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A B S T R A C T 

 

In this paper, we present a generalization types of the h-Hadamard integrals and derivatives 
parameterized by k. The h-Hadamard integrals and derivatives are themselves 
generalizations of the Hadamard integrals and derivatives, defined in relation to a continuous 
function h. We have also developed the concepts of k-gamma and k-beta, which correlate with 
the definitions of k-fractional h-Hadamard integrals and derivatives. The paper includes 
various theorems, propositions, properties, and illustrative examples.  
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1. Introduction 

   The classical calculus concepts of differentiation and integration are generalized by using fractional numbers. In 

[1, 2, 3–5,7] many authors introduce several types of fractional integral and derivative. For fractional integrals and 

derivatives have various applications in various branches of science [8–10, 12, 13, 14]. The type of fractional 

integral and derivative depend on another function in the kernel of the fractional operator. This type of fractional is 

considered generalized for the concept of fractional operator. In [11], Kilbas et al. introduce h-fractional Riemann-

Liouville, and in [6], K. K.BALACHANDRAN introduces the h-fractional Hadamard operator. Another method to 

generalize the concept of fractional operator by using k-function ,in the first time, in [15], Mubeen and Habibullah 

introduce a special k-fractional integral of the Riemann-Liouville, in this method, there is a need for developed 

Gamma and Beta function. In [16-19], Gamma function and Beta function are developed by parameter k. This 

development acts as a generalization of fractional integrals and derivatives by using k-functions, to use the k-

function for generalizing fractional integrals and derivatives.        stands for Banach space of all continuous 

function defined on [a,b]. 
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 2.Fundamental Concepts 

2.1 Definition [6]: 

Let  be a function defined on the interval [a,b] and     then : 

The formulas : 
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is called the left Hadamard integral and  
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is called the right Hadamard integral. 

2.2  Definition [6]: 

Let   be a function defined on the interval [a,b] and     then : 

The formulas :    
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is called the h-left Hadamard integral. 

and  
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is called the h-right Hadamard integral. 

Now , we introduce a developed version of Definition(1.2) by using parameter  k > 0. In [ ], Diaz and 

Pariguan introduce the special k-functions for gamma and beta functions as the following definition. 

2.3 Definition [16,17]: Let               then the formula  

  ( )  ∫          
    

 

 

 

is called the k-gamma function, and 
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is called the k-Beta function 

2.4 Some properties of k-gamma and k-Beta function [16,17]: 

i.   (   )     ( ); 

ii.    ( )    

iii.   ( )  
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iv.    (   )  
  ( )  ( )

  (   )
. 

 

3. k-h-Fractional Hadamard Integral and derivative  
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In this section, we give a new fractional integral and derivative , namely k-h-fractional Hadamard integral 

and derivative as generalized for Caputo-Hadamard fractional, Riemann-Liouville fractional and Erdelyi-Kober 

fractional. 

3.1 Definition: 

Let   be a continuous function in a Banach space        then : 
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is called the k-h-left Hadamard integral. And  
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is called the k-h-right Hadamard integral. 

 

3.2 Definition: 

Let   be a continuous function in a Banach space        and               then : 
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is called k-h-left Hadamard dervitive. And  
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is called k-h-right Hadamard derivative. 

3.3 A special cases of k-h-left (right) Hadamard  integral(dervitive). 

1. K=1, h(x)=x we get a classical Hadamard fractional integral(derivative) 

2.  K=1,  ( )     , we get a Riemann-Liouville fractional integral(derivative) 

3. K=1,  ( )                     , we obtain a generalization of Hadamard fractional integral(derivative). 

3.4 Example: 
Let  ( )      ( )                          and             then : 
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Also we can calculate  the k-h-left Hadamard fractional derivative as following 
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The following Figure show k-h-left fractional Hadamard derivative where   ( )             

 

         (a)                                                                                                              (b)                                                       

 

 

 

 

 

 

Fig.1 (a) k-h-left fractional Hadamard derivative (b) k-h-left fractional Hadamard Integral ,where               

 

3.5 Theorem: 

Let   be a continuous function defined on [a,b] ,           and           then: 
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Let's simplify the internal integral in Equation (3.6) using the terms z and 1-z , we obtain that 
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By substation Eq.(3.7) in Eq.(3.6) we get that: 
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By similarly method we can prove that     
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Theorem 3.6: 

 Let f  be a continuous function defined on [a,b] ,and            and           then: 
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Where         is a Banach space of all continuous functions and differentiable n-times. 

Proof: 
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By using partition method for above integral we obtain 
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if we continue in this process we obtain 
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3.7 Proposition: 

Let   be a continuous function defined on [a,b] ,      ,         and             then: 
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3.8 Proposition: 

Let       ,           and                          ( )         , then: 
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4.Conclusion 
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    In this paper, the results illustrate the examination of the properties of fractional integrals for the modified new k-
fractional Hadamard integral and derivative operators. This modification of the new k-h-fractional Hadamard 
integral relies on an exponential kernel with an arbitrary exponent within the integral. Additionally, in relation to 
the new fractional integral operators. This work is framework for future work in application and fractional 
differential equations. 
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