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A B S T R A C T 

In this work, we introduce generalizations of fuzzy    ̃ -quasinormal operators defined on 
fuzzy Hilbert spaces over fuzzy vector spaces. We study several fundamental properties of 
these operators and explore specific operations associated with them. 
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Introduction  

Many researchers in functional analysis concentrate on operator theory, with particular interest in fuzzy operator 
theory. In 1965, Zadeh [1] introduced the foundational concept of fuzzy sets, along with their properties and 
operations, marking a significant development in mathematics. Subsequently, in 1991, Biswas proposed several key 
definitions in fuzzy mathematics, including the fuzzy inner product and fuzzy norm mappings, accompanied by 
several theorems [2]. Building on this, in 1993, Keohil and Kumar introduced additional properties of the fuzzy 
inner product and proposed a concept called the fuzzy co-inner product space [5]. 
Kohil and Kumar 1995 further developed the theory, by defining fuzzy linear operators on fuzzy inner product 
spaces and exploring their fundamental properties [4]. Later, in 2009, Goudearzi and Viaezpour examined the 
concept of fuzzy Hilbert spaces (FH-spaces), presenting several important results related to this structure [5]. 
In 2018, Radharamani et al. introduced a new class of fuzzy operators known as fuzzy normal operators, defined on 
fuzzy Hilbert spaces. They provided various characterizations and essential properties of these operators [6]. In 

2022 proposed generalizations for the fuzzy ((   ))
∗
  -quasi-normal operators on fuzzy Hilbert spaces and 

explored their key properties and operations [10]. 

In the present work, we propose new generalizations of fuzzy operators, specifically the fuzzy(   )̃ ∗-quasi-normal 
operators defined on FH-spaces. The primary motivation behind this research is to extend the existing results and 
investigate new operational behaviors of such operators [7,8]. More specifically, we aim to establish and prove 
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several characterizations associated with these concepts in fuzzy operator theory. The main findings are detailed in 
the following sections of this paper. 

2- Preliminaries  

Definition 2.1 [1]:  The order pair of the sets  ̂   *(     ̂( ))        ̂( )   +, is namely fuzzy set  ̂ over    
where   ̂      is a mapping said to be set characterized of  a membership  mapping where   ,   -  and also, 
  ̂( ) is said to be degree of membership of     in   ̂    

Definition 2.2 [9]: The fuzzy vector space ( ̃-space)  ( )̃ is fuzzy set with a couple of operations defined for every  
fuzzy points     ̂ ( )    ̂ ( ) in the fuzzy set   ( )̃ , satisfy  

       i)(   )̂
 ( )  ( )    ̂ ( )      ( ) 

      ii)  ̂  ̂ ( )  (   )̂ ( )    ̂   ̂( ).  

Now, another essential concept of this work gives by the following definition. 

Definitions 2.3 [4]: A  ̃-operator   ̃  ̃   ̃ is a 

1) fuzzy linear operator  ( ̃          ) if it satisfies the condition 

 ̃( ̃ ̃ ( )   ̃ ̃ ( ))  . ̃ ̃( ̃ ( )̂)   ̃ ̃( ̃ ( )̂)/
 

 , 

 for all   ̃ ( )̂ and  ̃ ( )̂   ̃ and  ̃,  ̃ any fuzzy  scalars. 

2)  fuzzy bounded operator ( ̃          ) if it satisfies the condition 

‖ ̃( ̃ ( ))‖
̃  

   ̃ ‖ ̃ ( )‖
̃       

  ̃ ( )   ̃ and   ̃   ̃ ( ). 

Definitions 2.4 [3]: Let  ̃  ̃   ̃  be   ̃            , the fuzzy adjoint of operator   ̃∗  is such that  
〈 ̃ ( )  ̃

∗  ̃ ( )〉
̃   〈 ̃ ̃ ( )  ̃ ( )〉

̃
     ̃ ( )  ̃ ( )   ̃ 

Definitions 2.5 [1]: An fuzzy operator   ̃  ̃   ̃ is Fuzzy self adjoint operator  ( ̃                       )  if 
 ̃   ̃∗  

Definitions 2.6 [1]: An fuzzy operator   ̃  ̃   ̃ is Fuzzy normal operator   if  ̃ ̃∗   ̃∗ ̃ with shortly by  
( ̃          ). 

Definitions 2.7 [3]: An fuzzy operator   ̃  ̃   ̃, where  ̃ is fuzzy Hilbert space,  is Fuzzy Quasi-normal operator 
on the if satisfy  ̃( ̃∗ ̃)  ( ̃∗ ̃) ̃ and shortly by  ( ̃           )  

 

3.  On fuzzy    ̃-quasi-normal operators: 

Here, we propose a generalization of the quasi-normal operator, referred to as the fuzzy (   )̃ ∗--quasi-normal 
operator. We also present several properties associated with this operator. We begin with the main definition. 

            3.1: Let  ̃  ̃   ̃ be fuzzy bounded linear operator defined on fuzzy Hilbert space  ̃  then one can say  
 ̃ is fuzzy    ̃-quasi-normal operator if  ̃∗( ̃ ̃∗

 
)   ̃( ̃ ̃∗

 
) ̃∗ , where    ̃  ̃   ̃,      

Remark: 3.2: 

When      ,  ̃   ̃, then  ̃  ̃   ̃ is fuzzy quasi-normal operator.  
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Proposition 3.3: Let  ̃  ̃   ̃ be  fuzzy    ̃-quasi-normal operator defined on fuzzy Hilbert space  ̃  then, 
[ ̃∗( ̃ ̃∗

 
) ]   [ ̃( ̃ ̃∗

 
) ̃∗]

 
  

Proof :   

By using mathematical induction 

if     ,  

 ̃∗( ̃ ̃∗
 
)  [ ̃( ̃ ̃∗

 
) ̃∗]  

if it is true when      

[ ̃∗( ̃ ̃∗
 
)]   [ ̃( ̃ ̃∗

 
) ̃∗]

 
 

To prove it when       

[ ̃∗( ̃ ̃∗
 
)]
   

 [ ̃∗( ̃ ̃∗
 
)]
 
[ ̃∗( ̃ ̃∗

 
)] , 

So that 

[ ̃∗( ̃ ̃∗
 
)]
 
[ ̃∗( ̃ ̃∗

 
)]  , ̃( ̃ ̃∗

 
) ̃∗- , ̃( ̃ ̃∗

 
) ̃∗- 

                                ,  ̃( ̃ ̃∗
 
) ̃∗-   . 

 

Theorem 3.4: Let     ̃   ̃  ̃   ̃  be    fuzzy    ̃ quasi-normal operator which satisfy the conditions 

   ̃
∗
  ̃

∗
   ̃

∗
  ̃    ̃  ̃

∗
   ̃  ̃

∗
  ̃, then   ̃    ̃   is a fuzzy    ̃-quasi-normal operator. 

Proof: 

 (  ̃    ̃)
∗   (  ̃    ̃)

   (  ̃    ̃)
∗  

           (  ̃    ̃)
∗
((  ̃    ̃)(  ̃

∗
   ̃

∗
)
 
)                                                   

            (  ̃    ̃)
∗
(  ̃    ̃)(  ̃

∗ 
  .  ̃

∗   
/  ̃

∗
     ̃

∗ 
) 

           (  ̃
∗
   ̃

∗
)(  ̃    ̃)(  ̃

∗ 
   ̃

∗ 
)                                              

          (  ̃
∗
   ̃

∗
)(  ̃  ̃

∗ 
   ̃  ̃

∗ 
   ̃  ̃

∗ 
   ̃  ̃

∗ 
) 

                 ̃
∗
  ̃  ̃

∗ 
   ̃

∗
  ̃  ̃

∗ 
   ̃

∗
  ̃  ̃

∗ 
   ̃

∗
  ̃  ̃

∗ 
   ̃

∗
  ̃  ̃

∗ 
   ̃

∗
  ̃  ̃

∗ 
     ̃

∗
  ̃  ̃

∗ 
   ̃

∗
  ̃  ̃

∗ 
 

   ̃
∗
  ̃  ̃

∗ 
   ̃

∗
  ̃  ̃

∗ 
 

                 ̃(  ̃  ̃
∗ 
)  ̃

∗
  ̃(  ̃  ̃

∗ 
)  ̃

∗
….(1)  

 ̃ .(  ̃    ̃) (  ̃    ̃)
∗ 
/(  ̃    ̃)

∗
 

            ̃(  ̃    ̃)
∗
((  ̃    ̃)(  ̃

∗
   ̃

∗
)
 
)                                                   

             ̃(  ̃    ̃)(  ̃
∗ 
  .  ̃

∗   
/  ̃

∗
     ̃

∗ 
)(  ̃    ̃)

∗
 

            ̃(  ̃    ̃)(  ̃
∗ 
   ̃

∗ 
)(  ̃

∗
   ̃

∗
)                                              
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           ̃(  ̃  ̃
∗ 
   ̃  ̃

∗ 
   ̃  ̃

∗ 
   ̃  ̃

∗ 
)(  ̃

∗
   ̃

∗
) 

                ̃ .  ̃  ̃
∗ 
  ̃

∗
   ̃  ̃

∗ 
  ̃

∗
   ̃  ̃

∗ 
  ̃

∗
   ̃  ̃

∗ 
  ̃

∗
   ̃  ̃

∗ 
  ̃

∗
   ̃  ̃

∗ 
  ̃

∗
     ̃  ̃

∗ 
  ̃

∗
   ̃  ̃

∗ 
  ̃

∗
/ 

 . ̃  ̃  ̃
∗ 
  ̃

∗
  ̃  ̃  ̃

∗ 
  ̃

∗
/ 

                 ̃(  ̃  ̃
∗ 
)  ̃

∗
  ̃(  ̃  ̃

∗ 
)  ̃

∗
….(2)  

        ̃ .(   ̃    ̃) (  ̃    ̃)
∗ 
/(  ̃    ̃)

∗ 
 

Therefore;    ̃    ̃ is a fuzzy (   )̃ ∗-quasi-normal operator. 

 

Theorem 3.5: Let     ̃   ̃  ̃   ̃  be    fuzzy    ̃-quasi-normal operator with satisfy the conditions 

  ̃  ̃    ̃  ̃   ̃  ̃
∗
   ̃

∗
  ̃  and   ̃ fuzzy quasi-normal then    ̃  ̃  is a fuzzy    ̃-quasi-normal.  

Proof: 

           (  ̃   ̃)
∗
(  ̃   ̃) (  ̃   ̃)

∗ 
 (  ̃   ̃)

∗
( (  ̃   ̃) (  ̃   ̃)

∗ 
 

                                                        = (  ̃
∗
  ̃

∗
)(  ̃   ̃)(  ̃

∗ 
  ̃

∗ 
)ss 

                                                          (  ̃
∗
  ̃

∗
  ̃)(  ̃  ̃

∗ 
  ̃

∗ 
) 

                                                          (  ̃
∗
  ̃  ̃

∗
)(  ̃

∗ 
  ̃  ̃

∗ 
) 

 (  ̃
∗
  ̃  ̃

∗ 
)(  ̃

∗
  ̃  ̃

∗ 
) 

                                                            ̃((  ̃  ̃
∗ 
)  ̃

∗
)  ̃((  ̃  ̃

∗ 
)  ̃

∗
) 

                                                                   ̃  ̃,((  ̃  ̃
∗ 
)  ̃

∗
)((  ̃  ̃

∗ 
)  ̃

∗
)] 

   ̃  ̃,((  ̃  ̃
∗ 
)  ̃  ̃

∗
)((  ̃

∗ 
)  ̃

∗
 

                                                            ̃  ̃,((  ̃  ̃  ̃
∗ 
)  ̃

∗
)((  ̃

∗ 
)  ̃

∗
 

   ̃  ̃,((  ̃  ̃  ̃
∗ 
)  ̃

∗ 
  ̃

∗
  ̃

∗
 

   ̃  ̃,(.  ̃  ̃  ̃
∗ 
  ̃

∗ 
/(  ̃

∗
  ̃

∗
) 

                                                        ̃  ̃,((  ̃  ̃)(     ̃)
∗ 
)(  ̃   ̃)

∗
- ,  

   ̃  ̃,((  ̃  ̃)(  ̃   ̃)
∗ 
) (  ̃  ̃ )

∗
- 

By choosing    ̃  ̃   ̃  then, we have  (  ̃   ̃)
∗
( (  ̃   ̃) (  ̃   ̃)

∗ 
    ̃,(  ̃   ̃) (  ̃   ̃)

∗ 
-(  ̃   ̃)

∗
  

Therefore;    ̃  ̃   is a fuzzy    ̃-quasi-normal.  

Theorem 3.6: Let   ̃  ̃   ̃  be  fuzzy     ̃-quasi-normal defined on fuzzy Hilbert space then  

 ̃ ̃ is a fuzzy    ̃-quasi-normal, for any fuzzy real scalar  ̃.  

Proof: 

( ̃ ̃)∗( ̃ ̃( ̃ ̃∗
 
)   ̃ ̃  ̃ ( ̃∗( ̃ ̃∗

 
)) 

  ̃ ̃  ̃  ̃(( ̃ ̃∗
 
) ̃∗) 
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       ̃(( ̃ ̃ ̃  ̃∗
 
) ̃ ̃∗)  

Therefore;  ̃ ̃ is a fuzzy    ̃-quasi-normal operator 

Theorem 3.7: Let   ̃  ̃   ̃  be  fuzzy     ̃-quasi-normal defined on fuzzy Hilbert space then   ̃  ̄⁄  is a fuzzy 
   ̃-quasi-normal, where  ̄ is closed subspace  

Proof: 

 ̃
 ̄
⁄

∗

( ̃  ̄
⁄  ̃

 ̄
⁄

∗ 

)  
 ̃∗( ̃ ̃∗

 
)
 ̄

⁄  

                                     ̃,
( ̃ ̃∗

 
) ̃∗-

 ̄
⁄  

                              ̃ ( ̃  ̄⁄
 ̃
 ̄⁄
∗ 

)  ̃  ̄⁄
∗

 

Therefore;  ̃  ̄⁄  is a fuzzy    ̃-quasi-normal operator. 

 

4. Conclusions 

One result is the introduction of particular generalization of a type of fuzzy bounded operator which is fuzzy    ̃-
quasi-normal operators with some operations such as addition and multiplication as well as the relation of this with 
fuzzy self-adjoint operator one can have in this paper.    
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