \tag{1.3}$$

where $au_{
ho}(z,e,i)=\sum_{n=0}^{\infty}rac{z^{n+
ho}}{(i+
ho+n)^e}$, is the general Hurwitz-Lerch Zeta function and

 $i \in \mathbb{C} \setminus \mathbb{Z}_0^-$, $e \in \mathbb{C}$, $d_1 \in \mathbb{C} \setminus \{0\}$, $d_2 \in \mathbb{C} \setminus \mathbb{Z}_0^-$, $(\delta)_n$ is the Pochhammer symbol.

We observed from (1.3) that, we obtain:

$$z[F_{e,i,p,(d_1,d_2)}f(z)]' = d_1F_{e,i,p,(d_1,d_2)}f(z) - (d_2 + p)F_{e,i,p,(d_1,d_2)}f(z).$$
(1.4)

2. Preliminaries

The following definitions and lemmas are required to support our main results.

Definition (1.2) [4]. Assume b(z) is univalent in U and $\psi : \mathbb{C}^4 \times U \to \mathbb{C}$. If U is involved by analytic p(z) function and satisfies following differential subordination of third-order:

$$\psi(\mathfrak{p}(z), z\mathfrak{p}'(z), z^2\mathfrak{p}''(z), z^3\mathfrak{p}'''(z); z) < b(z), \tag{2.1}$$

thus p(z) is a differential subordination solution (2.1). In addition to that the univalent function q(z) be a dominant solution of (2.1) or , it p(z) < q(z) to all p(z) then satisfying (2.1) with simply dominant. The best dominant $\tilde{q}(z)$ occurred, when $\tilde{q}(z) < q(z)$, $(z \in U)$, to all dominants q(z) of (2.1).

Definition (2.2):[4] Assume b(z) is analytic in U and $\psi: \mathbb{C}^4 \times U \to \mathbb{C}$. If the functions $\mathfrak{p}(z)$ and $\psi(\mathfrak{p}(z), z\mathfrak{p}'(z), z^2\mathfrak{p}''(z), z^3\mathfrak{p}'''(z); z)$ are univalent in U and satisfies following differential superordination of third-order:

$$b(z) < \psi(\mathfrak{p}(z), z\mathfrak{p}'(z), z^2\mathfrak{p}''(z), z^3\mathfrak{p}'''(z); z), \tag{2.2}$$

then the function $\mathfrak{p}(z)$ is called a solution of the differential superordination (2.2). Furthermore, the analytic function $\mathfrak{q}(z)$ can be a subordinant of the solutions of (2.2), or more simply a subordinant if $\mathfrak{q}(z) \prec \mathfrak{p}(z)$ for all $\mathfrak{p}(z)$ satisfying (2.2). A univalent subordinant $\tilde{\mathfrak{q}}(z)$ that satisfies $\mathfrak{q}(z) \prec \tilde{\mathfrak{q}}(z)$ for all subordinants $\mathfrak{q}(z)$ of (2.2) is called the best subordinant. We note both the best dominant and best subordinant are unique up to rotation of U.

Definition (2.3) [4]. Denote by \mathbb{Q} the set of all functions \mathfrak{q} that are analytic and injective functions on $\overline{U}\setminus E(\mathfrak{q})$, where $\overline{U}=U\cup\partial U$, and $E(\mathfrak{q})=\{\zeta\colon \zeta\in\partial\mathcal{D}U\colon \lim_{z\to\zeta}\mathfrak{q}(z)=\infty\}$, and are such that $\mathfrak{q}'(z)\neq 0$ for $\zeta\in\partial U\setminus E(\mathfrak{q})$. Let the subclass of \mathbb{Q} for which $\mathfrak{q}(0)=a$ be denoted by $\mathbb{Q}(a)$, $\mathbb{Q}(0)=\mathbb{Q}_0$ and $\mathbb{Q}(1)=\mathbb{Q}_1$, where $\mathbb{Q}_1=\{\mathfrak{q}\in\mathbb{Q}\colon \mathfrak{q}(0)=1\}$.

The admissible function classes were defined by Antonino and Miller [4] as what is follow.

Definition (2.4) [4]. Assume Ω be a set in \mathbb{C} , $q \in \mathbb{Q}$, $n \in \mathbb{N} \setminus \{1\}$. The class of admissible functions $\Psi_n[\Omega, q]$ consists of those functions $\psi \colon \mathbb{C}^4 \times U \longrightarrow \mathbb{C}$ that satisfy the following admissibility conditions:

$$\psi(\mathbf{r}, \mathbf{s}, \mathbf{t}, \mathbf{u}; z) \notin \Omega$$

wherever

$$r = q(\zeta)$$
, $s = k\zeta q'(\zeta)$, $Re(\frac{t}{s} + 1) \ge kRe(\frac{\zeta q''(\zeta)}{q'(\zeta)} + 1)$ and

$$Re\left(\frac{\mathfrak{u}}{\mathfrak{s}}\right) \geq k^2 Re\left(\frac{\zeta^2 \mathfrak{q}^{\prime\prime\prime}(\zeta)}{\mathfrak{q}^\prime(\zeta)}\right),$$

where $\zeta \in \partial U \setminus E(q)$, $z \in U$ and $k \ge n$.

Definition (2.5) [19]. Assume Ω be a set in \mathbb{C} , $q \in \mathcal{H}[a,n]$ with $q'(z) \neq 0$ $n \in \mathbb{N} \setminus \{1\}$. The class of admissible functions $\Psi'_n[\Omega,q]$ consists of those functions $\Psi: \mathbb{C}^4 \times \overline{U} \to \mathbb{C}$ that satisfy the following admissibility conditions:

$$\psi(\mathbf{r}, \mathbf{s}, \mathbf{t}, \mathbf{u}; \zeta) \in \Omega$$
,

wherever

$$r = q(z)$$
, $s = \frac{zq'(z)}{m}$, $Re\left(\frac{t}{s} + 1\right) \le \frac{1}{m} Re\left(\frac{zq''(z)}{q'(z)} + 1\right)$

$$Re\left(\frac{\mathfrak{u}}{\mathfrak{s}}\right) \leq \frac{1}{m^2} Re\left(\frac{z^2 \mathfrak{q}^{\prime\prime\prime}(z)}{\mathfrak{q}^{\prime}(z)}\right),$$

where $\zeta \in \partial U \setminus E(q), z \in U$ and $m \ge n \ge 2$.

The following lemma is a basic aspect of third-order differential superordination theory.

Lemma(2.1)[4]: Let $p \in \mathcal{H}[a, n]$ with $n \in \mathbb{N} \setminus \{1\}$, and $q \in \mathbb{Q}(a)$ satisfying the following conditions:

$$Re\left(\frac{\zeta q''(\zeta)}{q'(\zeta)}\right) \ge 0$$
, $\left|\frac{zp'(z)}{q'(z)}\right| \le k$,

where $z \in U$, $\zeta \in \partial U \setminus E(q)$, and $k \ge n$. If Ω is a set in \mathbb{C} . $\psi \in \Psi_n[\Omega, q]$ and

$$\psi(\mathfrak{p}(z), z\mathfrak{p}'(z), z^2\mathfrak{p}''(z), z^3\mathfrak{p}'''(z); z) \in \Omega$$

then

$$p(z) < q(z), \quad (z \in U).$$

Lemma (2.2)[19]. Let $\psi \in \Psi'_n[\Omega, q]$. If $\psi(\mathfrak{p}(z), z\mathfrak{p}'(z), z^2\mathfrak{p}''(z), z^3\mathfrak{p}'''(z); z) \in \Omega$, is univalent in $U, p \in \mathbb{Q}(a)$ and $q \in \mathcal{H}[a, n]$ satisfy the following conditions:

$$Re\left(\frac{\zeta \, q''(\zeta)}{q'(\zeta)}\right) \ge 0$$
, $\left|\frac{\zeta p'(\zeta)}{q'(\zeta)}\right| \le m$,

where $\zeta \in \partial U$, $z \in U$ and $m \ge n \ge 2$, then

$$\Omega \subset \left\{ \psi(\mathfrak{p}(z), z\mathfrak{p}'(z), z^2\mathfrak{p}''(z), z^3\mathfrak{p}'''(z); z) : z \in U \right\},\,$$

which leads to

$$q(z) < p(z), z \in U.$$

3. Third-Order Differential Subordination Results:

Here, we introduce some differential subordination results by using the new Hadamard product operator $F_{e,i,p,(d_1,d_2)}f(z)$.

Definition (3.1). Assume Ω be a set in \mathbb{C} , and $q \in \mathbb{Q}_0 \cap \mathcal{H}_0$. The class of admissible functions $\Theta[\Omega, q]$ consists of those functions $\phi: \mathbb{C}^4 \times U \longrightarrow \mathbb{C}$ that satisfy the following admissibility conditions:

 $\Theta(\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{y}; z) \notin \Omega$,

whenever,

$$\mathbf{u} = \mathbf{q}(\zeta), \quad \mathbf{v} = \frac{k\zeta \, \mathbf{q}'(\zeta) + (d_1 + p)\mathbf{q}(\zeta)}{d_1},$$

$$Re\left\{\frac{d_1(d_1+\mathfrak{p})\mathbb{W}-(d_1+\mathfrak{p})(d_1+2)\mathbb{W}}{d_1\mathbb{V}-(d_1+\mathfrak{p})\mathbb{W}}-(2d_1+3)\right\}\geq kRe\left\{\frac{\zeta\,\mathfrak{q}''(\zeta)}{\mathfrak{q}'(\zeta)}+1\right\}, \text{ and } d_1\mathbb{V}-d_1\mathbb{$$

$$Re\left\{ \frac{d_1(d_1+\mathfrak{p})[(d_1+2)\mathbb{y}-3(d_1+3)\mathbb{w}]+(d_1+2)(d_1+3)[3d_1\mathbb{v}-(d_1+\mathfrak{p})\mathbb{u}]}{d_1\mathbb{v}-(d_1+\mathfrak{p})\mathbb{u}} \right\} \geq k^2Re\left\{ \frac{\zeta^2\mathfrak{q'''}(\zeta)}{\mathfrak{q'}(\zeta)} \right\},$$

such that $\zeta \in \partial U \setminus E(q)$, $d_1 \in \mathbb{C} \setminus Z_0^-$, $z \in U$, and $k \ge 2$.

Theorem (3.2): Assume $\phi \in \Theta_n[\Omega, \mathfrak{q}]$. If $f \in \mathcal{A}^*$ and $\mathfrak{q} \in \mathbb{Q}_0 \cap \mathcal{H}_0$ satisfy the following conditions:

$$Re\left(\frac{\zeta q''(\zeta)}{q'(\zeta)}\right) \ge 0 \quad , \quad \left|\frac{F_{e,i,\rho,(d_1+1,d_2)}f(z)}{q'(\zeta)}\right| \le k, \tag{3.1}$$

and

$$\Big\{\phi\Big(F_{e,i,p,(d_1,d_2)}f(z),F_{e,i,p,(d_1+1,d_2)}f(z),F_{e,i,p,(d_1+2,d_2)}f(z),F_{e,i,p,(d_1+3,d_2)}f(z)\Big),z\in U^*\subset\Omega\Big\},\quad (3.2)$$

then

$$F_{e,i,p,(d_1,d_2)}f(z) < \mathfrak{q}(z), \qquad (z \in U^*).$$

Proof: Taking G(z) be analytic function in U^* as:

$$G(z) = F_{e,i,p,(d_1,d_2)}f(z). (3.3)$$

Making use of (1.4) and (3.3), we have

$$F_{e,i,p,(d_1+1,d_2)}f(z) = \frac{zG'(z) + (d_1+p)G(z)}{d_1}.$$
(3.4)

Further computations shows that,

$$F_{e,i,p,(d_1+2,d_2)}f(z) = \frac{z^2 G''(z) + 2(d_1+p)zG'(z) + (d_1+p)(d_1+2)G(z)}{d_1(d_1+p)},$$
(3.5)

and

$$F_{e,i,p,(d_1+3,d_2)}f(z) = \frac{z^3G'''(z) + 3(d_1+3)z^2G''(z) + 3z(d_1+3)(d_1+2)G'(z) + (d_1+p)(d_1+2)(d_1+3)G(z)}{(d_1+p)(d_1+2)d_1}.$$
 (3.6)

Now, we define the transformation from \mathbb{C}^4 to \mathbb{C} by formula:

$$\mathbf{u}(\mathbf{r}, \mathbf{s}, \mathbf{t}, \mathbf{u}) = \mathbf{r}, \quad \mathbf{v}(\mathbf{r}, \mathbf{s}, \mathbf{t}, \mathbf{u}) = \frac{\mathbf{s} + \mathbf{r}(d_1 + \rho)}{d_1},$$

$$W(r, s, t, u) = \frac{t+2s(d_1+2)+r(d_1+\rho)(d_1+2)}{(d_1+1)d_1},$$

$$y(r, s, t, u) = \frac{u + 3t(d_1 + 3) + 3s(d_1 + 2)(d_1 + 3) + r(d_1 + \rho)(d_1 + 2)(d_1 + 3)}{(d_1 + \rho)(d_1 + 2)d_1},$$
(3.7)

where, r = G(z), s = zG'(z), $t = z^2G''(z)$, $u = z^3G'''(z)$.

Assume

 $\psi(\mathbf{r}, \mathbf{s}, \mathbf{t}, \mathbf{u}; z) = \phi(\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{y}; z)$

$$= (r, \frac{s+r(d_1+p)}{d_1}, \frac{t+2s(d_1+2)+r(d_1+p)(d_1+2)}{(d_1+p)d_1}, \frac{t+3t(d_1+3)+3s(d_1+2)(d_1+3)+r(d_1+p)(d_1+2)(d_1+3)}{(d_1+p)(d_1+2)d_1}; z).$$
(3.8)

Lemma (2.1) is used to the proof. Taking (3.8) and (3.3)-(3.6), to get

$$\psi(G(z), zG'(z), z^2G''(z), z^3G'''(z), z) =$$

$$\phi(F_{e.i.p.(d_1,d_2)}f(z),F_{e.i.p.(d_1+1,d_2)}f(z),F_{e.i.p.(d_1+2,d_2)}f(z),F_{e.i.p.(d_1+3,d_2)}f(z);z). \tag{3.8}$$

Thus (3.2) will be

$$\psi(G(z), zG'(z), z^2G''(z), z^3G'''(z); z) \in \Omega.$$

Lead to

$$\frac{t}{s} + 1 = \frac{d_1 w(d_1 + p) - u(d_1 + p)(d_1 + 2)}{vd_1 - u(d_1 + p)} - (2d_1 + 3),$$

and

$$\frac{\mathfrak{u}}{\mathfrak{s}} = \frac{a_1 \mathbb{y} (d_1 + p) [(d_1 + 2) - \mathbb{w}(d_1 + 3)] + (d_1 + 2) (d_1 + 3) [\mathbb{3} \mathbb{v} d_1 - \mathbb{u}(d_1 + p)]}{\mathbb{v} d_1 - \mathbb{u}(d_1 + 1)}.$$

Thus, the condition of admissibility for $\psi \in \Psi_n[\Omega, \mathfrak{q}]$ as get in Definition (2.4) with n=2 is equivalent to the condition of admissibility for $\phi \in \Theta_2[\Omega, \mathfrak{q}]$ in Definition (3.1). Thus by applying Lemma (2.1) and taking equation (3.1), to obtain

 $G(z) \prec q(z)$, means, $F_{e,i,p,(d_1,d_2)}f(z) \prec q(z)$, $(z \in U^*)$ and the proof is complete.

Corollary (3.1): Let $\Omega \subset \mathbb{C}$ and the function q is univalent in U with q(0) = 1. Assume $\phi \in \Theta_n[\Omega, q_\sigma]$ for some $\sigma \in (0,1)$, where $q_\sigma(z) = q(\sigma z)$. If the function $f \in \mathcal{A}^*$ and q_σ satisfy the conditions bellow:

$$Re\left(\frac{\zeta q_{\sigma}''(\zeta)}{q_{\sigma}'(\zeta)}\right) \ge 0$$
, $\left|\frac{F_{e,i,\rho,(d_1+1,d_2)}f(z)}{q_{\sigma}'(\zeta)}\right| \le k$, $(\zeta \in \partial U \setminus E(q_{\sigma}), z \in U^*, k \ge 2)$ (3.10)

and

$$\phi\left(F_{e,i,p,(d_1,d_2)}f(z),F_{e,i,p,(d_1+1,d_2)}f(z),F_{e,i,p,(d_1+2,d_2)}f(z),F_{e,i,p,(d_1+3,d_2)}f(z)\right)\in\Omega,$$

then

$$F_{e,i,p,(d_1,d_2)}f(z) < \mathfrak{q}_{\sigma}(z), (z \in U^*).$$

Proof: Using Theorem (3.2), to obtain

 $F_{e,i,p,(d_1,d_2)}f(z) \prec q_{\sigma}(z)$ such that $z \in U^*$.

The result asserted by Corollary 3.1 is now deduced from following subordination property $q_{\sigma}(z) < q(z), (z \in U)$.

The proof is complete.

Assume $\Omega \neq \mathbb{C}$ be a simply connect domain, then $\Omega = \eta(U)$ for some conformal mapping $\eta(z)$ of U onto Ω . In this case, the class $\Theta_n[\eta(U), \mathfrak{q}]$ is written as $\Theta_n[\eta, \mathfrak{q}]$. The two results being direct consequences of and Theorem and Corollary (3.2), (3.1) respectively.

Theorem(3.3): Assume $\phi \in \Theta_n[\eta, \mathfrak{q}]$.If $f \in \mathcal{A}^*$ and $\mathfrak{q} \in \mathbb{Q}_0 \cap \mathcal{H}_0$ satisfy the following conditions (3.1), and

$$\phi(F_{e,i,p,(d_1,d_2)}f(z),F_{e,i,p,(d_1+1,d_2)}f(z),F_{e,i,p,(d_1+2,d_2)}f(z),F_{e,i,p,(d_1+3,d_2)}f(z);z) < \eta(z)$$
(3.11)

then

$$F_{e,i,p,(d_1,d_2)}f(z) \prec q(z), \qquad z \in U^*.$$

Corollary (3.2): Assume $\Omega \subset \mathbb{C}$ and the function is univalent in U with q(0) = 1. Assume that $\phi \in \Theta_n[\eta, q_\sigma]$ for some $\sigma \in (0,1)$, such that $q_\sigma(z) = q_\sigma(\sigma z)$. If $f \in \mathcal{A}^*$ and q_σ satisfy the conditions (3.10), and

$$\phi(F_{e,i,p,(d_1,d_2)}f(z),F_{e,i,p,(d_1+1,d_2)}f(z),F_{e,i,p,(d_1+2,d_2)}f(z),F_{e,i,p,(d_1+3,d_2)}f(z);z) < \eta(z),$$

then

$$F_{e,i,\rho,(d_1,d_2)}f(z) < \mathfrak{q}_{\sigma}(z), \qquad (z \in U^*).$$

The new Theorem bellow leads to the most the best dominant for differential subordination (3.11).

Theorem (3.4): Assume $\phi: \mathbb{C}^4 \times U \to \mathbb{C}$ and ψ by given by (3.8) and let $\eta(z)$ be univalent in U. Suppose that the following differential equation:

$$\psi(q(z), zq'(z), z^2q''(z), z^3q'''(z); z) = \eta(z), \tag{3.12}$$

has a solution q(z) will q(0) = 1, which satisfy condition (3.1). If $f \in \mathcal{A}^*$, satisfies the condition (3.11), $\phi \in \Theta_n[\eta, q]$ and

$$\phi(F_{e,i,p,(d_1,d_2)}f(z),F_{e,i,p,(d_1+1,d_2)}f(z),F_{e,i,p,(d_1+2,d_2)}f(z),F_{e,i,p,(d_1+3,d_2)}f(z);z)$$

be analytic in U^* , then

$$F_{e,i,p,(d_1,d_2)}f(z) < q(z), (z \in U^*)$$

and q(z) is the best dominant.

Proof: By using Theorem (3.2), we conclude that q(z) be as a dominant of (3.11). Since q(z) be a solution of (3.11) because its satisfying equation (3.12). Therefore q is dominated by all dominants. Hence q(z) is the best dominant and the proof is complete.

In view of Definition (3.1), and in special case when $q(z) = \mu z$, $\mu > 0$, the class of admissible functions $\Theta_n[\Omega, q]$, denoted by $\Theta_n[\Omega, \mu]$, is expressed as follows:

Definition (3.5): Assume Ω be set in \mathbb{C} , $d_1 \in \mathbb{C} \backslash Z_o^-$, and $\mu > 0$. The class $\Theta_n[\Omega, \mu]$ of admissible functions consists of those functions $\phi \colon \mathbb{C}^4 \times U \to \mathbb{C}$ such that:

$$\Theta(\mu e^{i\vartheta} + 1, \frac{\lambda + (d_1 + \rho)\mu e^{i\vartheta}}{d_1} + 1, \frac{\beta + (d_1 + 2)(2\lambda + d_1 + \rho)\mu e^{i\vartheta}}{d_1(d_1 + \rho)} + 1, 1 + \frac{\gamma + 3(d_1 + 3)\beta + (d_1 + 2)(d_2 + 3)(3\lambda + d_1 + \rho)\mu e^{i\vartheta}}{d_1(d_1 + \rho)(d_1 + 2)}; z) \notin \Omega, \tag{3.13}$$

where $z \in U$, $Re(\beta e^{-i\vartheta}) \ge (\lambda - 1)\lambda\mu$ and $Re(\gamma e^{-i\vartheta}) \ge 0$, $k \ge 2$ and for all $\vartheta \in \mathbb{R}$.

Corollary (3.3): Assume $\phi \in \Theta_n[\Omega, \mu]$. If the function $f \in \mathcal{A}^*$ satisfies the following conditions:

$$\left| F_{e,i,p,(d_1+1,d_2)} f(z) \right| \le k\mu$$
, $(z \in U; k \ge 2; \mu > 0)$, and

$$\phi \left(F_{e,i,\rho,(d_1,d_2)} f(z), F_{e,i,\rho,(d_1+1,d_2)} f(z), F_{e,i,\rho,(d_1+2,d_2)} f(z), F_{e,i,\rho,(d_1+3,d_2)} f(z); z \right) \in \Omega$$

then

$$|F_{e,i,p,(d_1,d_2)}f(z)-1|<\mu.$$

In particular condition when $\Omega = q(U) = \{w: |w-1| < \mu, \mu > 0\}$, we define $\Theta_n[\Omega, \mu]$ class as simply of $\Theta_n[\mu]$. We can write the Corollary (3.3) as a form bellow:

Corollary (3.4): Assume $\phi \in \Theta_n[\mu]$. If the function $f \in \mathcal{A}^*$ and holds the following conditions:

$$\left| F_{e.i.p.(d_1+1.d_2)} f(z) \right| \le k\mu, (z \in U; k \ge 2; \mu > 0),$$

$$\left| \phi \left[F_{e,i,p,(d_1,d_2)} f(z), F_{e,i,p,(d_1+1,d_2)} f(z), F_{e,i,p,(d_1+2,d_2)} f(z), F_{e,i,p,(d_1+3,d_2)} f(z); z \right] - 1 \right| < \mu,$$

then

$$|[F_{e,i,p,(d_1,d_2)}f(z)]-1|<\mu.$$

Corollary (3.5): Assume $d_1 \in \mathbb{C}^*$, $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ with $Re(d_1) \ge \frac{1-k}{2}$, $k \ge 2$ and $\mu > 0$. If $f \in \mathcal{A}^*$ satisfies the following conditions:

$$|[F_{e,i,p,(d_1+1,d_2)}f(z)]-1| \le k\mu$$
, $k \ge 2$, and $|[F_{e,i,p,(d_1+1,d_2)}f(z)]-1| < \mu$,

then

$$|[F_{e,i,p,(d_1,d_2)}f(z)]-1|<\mu.$$

Proof: Corollary (3.5) introduced by Corollary (3.4), where, we put

$$\phi(\mathbf{w}, \mathbf{v}, \mathbf{w}, \mathbf{y}; z) = \mathbf{v} = 1 + \frac{\lambda + (d_1 + 1) \mu e^{i\theta}}{d_1}.$$

The proof is complete.

Corollary (3.6): Assume $d_1 \in \mathbb{C}^*$, $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$, $k \ge 2$ and $\mu > 0$. If the function $f \in \mathcal{A}^*$ satisfies the following conditions:

$$\left|F_{e,i,p,(d_1+1,d_2)}f(z)\right| \le k\mu$$

and

$$\left| F_{e,i,\rho,(d_1+3,d_2)} f(z) - F_{e,i,\rho,(d_1+2,d_2)} f(z) \right| \leq \frac{\mu}{|d_1|'}$$

then

$$\left|F_{e,i,p,(d_1,d_2)}f(z)-1\right|<\mu\,.$$

Proof: Assume $\phi(\mathbb{u}, \mathbb{v}, \mathbb{w}, \mathbb{y}; z) = \mathbb{y} - \mathbb{w}$, $\Omega = \eta(U)$, where $\eta(z) = \frac{\mu z}{|d_1|}$, $\mu > 0$. In order to use Corollary (3.3), we need to show that $\phi \in \Theta_n[\Omega, \mu]$, that is the admissibility condition (3.13) is satisfied. This follows readily, since it is seen that

$$\begin{split} \left| \phi(1 + \mu e^{i\vartheta}, 1 + \frac{\lambda + (d_1 + \rho)\mu e^{i\vartheta}}{d_1}, 1 + \frac{\beta + (d_1 + 2)(2\lambda + d_1 + \rho)\mu e^{i\vartheta}}{d_1(d_1 + \rho)}, 1 + \frac{\gamma + 3(d_1 + 3)\beta + (d_1 + 2)(d_2 + 3)(3\lambda + d_1 + \rho)\mu e^{i\vartheta}}{d_1(d_1 + \rho)(d_1 + 2)}; z) \right| \\ &= \left| \frac{\gamma + 3(d_1 + 3)\beta + (d_1 + 2)(d_2 + 3)(3\lambda + d_1 + \rho)\mu e^{i\vartheta}}{(d_1 + 2)(d_1 + \rho)d_1} - \frac{\beta + (d_1 + 2)(2\lambda + d_1 + \rho)\mu e^{i\vartheta}}{(d_1 + \rho)d_1} \right| \\ &= \left| \frac{\gamma e^{-i\vartheta} + (2d_1 + 7)\beta e^{-i\vartheta} + (d_1 + 2)(3\lambda + d_1 + \rho)\mu}{d_1(d_1 + \rho)(d_1 + 2)e^{-i\vartheta}} \right| \\ &\geq \frac{Re(\gamma e^{-i\vartheta}) + |2d_1 + 7|Re(\beta e^{-i\vartheta}) + |d_1 + 2||2\lambda + d_1 + \rho|\mu}{|d_1(d_1 + \rho)(d_1 + 2)|} \\ &\geq \frac{|2d_1 + 7|(\lambda - 1)\lambda + |d_1 + 2||2\lambda + d_1 + \rho|\mu}{|d_1(d_1 + \rho)(d_1 + 2)|} \\ &\geq \frac{\mu}{|d_1|}, \end{split}$$

where $Re(\beta e^{-i\vartheta}) \ge (\lambda - 1)\lambda\mu$, $Re(\gamma e^{-i\vartheta}) \ge 0$ and $z \in U^*$ to all $\vartheta \in \mathbb{R}$ and $k \ge 2$.

4. Third-Order Differential Superordination Results:

Here, we prove and investigate some theorems involved in third-order differential superordination with using operator $F_{e,i,p,(d_1,d_2)}f(z)$ in (1.3). For the purpose, we consider the next class of admissible functions.

Definition (4.1): Let Ω be a set in \mathbb{C} and $q \in \mathbb{Q}_0 \cap \mathcal{H}_0$ with $q'(z) \neq 0$. The admissible functions class $\Theta'_n[\Omega, q]$ consists of those functions $\phi \colon \mathbb{C}^4 \times \overline{U} \to \mathbb{C}$ that satisfy the following admissibility conditions:

$$\Theta(\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{y}; \zeta) \in \Omega$$

whenever

$$\mathbf{u} = \mathbf{q}(z), \qquad \mathbf{v} = \frac{\frac{1}{m}z\mathbf{q}'(z) + (d_1 + p)\mathbf{q}(z)}{d_1},$$

$$Re\left\{\frac{d_1(d_1+p)w-(d_1+p)(d_1+2)u}{d_1v-(d_1+p)u}-(2d_1+3)\right\} \le \frac{1}{m}Re\left\{\frac{zq''(z)}{q(z)}+1\right\},\tag{4.1}$$

and

$$Re\left\{\frac{d_1(d_1+\rho)[(d_1+2)\mathbb{y}-3(d_1+3)\mathbb{w}]+(d_1+2)(d_1+3)[3d_1\mathbb{y}-(d_1+\rho)\mathbb{u}]}{d_1\mathbb{y}-(d_1+\rho)\mathbb{u}}\right\} \leq \frac{1}{m^2}Re\left\{\frac{z^2\mathbf{q'''}(z)}{\mathbf{q}(z)}\right\},$$

where $z \in U, d_1 \in \mathbb{C} \setminus \mathbb{Z}_o^-$, $\zeta \in \partial U \setminus E(\mathfrak{q})$ and $m \geq 2$.

Theorem (4.1): Assume $\phi \in \Theta'_n[\Omega, \mathfrak{q}]$. If the functions $f \in \mathcal{A}^*$ and $\mathfrak{q} \in \mathbb{Q}_0 \cap \mathcal{H}_0$ with $\mathfrak{q}'(z) \neq 0$, satisfy the following conditions:

$$Re\left(\frac{zq''(z)}{q'(z)}\right) \ge 0, \quad \left|\frac{F_{e,i,\rho,(d_1+1,d_2)}f(z)}{q'(z)}\right| \le m,\tag{4.2}$$

and

$$\phi(F_{e,i,p,(d_1,d_2)}f(z),F_{e,i,p,(d_1+1,d_2)}f(z),F_{e,i,p,(d_1+2,d_2)}f(z),F_{e,i,p,(d_1+3,d_2)}f(z);z),$$

is univalent within U^* , then

$$\Omega \subset \left\{ \phi \left(F_{e,i,p,(d_1,d_2)} f(z), F_{e,i,p,(d_1+1,d_2)} f(z), F_{e,i,p,(d_1+2,d_2)} f(z), F_{e,i,p,(d_1+3,d_2)} f(z); z \right) \right\}, \tag{4.3}$$

implies

$$q(z) < F_{e,i,p,(d_1,d_2)} f(z), z \in U.$$

Proof: Equation (3.3) defined the analytic function G(z) while equation (3.8) defined ψ . Because of $\phi \in \Theta'_n[\Omega, \mathfrak{q}]$. From (3.8) and (4.3), we obtain

$$\Omega \subset \{ \psi(G(z), zG'(z), z^2G''(z), z^3G'''(z); z), z \in U \}. \tag{4.4}$$

We note that the equation (3.7) involved with admissibility condition for $\phi \in \Theta'_n[\Omega, \mathfrak{q}]$ as defined by the Definition (4.1), which is equivalent to the admissibility condition of $\psi \in \Psi'_n[\Omega, \mathfrak{q}]$ according to Definition (2.5), with n=2. Therefore when $\psi \in \Psi'_2[\Omega, \mathfrak{q}]$, taking Lemma (2.2) and using the equation (4.2), we obtain $\mathfrak{q}(z) \prec f(z)$ or $\mathfrak{q}(z) \prec F_{e,i,p,(d_1,d_2)}f(z)$. The proof is complete.

If $\Omega \neq \mathbb{C}$ is a simply connected domain, then $\Omega = \eta(U)$ for some conformal mapping $\eta(z)$ of U, onto Ω . In this case, the class $\Theta'_n[\eta(U), \mathfrak{q}]$ is taken as simply by $\Theta'_n[\eta, \mathfrak{q}]$. Now, Theorem (4.1) gives us the following results.

Theorem (4.2): Assume the function η is analytic in U and $\phi \in \Theta'_n[\Omega, \mathfrak{q}]$. If functions $f \in \mathcal{A}^*$, $F_{e,i,p,(d_1,d_2)}f(z) \in \mathbb{Q}_0$ and $\mathfrak{q} \in \mathcal{H}_0$ satisfy the following conditions (4.2), and

$$\phi\big(F_{e,i,p,(d_1,d_2)}f(z),F_{e,i,p,(d_1+1,d_2)}f(z),F_{e,i,p,(d_1+2,d_2)}f(z),F_{e,i,p,(d_1+3,d_2)}f(z);z\big)$$

is univalent within U^* , then

$$\Omega \subset \left\{ \phi\left(F_{e,i,p,(d_1,d_2)}f(z),F_{e,i,p,(d_1+1,d_2)}f(z),F_{e,i,p,(d_1+2,d_2)}f(z),F_{e,i,p,(d_1+3,d_2)}f(z);z\right)\right\},\tag{4.5}$$

implies

$$q(z) \prec F_{e.i.p.(d_1.d_2)} f(z)$$
.

The proof is complete.

Now, the Theorems (4.1) and (4.2) can only be used to obtain subordinants involved with differential superordination of third-order of the forms (4.4) or (4.5).

The Theorem bellow prove that best subordinant is exist in (4.5) with suitable chosen ϕ .

Theorem (4.3): Assume $\phi: \mathbb{C}^4 \times \overline{U} \to \mathbb{C}$, ψ be defined by (3.8) and η be univalent function in U. Assume that the following differential equation:

$$\psi(q(z), zq'(z), z^2q''(z), z^3q'''(z); z) = \eta(z), \tag{4.6}$$

has a solution $q(z) \in \mathbb{Q}_0 \cap \mathcal{H}_0$ with $q'(z) \neq 0$. If the function $f \in \mathcal{A}^*$ and $F_{e,i,p,(d_1,d_2)}f(z) \in \mathbb{Q}_0$ satisfy the condition (4.2) and the function

$$\phi(F_{e,i,p,(d_1,d_2)}f(z),F_{e,i,p,(d_1+1,d_2)}f(z),F_{e,i,p,(d_1+2,d_2)}f(z),F_{e,i,p,(d_1+3,d_2)}f(z);z),$$

is univalent within U^* , then

$$\eta(z) < \{ \phi(F_{e,i,p,(d_1,d_2)}f(z), F_{e,i,p,(d_1+1,d_2)}f(z), F_{e,i,p,(d_1+2,d_2)}f(z), F_{e,i,p,(d_1+3,d_2)}f(z); z) \},$$
(4.7)

implies that

$$q(z) < F_{e.i.p.(d_1,d_2)}f(z),$$

and q(z) is the best subordinant.

Proof: By using Theorem (4.1) and (4.2), we deduce that q is a subordinant of (4.7). Since q satisfies (4.6), it is also a solution of (4.7) and therefore q will be subordinant by all subordinants. Hence q is the best subordinant. This completes the proof of Theorem (4.3).

5. Sandwich-Type Result:

Now, by combining Theorems (3.3) and (4.3), we obtain the following sandwich-type theorem.

Theorem (5.1): Assume the two functions say η_1 and q_1 be analytic functions in U. Also, assume η_2 be univalent function in U, $q_2 \in \mathbb{Q}_0$ with $q_1(0) = q_2(0) = 1$ and $\phi \in \Theta_n[\eta_1, q_1] \cap \Theta'_n[\eta_2, q_2]$. If the function $f \in \mathcal{A}^*$ and $F_{e,i,p,(d_1,d_2)}f(z) \in \mathbb{Q}_0 \cap \mathcal{H}_0$ and

$$\phi(F_{e,i,p,(d_1,d_2)}f(z),F_{e,i,p,(d_1+1,d_2)}f(z),F_{e,i,p,(d_1+2,d_2)}f(z),F_{e,i,p,(d_1+3,d_2)}f(z);z),$$

be univalent in U, while the conditions (3.1) and (4.2) are satisfied ,thus

$$\eta_1(z) \prec \left\{\phi\left(F_{e,i,p,(d_1,d_2)}f(z),F_{e,i,p,(d_1+1,d_2)}f(z),F_{e,i,p,(d_1+2,d_2)}f(z),F_{e,i,p,(d_1+3,d_2)}f(z);z\right)\right\} \prec \eta_2(z),$$

then

$$q_1(z) \prec F_{e,i,p,(d_1,d_2)} f(z) \prec q_2(z).$$

References

^[1] S. A. Al-Ameedee, W. G. Atshan and F. A. Al-Maamori, On sandwich results of univalent functions defined by a linear operator, Journal of Interdisciplinary Mathematics, 23 (4)(2020), 803-809.

^[2] S. A. Al-Åmeedee, W. G. Atshan and F. A. Al-Maamori, Some new results of differential subordinations for higher-order derivatives of multivalent functions, Journal of Physics: Conference Series, 1804 (2021) 012111,1-11.

^[3] M. Albehbah and M. Darus, New subclass of multivalent hypergeometric meromorphic functions, Kragujevac Journal of Mathematics, 42(1)(2018),83-95.

- [4] J. A. Antonino and S. S. Miller, Third-order differential inequalities and subordinations in the complex plane ,Complex Var. Elliptic Equ. ,56(2011),439-545.
- [5] W. G. Atshan, I. A. Abbas and S. Yalcin, New concept on fourth-order differential subordination and superordination with some results for multivalent analytic functions, Journal of Al-Qadisiyah for Computer Science and Mathematics, 12(1)(2020), 96-107.
- [6] W. G. Atshan and A. A. R. Ali, On some sandwich theorems of analytic functions involving Noor-Salagean operator, Advances in Mathematics: Scientific Journal, 9(10)(2020), 8455-8467.
- [7] W. G. Atshan and A. A. R. Ali, On sandwich theorems results for certain univalent functions defined by generalized operators, Iraqi Journal of Science, 62(7)(2021), pp:2376-2383.
- [8] W. G. Atshan, A. H. Battor and A. F. Abaas, On third-order differential subordination results for univalent analytic functions involving an operator, Journal of Physics: Conference Series, 1664 (2020) 012044, 1-19.
- [9] W. G. Atshan, A. H. Battor and A. F. Abaas, Some sandwich theorems for meromorphic univalent functions defined by new integral operator, Journal of Interdisciplinary Mathematics, 24(3)(2021), 579-591.
- [10] W. G. Atshan, A. H. Battor and A. F. Abaas and G. I. Oros, New and extended results on fourth-order differential subordination for univalent analytic functions, Al-Qadisiyah Journal of Pure Science, 25(2)(2020),1-13.
- [11] W. G. Atshan and R. A. Hadi, Some differential subordination and superordination results of p-valent functions defined by differential operator, Jurnal of Physics: Conference Series, 1664 (2020) 012043, 1-15.
- [12] W. G. Atshan, H. Z. Hassan and S. Yalcin, On Third-order differential subordination results for univalent functions defined by differential operator, Uzbek Mathematical Journal, 65(2)(2021), pp. 26-42.
- [13] W. G. Atshan and S. R. Kulkarni, On application of differential subordination for certain subclass of meromorphically p-valent functions with positive coefficients defined by linear operator, Journal of Inequalities in Pure and Applied Mathematics, Volume 10(2009), Issue 2, Article 53, 11pp.
- [14] H. A. Farzana, B. A. Stephen and M. P. Jeyaraman, Third-order differential subordination of analytic functions defined by functional derivative operator, An Stiint. Univ. Al. I. Cuza Iasi. Mat. (New Ser.), 62(2016), 105-120.
- [15] M. P. Jeyaraman and T. K. Suresh, Third-order differential subordination of analytic functions, Acta Univ. Apulensis Math. Inform., 35(2013), 187-202.
- [16] J. L. Liu, A linear operator and its applications on meromorphic p-valent functions, Bulletin of the Institute Mathematics Academia Sinica, 31(1)(2003), 23-32.
- [17] S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J., 28(1981), 157-171.
- [18] S. S. Miller and P. T. Mocanu, Differential subordinations: Theory and Applications, A Series on Monographs and Textbooks in Pure and Applied Math., 225, Marcel Dekker Inc., New York, Basel, (2000).
- [19] S. Ponnusamy and O. P. Juneja, Third-order differential inequalities in the complex plane, in Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London, and Hongkong, (1992).
- [20] D. Raducanu, Third-order differential subordinations for analytic functions associated with generalized Mittag-Leffler functions, Mediter: J. Math., 14(4)(2017), Article ID 167, 1-18.
- [21] Q. A. Shakir and F. M. Sakar, On third-order differential subordination and superordination properties of analytic functions defined by Tayyah–Atshan fractional integral operator, Advances in Nonlinear Variational Inequalities, 28 (2025), Article 2528. https://doi.org/10.52783/anvi.v28.2528
- [22] Q. A. Shakir and W. G. Atshan, On sandwich results of univalent functions defined by generalized Abbas–Atshan operator, Journal of Al-Qadisiyah for Computer Science and Mathematics, 15(4) (2023), 11–20.
- [23] Q. A. Shakir and W. G. Atshan, Third-order sandwich results for analytic univalent functions involving a new Hadamard product operator, Iraqi Journal of Science, (2025), 2868–2887.
- [24] Q. A. Shakir and W. G. Atshan, Some sandwich theorems for meromorphic univalent functions defined by a new Hadamard product operator, Nonlinear Functional Analysis and Applications, (2025), 331–344.
- [25] A. S. Tayyah, W. G. Atshan and G. I. Oros, Third-order differential subordination results for meromorphic functions associated with the inverse of the Legendre Chi function via the Mittag-Leffler identity, Mathematics, 13(13) (2025), 2089.
- [26] Z. S. Jafar and W. G. Atshan, New results on fourth-order differential subordination and superordination for meromorphic multivalent functions defined by a new differential operator, Aip Conference Proceedings, 3264(1)(2025), 050103.
- [27] B. K. Mihsin, W. G. Atshan, S. S. Alhily and A. A. Lupas, New Results on Fourth-Order Differential Subordination and Superordination for Univalent Analytic Functions Involving a Linear Operator, Symmetry, 14(2) (2022), 324.