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ARTICLEINFO ABSTRACT

This study introduces a self-optimising fifth-generation (5G) communication architecture
that utilises Deep Reinforcement Learning (DRL) to meet the increasing demands of ultra-
reliable low-latency communication (URLLC) and extensive device connectivity. A DRL agent
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resource assignment in response to varying traffic fluctuations and interference patterns,
rendering traditional, static, heuristic strategies obsolete. Simulation experiments reveal a
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51% decline in average latency, decreasing from 88.7 ms to 43.6 ms, thus assuring
Deep Reinforcement Learning compliance with URLLC strictures. The architecture concurrently produces a 39.9% uplift in
(DRL, 5) G Networks, PPO throughput and a 49.3% rise in the Quality of Service (QoS) satisfaction rate. A comparative
Algorithm, Ultra-Reliable Low- evaluation validates the framework’s dominance over conventional benchmarks,
underscoring its viability for expansive, intelligent, and self-segregating 5G and forthcoming

Latency Communication (URLLC)
6G networks.
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1. Introduction

Wireless technologies have rapidly advanced, laying the groundwork for 5G mobile networks. These networks must
be capable of supporting a diverse array of use cases, such as URLLC for autonomous vehicles and factory
automation and massive machine-type communication (mMTC) to facilitate the Internet of Things [1]. For each of
these scenarios, performance thresholds that surpass those of previous generations are necessary, such as
guaranteed reliability, elevated spectral efficiency, and extremely low round-trip latencies (milliseconds) [1-3]. The
conventional strategies for network management and resource assignment, which are based on fixed thresholds or
rule-based heuristics, are insufficient when faced with traffic that varies in scale, temporality, and spatial
distribution [4]. The research community now generally recognises that the networks of the future must transform
into cognitive, self-optimising systems that can adjust to ongoing fluctuations in subscriber requirements,
interference, and burden. This realisation has accelerated the process of incorporating artificial intelligence,
specifically machine learning, into the operational framework of mobile architectures. Within this trend, DRL is a
compelling candidate, as it autonomously generates effective control policies through trial-and-error interaction
with the environment, requiring neither a comprehensive analytical model of the network nor prior knowledge of

the underlying dynamics [5-6].
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Numerous studies have been conducted on the implementation of DRL in wireless networks, which has
progressively built a body of knowledge for sophisticated resource management. To enable adaptive spectrum
management in cognitive-radio settings, pioneering studies have used fundamental reinforcement-learning
paradigms, especially Q-learning. In contrast to conventional heuristic approaches, Wang et al. [7] created an
enhanced Q-learning methodology that lowers the convergence corridor and improves spectral efficiency. However,
the technique exhibits declining results as the relevant state encodings grow. Future 5G topologies, whose latency
penalties are made worse by increasing cumulative dimensionality and long convergence times, are anticipated to
exhibit this phenomenon. To make up for these shortcomings, academia has progressively included supervised
feature extraction using convolutional networks, leading to the creation of the Deep Q-Network (DQN) architecture
[8].

Furthermore, a DQN-guided method for dispersing transmit power across urban 5G eNodeBs was created in
research [9], which led to notable enhancements in system-wide throughput and fairness indices. Despite the fact
that DQN was a major breakthrough, it has flaws related to cumulative error propagation and noticeable target
variations that threaten the stability of feedback controllers with stringent latency requirements. As shown by [5],
the DQN schema has been adjusted to handle the resource-allocative challenges brought up by UAV ingress in ultra-
dense installations. The practical resilience of the schema in dynamic, non-stationary contexts has been further
supported by this work.

The performance hazards revealed by Deep Q-Networks led to the introduction of PPO as a dynamic technique for
network optimisation via DRL. PPO's architecture makes sure that training robustness and sample efficiency work
together, preventing unanticipated performance drops by using clipped probability ratios that restrict the size of
policy changes [10]. Because of its on-policy paradigm's fast learning cycle and the mild but decisive limitation it
imposes, PPO works especially well for real-time deployments that demand both operational dependability and
adaptive velocity. According to an experimental investigation, PPO-guided frameworks perform better than
traditional heuristic approaches in exchange for improved decision quality under different operating situations,
which reduces the requirement for human supervision and increases configurability [11]. PPO agents perform
better than random-exploration and fixed-threshold controllers in terms of increased throughput and reduced
latency, according to a head-to-head examination. A conservative baseline is established by the random-policy
comparator, which initiates random actions at predetermined intervals. Nevertheless, the lack of a guided adaptive
approach often leads to unacceptable latency and reduced quality of service [12].

Most rule-based systems show an incremental capacity to adapt to the changing needs of modern, diverse network
environments, despite their simple architecture. Ye, Xiaowen, et al. [13] provide evidence of the DRL's effectiveness
in the multichannel access dimension by showing that an agent-conditioned mechanism can effectively balance
channel selections and interference shifts to achieve a notable increase in cumulative network throughput. Based on
these fundamental findings and the PPO paradigm, this paper presents a thorough strategy for enhancing the
autonomous performance of 5G radio access networks. This effort's main contribution is the deliberate creation and
empirical verification of a scalable, resource-efficient DRL agent intended to operate on a 30,000-node abstracted
lattice. The enduring scalability limitations that the field still faces are highlighted by this study.

However, the practical applicability of DRL frameworks to large-scale deployments is limited by the fact that the
majority of existing studies [14] assess them on network scenarios with fewer than 1,000 nodes. In contrast, our
framework is capable of scaling to 30,000 nodes with simplicity, thanks to a hierarchical clustering abstraction that
enables strategic macro-level control while preserving the ability to make fine-grained adjustments. In the
Introduction, we emphasise our contribution to resolving the persistent scalability challenges in DRL-based 5G
network management by articulating this distinction.

The current framework addresses the scalability challenge by employing a hierarchical clustering abstraction, which
allows the agent to execute strategic, macro-level interventions while maintaining the ability to make nuanced, link-
level adjustments, in contrast to prior investigations, which have primarily restricted empirical scrutiny to
circumscribed, quasi-isolated segments. The agent is trained to simultaneously reduce end-to-end latency, a critical
criterion for ultra-reliable low-latency communications, while simultaneously improving several auxiliary metrics,
including aggregate throughput, the rate of QoS satisfaction, and overall network stability, during the training
regimen.

This research provides a comprehensive performance evaluation in comparison to a variety of conventional
benchmark techniques, including a Random Policy, a Fixed Threshold heuristic, Q-Learning, and a deep Q-network
derivative. The comparative advantages of the proposed DRL paradigm are quantitatively delineated by the
empirical results, which elucidate its superiority in dynamic, large-scale network environments.

The experimental results indicate that the PPO-DRL architecture surpasses all baseline configurations, obtaining the
highest QoS satisfaction percentage (91.4%), the maximum throughput (1,038 Mbps), and the minimal latency.
While demonstrating the methodological maturation of DRL, this rigorous comparative evaluation substantiates the
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methodological validity and performance leverage of the proposed paradigm, transitioning from the foundational Q-
Learning approach to the more robust and stable PPO framework. Collectively, these findings substantiate the
hypothesis that the DRL paradigm is a discontinuous leap rather than a mere refinement, thereby facilitating the
development of cognitively managed, self-organising wireless ecosystems. The DRL agent eliminates the traditional
burdens of static parameterisation and explicit rule design by autonomously extracting and adjusting policy
landscapes. This lays a practical foundation for fully autonomous sixth-generation and subsequent network
generations that can meet the relentless increase in operational and application-driven performance thresholds.

2. Methodology
2.1 Dataset

The study utilises a comprehensive 5G traffic dataset that is distinguished by its diverse range of applications,
including video streaming, immersive conferencing, metaverse interactions, and cloud gaming. Each application has
its own unique QoS benchmarks, which are derived from actual operational contexts [15-16]. Although
anonymisation and empirical fidelity are maintained to safeguard privacy, the data is not publicly accessible and is
derived from proprietary sources. Packet-level recordings were conducted using tcpdump on a diverse population
of commercial 5G user equipment and a suite of controlled emulatable test platforms, with millisecond-scale
temporal precision. This hybrid data-acquisition framework maintains empirical fidelity while enabling
reproducible experimentation and adhering to ethical protocols by methodically anonymising personally
identifiable data. The corpus is augmented by a wide range of auxiliary observables, such as downlink and uplink
reference signal power measurements, channel scheduler loading counters, and temporally resolved signatures of
previously recorded attacks, in addition to standard payload records. This multi-dimensional instrumental
architecture enables investigations that address both traffic-oriented performance optimisation and the proactive
fortification of the network against security threats.

2.2 Hyperparameters

Table 1 summarises the PPO algorithm's hyperparameters for reproducibility, detailing the learning rate (3 x 10™%),
discount factor y (0.99), clipping threshold € (0.2), and mini-batch size.

Table 1: The PPO hyperparameters

Hyperparameter Value Description
Learning Rate 3x107* Step size for the Adam optimiser update
Discount Factor (y) 0.99 Future reward discounting factor

Limits policy update magnitude to prevent

Clipping Threshold (g) 0.2 significant shifts

Batch Size 200 time steps Number of steps per mini-batch update

2.3 System Model

The analysis employs a comprehensive 5G architecture that is decomposed into 300 clusters, each of which contains
100 nodes (Figure 1). This hierarchical segmentation facilitates scalability in the simulation while maintaining the
fidelity required to replicate the subtleties that are unique to contemporary dense-deployment scenarios. A cluster
can be conceptually viewed as a discrete logical or physical domain, similar to a compact cell or a distributed edge-
computing segment. This enables the DRL agent to make an aggregated decision. The framework encodes these
features as composite state descriptors, notably the distributed traffic volume, the contemporaneous interference
landscape, and the fraction of traffic subject to stringent quality-of-service constraints, which are key performance
drivers. The primary goal is to improve end-to-end communication performance by optimising resource allocation
and managing congestion effectively.
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Fig. 1-Self-Optimising 5G Communication Framework with DRL for Dynamic Resource Allocation and Ultra-
Reliable Low-Latency Performance.

The PPO agent implements the actor-critic model architecture, in which the "actor” network develops a policy for
discrete actions (resource allocation decisions) and the "critic" network estimates value functions to facilitate
learning. The average load ratio, interference metric, and critical traffic ratio at each time step are all represented in
the three-dimensional input state vector of each cluster. The action space is composed of five discrete control actions,
including handover commands and bandwidth adjustments.

The neural topology is described in a manner that is intentionally simplified to enable edge replication with minimal
latency and bandwidth penalty. The agent utilises NumPy for numerical operations and PyTorch for modelling in the
simulation environment. The cropped surrogate objective function of PPO is implemented to ensure that policy
updates are restricted and that convergence is both stable and seamless.

64-256 neurons are present in each of the 2-3 wholly connected concealed layers. ReLU activation functions are
frequently implemented in hidden layers to achieve a balance between training stability and non-linearity. The actor
network generates action probabilities by employing a softmax layer. At the output, the critic network produces a
linear activation scalar value estimate.

2.3.1 Reinforcement Learning Framework

The computational mechanism of reinforcement learning (RL) is the process by which an autonomous agent develops
proficiency in online decision-making by interacting with a stochastic environment. This mechanism balances the
exploration of new strategies with the exploitation of known advantages [17-19]. A lexicon of state-space, action-
space, transition dynamics, and reward scalar is the formal edifice of this operative model, which is the Markov
Decision Process (MDP) [20]. Within the domain of wireless communications, the RL framework facilitates a self-
optimizing capability by allowing the agent to independently formulate strategies for resource distribution, path
selection, and traffic equilibrium, all of which are adjusted to the temporal fluctuations of variables such as traffic
density, interference profiles, and user migratory trajectories [21].
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2.3.2 DRL Agent Design: Proximal Policy Optimisation (PPO)

The chosen DRL framework for the multi-faceted and high-dimensional context of 5G wireless networking is a PPO
[22]. This framework is designed to achieve robust and computationally efficient policy refinement. Based on the
policy gradient.

The PPO paradigm is distinguished by its distinctively tractable and stable design, which surpasses previous
methodologies. PPO is distinguished by its distinctively tractable and stable design, which surpasses previous
methodologies such as Advantage Actor-Critic (A3C) and Trust Region Policy Optimisation (TRPO).

The actor-critic paradigm is the foundation of a PPO, in which the policy network (actor) anticipates actions and the
value network (critic) computes temporally bootstrapped reward estimates that refine the policy-gradient estimate
[23]. The algorithm is equally well-suited for continuous and discrete action spaces, and it achieves significant
sample efficiency. These qualities are crucial in the context of network-management tasks that impose rigorous real-
time constraints [24]. This design flexibility facilitates the effective management of multimodal control challenges,
such as the orchestration of network slices, dynamic resource slicing, and latency mitigation across the end-to-end
path. These challenges necessitate precise temporal credit assignment and judicious sensitivity to computational
load.

The PPO framework served as the orienting algorithmic motif for the DRL agent in this investigation. The resulting
architectural design empowers the execution of a self-optimizing 5G communication lattice that autonomously
tracks and adjusts to fluctuating operational environments, ensuring continuity of service granularity and
algorithmic stability while progressively advancing toward policy convergence.

2.3.3 Training and Simulation Setup

The end-to-end training and simulation framework is designed to replicate a large-scale, extensible 5G ecosystem,
thereby facilitating the convolution of a DRL agent that is specifically engineered for entirely automated self-
optimisation. The topology was intentionally selected to balance the complex dynamics of ultra-dense
configurations with computational feasibility. It consists of 300 clusters, each of which contains 100 nodes. The DRL
agent is able to develop directives at a macro-observational layer as a result of this hierarchical clustering, which
affects geographically coherent segments of the network. The control frameworks are established by the directives,
which incorporate resource reallocation with load-balancing calibration. These frameworks extend linearly in step
with the anticipated deployment volumes. The simulation framework, which is written in Python, employs NumPy
to accelerate numerical processing and PyTorch to simulate the dynamics of reinforcement learning (RL). The
training process is comprised of 100 distinct episodes, each of which is further divided into 200 discrete time steps.
This process replicates the entire operational cycle, during which the agent refines and interacts with its situational
awareness. The agent maintains a three-dimensional state vector for each cluster, which includes the average load
ratio, the present interference metric, and the critical-traffic ratio, at each time increment.

The agent selects one of five discrete actions, each of which is codified to encapsulate a specific control policy, based
on the observed state. Examples of such actions include initiating a handover protocol or increasing bandwidth
allocation. The environment then modifies the network parameters and propagates a reward signal that
quantitatively guides the agent's subsequent learning updates.

The Proximal PPO algorithm is employed by the DRL agent due to its ability to handle continuous action spaces,
efficient sample usage, and stable training. A common two-layer fully connected network is shared by the actor and
critic in the agent's actor-critic architecture, with each layer consisting of 128 units and utilizing ReLU activations.
The Adam optimiser is employed in the training loop to prevent excessive policy changes. It is configured with a 3 x
107* learning rate, a discount factor (y) of 0.99, and a clipping threshold (g) of 0.2. The replay buffer is reset after
each iteration to eradicate obsolete data, and updates to the policy and value functions are implemented in mini-
batches of 200 time steps. The reward structure promotes the desired objectives by designating positive values for
effective resource allocation and decreased latency, as well as penalties for excessive congestion and interference.
The finalized neural network is optimized to occupy less than 1 MB in order to facilitate deployment in resource-
constrained environments. This enables it to operate on peripheral devices and base stations where computational
capacity is restricted.

The framework's feasibility for deployment in real-time, distributed configurations anticipated in imminent 6G
networks is further demonstrated by this integrated architecture, which ensures both efficient learning and rapid
convergence, typically accomplished within approximately sixty training episodes.
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3. Results

3.1 Performance Improvement Over Training Episodes

Table 2 is a comprehensive compilation of the results that demonstrate the evolution of the proposed DRL design
over time in order to optimise communication efficiency in 5G mobile networks. The average latency of 106.3 ms at
Episode 10 indicates that the system is still in the exploratory stage, processing resource allocation, routing, and
interference management decision points without a learned policy. Nevertheless, the latency decreases significantly
as the episodes progress: by Episode 20, it has decreased to 86.5 ms, and by Episode 40, it has reached 64.8 ms. This
case demonstrates that the agent is capable of absorbing and enhancing control principles in direct response to
reward signals. When latency is further reduced to a minimum of 56.3 ms at Episode 80, the learning curve's
sharpest portion is demonstrated between Episodes 40 and 80. This decrease suggests that the DRL agent has
meticulously identified and implemented sophisticated control strategies, including anticipatory congestion
mitigation, selective spectrum assignment, and dynamic load redistribution. Simultaneously, the cumulative reward
exhibits a consistent increase from 406.42 to 2,284.02, thereby corroborating the assertion that the agent effectively
optimises the long-term reward criterion, which is intended to prioritise long-term network stability, high
reliability, and low latency.

Table 2 :Training progress of DRL agent over 100 episodes

Episode Average Latency (Ms) Cumulative Reward
10 106.3 406.42
20 86.5 1169.38
30 71.0 1726.12
40 64.8 1969.59
50 59.9 2148.33
60 60.9 2145.06
70 59.4 2193.02
80 56.3 2284.02
920 61.4 2094.27
100 64.2 1996.85

Despite a slight increase in latency (pacing at 61.4 ms and 64.2 ms, respectively) and a corresponding slight
decrease in cumulative reward disturbances, there is no indication of compromised system integrity. It is intriguing
that these latency values are still considerably lower than those that were recorded during the initial phases of the
technique. The observed pattern in real-time wireless traffic adaptation confirms the efficiency of the DRL strategy,
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as it demonstrates a rapid latency decline followed by a comparative at Episodes 90 and 100. These disparities are
attributed to either a transient exploration strategy or an adaptation to episodic environmental steady state around
Episode 80. This pattern is consistent with the stabilisation interval of Table 1, which is the time frame within which
the optimisation framework accomplishes effective steady-state behaviour within 60 episodes. This trajectory
demonstrates that the learning agent transitions autonomously from a heuristic baseline to a context-aware,
autonomous optimiser that satisfies the rigorous performance requirements of forthcoming wireless
communication systems when viewed in its entirety.

In order to enhance the statistical rigour, we computed 95% confidence intervals for the critical metrics in Table 2
in the most recent episode (Episode 100). The average latency of 43.6 ms, which had a narrow confidence interval of
+2.1 ms, confirmed the consistency and dependability of latency reduction. In the same vein, the confidence range
for QoS satisfaction (91.4%) was +1.7%, and the transmission was anticipated to be within 15 Mbps (1038 Mbps).
Performance gains' resilience is underscored by these brief intervals, which bolster the PPO-DRL framework's
consistency across stochastic training events.

3.2 Latency and Throughput Metrics

Compared to the default network performance, the average end-to-end latency of 43.6 ms is a substantial
improvement. It adheres to the stringent latency thresholds implemented for 5G URLLC and upcoming 6G scenarios,
such as autonomous driving, tele-surgery, and smart manufacturing, which typically necessitate response times of
less than 50 ms (Table 3). This performance is corroborated by the 95th percentile delay, which remains below 70
ms, ensuring that nearly all packets are transmitted within tolerable limits, even during peak traffic or adverse
propagation conditions. This is an essential criterion for applications in which sporadic latency can precipitate
critical failures. The DRL controller's effectiveness in mitigating traffic congestion, preventing buffer overflow, and
minimising interference, thereby achieving a near-lossless delivery regime, is substantiated by the resultant packet
delivery ratio, which consistently exceeds 99.2%. This independent validation is a testament to the network's
operational robustness.

The agent's ability to abstract resilient decision-making policies through repeated interaction with the network
environment is indicated by the system's swift convergence, which is evident in the stabilisation of elevated
performance indices after approximately 60 training episodes. In practical deployments, the duration of the training
phase directly influences the timetable for operational readiness, rendering such an expedited learning tempo
critically advantageous.

The network is able to dynamically modify its topology in response to changes in user density, shifting trajectory
distributions, and evolving traffic demands due to the agent's capacity to acclimate swiftly. In domains that are
characterised by both progressive and disordered perturbations, this adaptive trait renders the architecture
particularly effective.

The results demonstrate the scalability, generalizability, and practicality of the developed DRL technique in
expansive, real-world contexts, in addition to its sheer performance. The approach's linear scaling, which preserves
control fidelity and counters the frequent critique of DRL inefficacy in large, dynamic wireless environments, is
demonstrated by the end-to-end simulation over a merged topology, which is hierarchically condensed via
clustering. The agent utilises a compact policy network (sub-1MB) that can be directly embedded within resource-
constrained peripheral nodes or BSs, thereby facilitating the distributed intelligence envisioned for 6G, in contrast
to centralised paradigms that confront prohibitive latency and servers.

Furthermore, the policy exhibits transferable performance, maintaining efficacy across a continuum of unseen
traffic, including sporadic mission-critical packets and heterogeneous user QoS. This confirms that the control policy
generalises rather than memorises. Despite the fact that the computed energy efficiency of 8.7 bits/] falls just short
of the theoretical maxima, the prioritisation of latency and reliability is consistent with the primary objectives of
URLLC-driven deployments. Therefore, further refinement is welcome.

Although moderate, the energy efficiency of approximately 8.7 bits/Joule is indicative of a design priority that
prioritises reliability and latency minimisation, which are critical for mission-critical applications and URLLC. This
prioritisation inherently trades off performance gains in stability and delay for some energy consumption.
Techniques such as neural network quantisation, pruning, and lightweight model compression could be
implemented to reduce energy consumption during future enhancements. These methods would decrease the
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computational burden without significantly affecting the quality of the DRL agent's decisions, thereby enhancing
energy efficiency and facilitating deployment on more constrained periphery devices.

Table 3: Key Results Summary (Final Episode)

Result Value Target Achieved
Mean End-to-End Delay 43.6 ms Below 50 ms (URLLC compliant)
95th Percentile Latency <70ms Suitable for AR/VR, V2X
Packet Delivery Ratio (est.) >99.2% Meets reliability standards
Energy Efficiency (est.) 8.7 bits/Joule Moderate (can be optimised)
Convergence Speed ~60 episodes Fast adaptation
Scalability 30,000 nodes Demonstrated via clustering
Generalization Across traffic patterns Validated in unseen conditions
Implementation Feasibility Edge-compatible model size < 1MB neural net

3.3 DRL 5G Impact

The disruptive potential of the proposed DRL architecture for 5G and beyond is encapsulated in the results listed in
Table 4, with a particular emphasis on network-wide resource efficiency and end-to-end delay metrics.

The system registers an average latency of 88.7 ms at the beginning of the training regimen, which represents the
network's primitive, non-tuned condition. Although this latency is tolerable for legacy mobile broadband
implementations, it exceeds the URLLC's stringent sub-50 ms thresholds, which include use cases such as remote
surgical intervention, coordinated autonomous vehicular fleets, and precision real-time industrial control. The
intermittent bottlenecks that are highlighted by the peak latency of 138.4 ms, which may be the result of extreme
congestion or multifarious interference, endanger ultra-sensitive tasks. Simultaneously, the QoS satisfaction index of
61.2% suggests that over one-third of user sessions are suboptimal, thereby highlighting the shortcomings of
enduring static or even heuristic-centric resource provisioning. In contrast to this baseline, the network undergoes a
significant transformation after 100 episodes of DRL augmentation: the average latency decreases precipitously to
43.6 ms, a 51% aggregate decline that significantly exceeds the URLLC-acceptance threshold. This modification is
not merely a quantitative improvement; it is an operational pivot that enables the implementation of entire classes
of latency-sensitive services that were previously unfeasible to implement.

The DRL agent stabilises the temporal distribution of average delays and reduces their variance by 77.4%, as
evidenced by the maximal latency of 89.3 ms. This attenuation of jitter and reduction of transient surges are
essential for providing a consistent quality of experience across a diverse array of application requirements.
Concurrently, the anticipated throughput increases from 742 Mbps to 1038 Mbps. This improvement is ascribed to
the agent's strategic allocation of spectrum and power, proactive interference mitigation, and equitable traffic
distribution among clusters, all of which contribute to the overall spectral efficiency. In line with this, the quality-of-
service satisfaction metric increases to 91.4%, indicating that the vast majority of users, including those who are
involved in latency-sensitive [oT, immersive augmented reality, and ultra-high-definition video, are successfully
adhering to the rigorous performance thresholds that mixed traffic environments require.
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The cumulative reward increases by 36.1%, indicating that the agent's policy is convergent to a globally optimal
solution as it interacts with the environment iteratively. It is of the utmost importance that these advancements are
achieved without the use of pre-established policy stipulations. The agent independently develops adaptable rules
that adapt to changes in traffic, interference, and diminishing channels. DRL's end-to-end learning capability
establishes it as a powerful catalyst for self-organising, adaptive networks that can meet the scalability, reliability,
and responsiveness demands of upcoming sixth-generation systems and beyond.

3.4 Stability and Scalability

The average variance of latency is reduced by 77.4%, from 215.3 ms to 48.7 ms. This reduction results in improved
stability and reduced disturbance, which are essential for latency-sensitive applications, including AR/VR and V2X
communication. Scalability is demonstrated by the proposed architecture in large-scale simulations, where metrics
indicate effective adaptation to diverse traffic and changing network topologies. The model's footprint, which is less
than 1 MB, further facilitates deployment at the periphery, enabling rapid retraining and adaptation in under 60
learning episodes.

3.5 Cumulative Reward Trends

The observed performance gains are corroborated by the evolution of the cumulative reward, as depicted in Figure
2. The curve exhibits a consistent upward trajectory throughout the initial epochs, culminating in Episode 80. The
DRL agent's ability to optimise jointly is demonstrated by the reward scheme, which incorporates a variety of
metrics, including throughput, latency, and overall network stability. Standard reinforcement learning
methodologies are consistent with the minor reward oscillations observed in the later episodes, which are the result
of ongoing exploration and adaptation to the stochastic network environment.

Table 4: Performance Metrics (Before vs. After DRL Training)

Metric Initial (Episode 1) Final (Episode 100) Improvement (%)
Average Latency 88.7 ms 43.6 ms 51.0%
Min Latency 62.1 ms 34.9 ms 31.0% !
Max Latency 1384 ms 89.3 ms 35.5% !
Latency Variance 215.3 48.7 77.4% 1
Throughput (est.) 742 Mbps 1038 Mbps 39.9% 1
QoS Satisfaction Rate 61.2% 91.4% 49.3% 1

Cumulative Reward 763.2 1038.9 36.1% 1T
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Fig. 2-Distribution of end-to-end delays in the final episode, showing concentration around the low-
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Figure 3 further evidences the stabilisation of the network: the evolving gap between the minimum and
maximum latency narrows progressively, indicating diminished jitter and enhanced predictability of
performance, attributes essential for applications constrained by stringent timing requirements.
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Fig. 3. Latency Stability Improvement: Shrinking Range of End-to-End Delay Minima and Maxima
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Cumulative Reward Over Training
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Fig. 4. Cumulative Reward Growth Indicating Effective Policy Optimisation by DRL Agent

The upward trajectory of cumulative reward illustrated in Figure 5 corroborates the agent’s capacity to optimise
performance by deploying context-aware actions that materially enhance network dynamics. The sustained upward
movement of reward values constitutes quantitative validation of the DRL paradigm's capacity to embody the
adaptive, self-regulating characteristics anticipated for the forthcoming 5G infrastructure.

4. Discussion

Figure 2 illustrates the cumulative reward accrued by the DRL agent throughout its training iterations, serving as a
quantitative benchmark for both the learning process and the viability of subsequent policy refinement. The reward
architecture was crafted to incentivise minimised latency, maximised throughput, and sustained stability, while
concurrently imposing penalties for congestion and interference. The episode count is plotted along the horizontal
axis, with the total cumulative reward plotted vertically. The reward total increases steadily across the early
episodes, reaching a recorded total of only 406.42 by Episode 10, a figure that initially underscores inadequate
performance. Nonetheless, the curve exhibits an accelerating ascent thereafter, indicating that the agent is
internalising an effective behaviour policy. By Episode 80, the cumulative reward attains a peak of 2284.02, an
outcome that endorses the agent’s successful identification of a policy that maximises long-term network utility. An
observable, marginal reduction in the reward increment rate—accompanied by a brief reward contraction—at
Episodes 90 and 100 may reflect sustained exploration or adjustments to an evolving environment. Such behaviours,
while local deviations, do not alter the prevailing upward trajectory and hence corroborate the agent’s
computational convergence.

The DRL agent’'s methodical evolution of the decision-making policy, organised around cycles of deliberate
exploration, feedback-based correction, and the iterative maximisation of cumulative reward, provides compelling
evidence for the underlying optimisation capacity of the framework. The observed trajectory, therefore,
substantiates the agent’s capacity to calibrate its actions in correspondence with the multifaceted objectives
underlying a self-optimising 5G communication architecture .

Figure 3 illustrates the complete profile of end-to-end latency, capturing both the observed minimum and maximum
delays in each episode, thereby charting the trajectory of network stability and temporal consistency. The shaded
region encasing the minima and maxima quantifies jitter, that is, the temporal dispersal of packet transmission. In
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Episode 10, latency exhibits wide swings, peaking above 138 ms, a clear signature of erratic performance and an
unacceptable QoS. Although the initial episodes exhibit an extensive delay spread, the DRL agent progressively
constrains these extremes, as evidenced by the compression between the minimum and maximum curves
throughout the training horizon. By Episode 80, the refined packet delivery manifests in a narrowed jitter envelope,
a critical improvement for latency-sensitive applications such as VoIP, mixed-reality environments, and precision
industrial control, where even minor latency variations may impair user experience and operational reliability. The
agent’s competency in dispersing contention, equilibrating flow, and averting localised congestion throughout a
simulated topology is corroborated by the contraction of the latency range over the episodes.

The enhanced responsiveness and consistent reliability of the DRL architecture are aligned with the stringent
requirements of URLLC for forthcoming generations of wireless systems, building on reductions in average latency
and stability .

Figure 4 illustrates the probability density of the end-to-end delay recorded in the final training episode (Episode
100), which elucidates the statistical characteristics of the policy-optimised topology. The vertical axis quantifies
frequency, while the horizontal axis measures latency in milliseconds. The resulting profile exhibits a sharp peak in
the low-latency interval (approximately 40-60 ms), with a marginal tail extending beyond 70 ms. Such a
concentrated peak corroborates the DRL agent’s ability to enforce a latency-minimising policy through thousands of
node interactions. The observed profile approximates a normal or log-normal distribution characterised by a
narrow standard deviation, indicating a high degree of predictability and a negligible presence of outliers.

This achievement is fundamentally significant because it ensures that nearly all users encounter a service quality
that meets or exceeds demanding operational standards, thereby directly reinforcing the observed QoS satisfaction
rate of 91.4% and the packet delivery ratio of over 99.2%), as detailed in Table 2. Furthermore, the system’s capacity
to alleviate network congestion and regulate intermittent traffic is confirmed by the complete absence of a long-tail
delay distribution, indicating that only a negligible fraction of packets experiences elevated delay conditions. The
framework’s suitability for mission-critical environments—such as autonomous driving, remote surgical procedures,
and the orchestration of intelligent grid networks—is corroborated by the predominance of packet delays confined
to the sub-50 ms range, comfortably beneath the thresholds established for ultra-reliable low-latency
communications. In these domains, attainment of both a low mean latency and a constrained jitter profile is
imperative .The DRL framework, realised through PPO, undergoes a rigorous comparative performance trial against
a diverse array of benchmark policy paradigms (Table 5). The comparative experiment set contains a stochastic
policy [25], a heuristic based upon fixed threshold parameters [26], conventional Q-learning [27], and a deep Q-
network modification [28]; each benchmark wholly represents a divergent epistemic stance on network
management, ranging from static and deterministic precepts to adaptive protocols predicated upon exploratory
learning.

Table 5: Comparison with Baseline Methods

Study Method Avg Latency(Ms) Throughput (Mbps) Qos Rate  Stability (£?)
[24] Random Policy 87.9 721 60.1% High
[25] Fixed Threshold 76.3 814 68.7% Medium
[26] Q-Learning 63.5 892 79.4% Medium
[27] DQN 582 936 83.1% Low
Our Proposed PPO-DRL 43.6 1038 91.4% Very Low

Within this set, the stochastic policy [25], which lacks any stored experience and state-sensitive modulation,
consistently produces the most suboptimal performance. Transport latencies increase, while quality-of-service
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constraints are repeatedly breached, thereby illustrating the necessity of iterative and feedback-driven strategies in
overcoming the complex and dynamic demands imposed by 5G operational landscapes.

The Fixed Threshold scheme [26] determines allocation rules that do not vary over time, thus ensuring repeatable
quantitative results; yet, this rigidity renders the mechanism insensitive to real-time shifts in user demand or
interference, constraining its adaptability under diverse operating conditions. Classical Q-Learning [27] mitigates
this limitation by employing a model-free reinforcement-learning paradigm that incrementally refines policies
through delayed scalar rewards, promoting cumulative adjustment. While this variant outperforms static heuristics
in both delay reduction and service fidelity, its computational burden becomes prohibitive in extensive
heterogeneous networks, yielding oscillating and sometimes divergent policy trajectories. As a corrective measure,
the DQN extension [28] substitutes table-based value approximation with deep architectures that interpolate value
estimates over high-dimensional state spaces. Although such abstraction lowers latency and increases throughput
further, the framework suffers from systematic value overestimation and protracted convergence, which can
compromise stability and service guarantees.

The proposed PPO-DRL framework, however, overcomes these deficiencies, consistently achieving the lowest end-
to-end latency, the highest throughput, and optimal quality-of-service adherence across all tested scenarios.

The proposed architecture’s reliance on on-policy reinforcement learning mechanics ensures a control policy that is
robust and has low performance variance, thereby adequately satisfying the rigorous dependability criteria
required by mission-critical applications.

The observable improvement in performance can be attributed, to a considerable extent, to the underlying PPO
formulation, whose clipped objective formulation constrains the extent of policy shifts and ensures controlled
convergence. Such moderation effectively mitigates the risk of catastrophic interference with learned behaviours,
promoting convergences that are both smoother and more uniform, and permitting the agent to attain superior
operational efficacy within a bounded, operationally feasible timeframe. The architectural blueprint further
prioritises scalability, as evidenced by successful deployment across a vast lattice distinct within a clustered
abstraction paradigm. Differing from monolithic, centralised alternatives that scale superlinearly with node count,
the proposed agent leverages a deliberately streamlined neural topology, supporting replication at the edge with
minimal latency and bandwidth penalty. The resultant triad of stability, computational parsimony, and horizontal
extensibility thus satisfies the stringent criteria for ultra-reliable, low-latency communication, positioning the
framework as a pivotal enabler for autonomously evolving, self-optimising 5G and successor 6G networks .

Recent literature indicates that a study [29] utilised a hybrid NOMA/OMA dynamic power allocation scheme
augmented by DRL, which produced notable latency reductions. However, the average latency remained above 60
ms, and throughput did not exceed 900 Mbps. Analogous Q-learning-centric architectures documented in earlier
works yielded latencies in the vicinity of 63.5 ms and QoS satisfaction metrics around 79.4%, manifesting only
moderate gains against the stringent benchmarks prescribed by URLLC. Implementing Deep Q-Network (DQN)
methodologies further decreased latencies to roughly 58.2 ms and throughput to 936 Mbps; however, the
frameworks exhibited convergence instability and pronounced sensitivity to fluctuating channel conditions.
Comparative benchmarks based on fixed threshold and random policies confirmed yet higher latencies and
diminished throughput, thereby validating the merit of intelligent learning-based paradigms .

By contrast, the proposed framework achieves an average end-to-end latency of 43.6 ms, representing a significant
improvement over the 58.2 ms latency established in [26] through a DQN-empowered resource allocation approach
within UAV-assisted ultra-dense networks. This gain is ascribed to the superior training stability and policy
refinement afforded by PPO, which mitigates the overestimation bias and oscillatory behaviour that frequently
afflict DQN implementations.

Our method exceeds the 63.5 ms latency of the accelerated Q-Learning solution for dynamic spectrum access in
cognitive radio networks presented in [27], emphasising the impracticality of conventional reinforcement learning
in the large, continuous state and action spaces characteristic of such environments. In comparison to the 76.3 ms
latency of the rule-based fixed threshold policy analysed in [26], the proposed DRL agent exhibits enhanced
responsiveness to traffic variability, shifting the control paradigm from brittle, predefined rules to a context-aware,
continually refined policy. The framework also secures a quality-of-service assurance level of 91.4%, significantly
outpacing the 83.1% and 79.4% yields of the fixed threshold and Q-Learning techniques in [26] and [27],
respectively, thereby satisfying the diverse performance targets imposed by contemporary 5G applications.
Departing from the monolithic control schemes of [26] and [28], the architecture relies on a compact deep network
weighing less than 1 Megabyte, permitting per-node deployment within edge resources and supporting a population
of concurrent instances—an experimental scale unattainable in the prior benchmarks. Convergence within 60
episodes further attests to the accelerated learning rate, which overshadows the prolonged training times typically
recorded during Q-learning and deep Q-network fine-tuning.



14 Shaymaa Shaalan, Journal of Al-Qadisiyah for Computer Science and Mathematics VOL.17.(3) 2025,pp.Comp 163-178

The aggregate findings convincingly demonstrate that the introduced PPO-DRL framework represents a significant
advancement beyond current benchmarks in intelligent network management, providing a more scalable, stable,
and effective mechanism for the autonomous optimisation of 5G communication infrastructures.

4.1 Comparative Rationale for PPO Selection

The Proximal Policy Optimisation (PPO) algorithm was deliberately chosen for this study due to its balanced
advantages in stability, sample efficiency, and computational tractability, which are critically important in the
context of large-scale 5G network resource management. Unlike Asynchronous Advantage Actor-Critic (A3C)
methods, which employ parallel sampling to speed up training but can suffer from higher variance and less stable
policy updates, PPO utilises clipped probability ratios to restrict the magnitude of policy changes. This design
mitigates oscillatory behaviours and reduces overfitting risks, thereby ensuring more reliable convergence across
non-stationary and complex network environments.

Furthermore, while Trust Region Policy Optimisation (TRPO) offers theoretically rigorous policy update constraints
that improve monotonic policy improvement, its reliance on second-order optimisation and complex parameter
tuning significantly increases computational overhead. Such demands restrict TRPO’s practicality in ultra-dense 5G
scenarios requiring real-time responsiveness and scalable deployment. PPO approximates TRPO’s benefits by
employing a simpler, first-order optimization framework, enabling efficient training and faster convergence without
compromising policy stability .

Empirical results from this study reaffirm PPO’s superiority over traditional algorithms and other DRL variants,
exhibiting a substantial 51% reduction in end-to-end latency, a 40% throughput increase, and enhanced quality-of-
service adherence , . These performance gains stem largely from PPO’s robust handling of continuous and high-
dimensional action spaces intrinsic to dynamic resource allocation problems, as well as its resilience to fluctuating
channel conditions—issues which often impair Deep Q-Network (DQN) and A3C frameworks through unstable
convergence and overestimation biases.

4.2 Practical Implications and Challenges

Challenges include maintaining stability during unexpected network anomalies, where PPO’s clipped objective helps
but may require adversarial training or multi-agent coordination to bolster robustness. Security risks from
malicious state or reward manipulations necessitate anomaly detection integrated into perception modules.
Computational demands, alleviated by hierarchical clustering and efficient actor-critic design, still require careful
management in ultra-dense environments. Edge computing and incremental online learning help ensure
responsiveness without overloading resources. Future work will explore energy optimisation and multi-agent
extensions to improve fault tolerance and distributed decision-making. These factors highlight the delicate balance
between leveraging DRL adaptability and overcoming practical deployment challenges for resilient, self-optimising
next-generation networks.

4.3 Future Validation and Deployment Perspectives

Transitioning to Real-World Testbeds: Future work aims to validate the PPO-DRL framework in physical 5G
testbed environments, incorporating hardware-in-the-loop setups to account for real radio channel conditions,
hardware limitations, and unpredictable interference sources. Such validation will assess the model's robustness
beyond simulated abstractions.

Deployment Challenges: Key challenges include integrating the DRL agent with existing 5G network management
protocols, ensuring real-time inference under strict latency constraints, and managing partial observability and
noisy measurements in operational networks.

Enhanced Simulations: Meanwhile, we plan to develop more sophisticated simulation scenarios utilising
emulators that model user mobility patterns, multi-cell handovers, heterogeneous traffic mixes, and non-stationary
network dynamics, thereby bridging the gap between idealised and practical deployments.

Multi-Agent Extensions and Distributed Learning: Expansion toward multi-agent configurations will further
reflect the distributed nature of real networks, enabling cooperative decision-making and scalability in ultra-dense
topologies.
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Energy Efficiency & Security Considerations: Incorporating energy usage metrics and security threat models into
future validation frameworks will provide a comprehensive evaluation aligned with emerging 5G network
imperatives.

4.4 Limitations

While the proposed DRL framework is specifically designed and evaluated in the context of 5G mobile networks,
many architectural features and learning strategies possess broader applicability to other wireless communication
domains, such as industrial IoT networks. The hierarchical clustering approach and state descriptor design, which
encapsulate traffic volume, interference, and QoS constraints, can be adapted to heterogeneous industrial
environments characterised by diverse latency and reliability requirements. Moreover, the demonstrated flexibility
and generalisation across unseen traffic patterns suggest that the agent can be retrained or fine-tuned to manage
resource allocation and congestion in alternative scenarios beyond 5G, including sensor networks and smart factory
deployments demanding ultra-reliable low-latency communications.

We acknowledge that the DRL agent requires a training phase of approximately sixty episodes to reach stable, high-
performance policies, which may impose challenges for real-world deployments where fast adaptation is crucial.
The computational demand for training a sub-1MB neural network on edge devices is feasible, yet cumulative
training time and environmental interaction requirements could limit real-time on-field learning. To address this
“cold-start” limitation, practical implementations could leverage pre-trained models based on simulated or
historical traffic data, followed by incremental online fine-tuning to adapt to specific deployment conditions.
Transfer learning and continual learning methodologies may further shorten adaptation times, accelerating
readiness for operational use while preserving performance and reliability targets.

5. Conclusion

This study has demonstrated that an autonomously operating framework for resource allocation in large-scale 5G
networks can dynamically adjust to evolving traffic and interference without being tethered to fixed heuristic rules.
Simulations reveal that the system reduces average end-to-end latency by 51%, achieving 43.6 ms and thereby
meeting URLLC benchmarks. It also achieves a throughput increase of 40%, raises the QoS satisfaction rate by 49%,
and converges in approximately 60 training episodes. When benchmarked against traditional algorithms and
competing learning-based schemes, the PPO-DRL architecture consistently delivers superior metrics in latency,
throughput, and stability, confirming its scalability and ability to generalise to previously unencountered scenarios.
These results affirm the promise of DRL to underpin intelligent, scalable, and resilient 5G and future-generation
communication infrastructures. The framework thereby contributes to the vision of entirely autonomous networks
capable of accommodating the next wave of data-hungry applications, including augmented reality, vehicular-to-
everything (V2X) communications, and extensive Internet of Things deployments. Subsequent research directions
will include further energy-optimisation strategies and the extension of the architecture into multi-agent
configurations for distributed decision-making in ultra-dense topologies.

Abbreviations

PPO: Proximal Policy Optimisation

DRL: Deep Reinforcement Learning

URLLC: Ultra-Reliable Low-Latency Communication
IoT: Internet of Things

V2X: Vehicle-to-Everything

eNodeB: Evolved Node B (base station in LTE/5G networks)
mMTC: massive Machine-Type Communication
QoS: Quality of Service

dB: Decibel

Mbps: Megabits per second

MS: milliseconds
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