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Abstract 

           The paper presents various ways of defining and introducing Dirac delta 

function, its application in solving some problems and show the possibility of 

using delta-function in mathematics and physics.     

                                                                                                                                                                                                                                                                                                                                                            

Introduction  
        The development of science requires for its theoretical basis more and 

more "high mathematics", one of the achievements which are generalized 

functions, in particular the Dirac function. The theory of generalized functions 

is relevant in physics and mathematics, as have  of remarkable properties that 

extend the classical mathematical analysis extends the range of tasks and, 

moreover, leads to significant simplifications in the calculations, automating 

basic operations.  

 

The objectives of this work  
1) study  the concept of Dirac function;  

2) to consider the physical and mathematical approaches to its definition;  

3) show the application to the determination of derivatives of discontinuous 

functions.   

 

1.1. Basic concepts.  

         In various issues of mathematical analysis, the term "function" has to 

understand, with varying degrees of generality. Sometimes considered 

continuous but not differentiable functions, other issues have to assume that we 

are talking about functions, differentiable once or several times, etc. However, 

in some cases, the classical notion of function, even interpreted in the broadest 

sense,that is as an arbitrary rule, which relates each value of x in the domain of 

this function, a number of 

 y = f (x), is insufficient.  

That's an important example: using the apparatus of mathematical analysis to 

some problems, we are faced with a situation in which certain operations 

analysis are impractical, for example, a function that has no derivative (in some 

Page 77 -93 



Journal of Al-Qadisiyah for Computer Science and Mathematics 
Vol. 3      No.1          Year 2011 

 77 

points or even everywhere), it is impossible to differentiate if derivatives are 

understood as an elementary function. Difficulties of this type could be avoided 

by limiting the consideration only of analytic functions. However, such a 

narrowing of the stock of admissible functions in many cases is very desirable. 

        The need to further expand the concept of function has become particularly 

acute.  

          In 1930, for the solution of problems of theoretical physics largest British 

theoretical physicist, Dirac, one of the founders of quantum mechanics, did not 

have the apparatus of classical mathematics, and he introduced a new object, 

called "delta function", which goes far beyond the classic definition of the 

function .  

P. Dirac in his book The Principles of Quantum Mechanics "[5] to determine the 

delta function δ (x) as follows:  

                                                     









0,

0,0
)(

x

x
x  

Also given condition:  

                                                         




 .1)( dxx  

Intuitively, you can submit a schedule function, 

similar to the   δ(x), as shown in Figure 1. The more 

narrow stripes make between the left and right 

branch, the greater must be this strip, to strip the area 

( that is  the integral) to maintain its preset value of 

1. If you decrease the strip we get closer to the 

condition δ (x) = 0 for x ≠ 0, the function approaches 

the delta function.  

This view is generally accepted in physics.  

It should be emphasized that δ (x) is not a function in 

the usual sense, as follows from this definition incompatible conditions in terms 

of the classical definition of the function and the integral:   0)( x   when 

0x  and 




1)( dxx .  

In classical analysis there is no function that has the properties prescribed by 

Dirac. Only a few years later, in the works of SL Sobolev and L. Schwartz delta 

function derives its mathematical design, but not as usual, but as a generalized 

function.  

Before proceeding to consider the Dirac function, we introduce the basic 

definitions and theorems that we will need:  

 

 

Figure 1 
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Definition 1. 

    The image function f (t) or L - the image of a given function f (t) is a function 

of complex variable p, defined by the equation:                              





0

)()( dttfepF pt  

In this case, we assume that when t <0 f (t) = 0 and t> 0 the 

inequality
atMetf )( , where M and a  - some positive constants.  

 

Definition 2. 

         Function f (t), defined as follows:  

                           









0,0

0,1
)(

t

t
tf          

is the unit Heaviside function, denoted by  )(0 t   . This function is shown in 

Fig.2                                                                                                            

                               
   We find L - image Heaviside function:  
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So  

                                                   
p

tL
1

)(0                                         (1)  

Let the function f (t) for t <0 is identically equal to zero (Fig. 3). Then the 

function f(t-t0)  is identically equal to zero for t <t0 (Fig. 4).  
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To find the image δ (x) with an auxiliary function, consider the theorem of 

delay:  

 

Theorem 1 

 If F (p) is the image function  f (t), then )(0 pFe
pt

 is the image function   f (t-

t0) that is , if L (f (t)) = F (p), then   )()( 0
0 pFettfL

pt
  .  

  

Proof.  

   By definition   images  have  

     
 

 
0 0

0000

0

0

)()()()(

t

t

ptptpt dtttfedtttfedtttfettfL  

The first integral is equal to zero, because f (t-t0) = 0 for t <t0. In the last 

integral, make the change of variable t-t0 = z:  

            
 




0 0

)(
0 )()()()( 000 pFedzzfeedzzfettfL

ptpzpttzp
                              

Thus     )()( 0
0 pFettfL

pt
  .  

For the Heaviside unit step function, it was found that 
p

tL
1

)}({ 0   . Based on 

this theorem, it follows that the function )(0 ht   , L-image will be
phe

p

1
  , 

that is  

                             phe
p

htL 
1

)(0                                     (2)  

Definition 3 

    Continuous or piecewise continuous function δ (t, λ) of the argument t, 

depending on the parameter λ, called acicular, if:  

1) 0),(  t  at t ;  

2) 0),(  t  when t  ;  
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3)  


 






 1),(),( dttdtt  

 

Definition 4 
    Numerical function f, defined on some linear space L, is called functional.                          

Define a set of those functions, which will act functional. As this set we 

consider the set K of all real functions φ (x), each of which has continuous 

derivatives of all orders and finite, that is zero outside a limited area (for each of 

its functions φ (x)). These functions will be called the core, and their entire 

collection of K - the main space.  

 

Definition 5 
    Generalized function is called every continuous linear functional defined on 

the main space K.  

Decode the definition of generalized functions:  

1) the generalized function f is a functional on the basic functions of φ, that is, 

each φ matches (complex) number (f, φ);  

2) linear functional f, that is  ),(),(),( 22112211  fff  , for any 

complex numbers λ1 and λ2, and all the main functions φ1 and φ2;  

3) the functional f is continuous, that is  kff k ),,(),(  , if  k  .  

 

Definition 6 
    Impulse - single, short-term jump in electrical current or voltage [2, p. 482].  

 

Definition 7 
    Average density - the ratio of body mass m to its volume V, ie [2, p. 134].  

 

Theorem 2. (Generalized mean value theorem).  

If  f (t) - continuous, and )(t  - an integrable function on [a; b], where )(t  in 

this interval does not change sign, then dttfdtttf
b

a

b

a

  )()()()(  , where 

);( ba  [1, p. 228].                        

 

Theorem 3 
       Let the function f (x), is bounded on [a, b] and has only a finite number of 

points of discontinuity. Then the function is a primitive for the function f (x) on 

the interval [a, b] and for any antiderivative F (x) the formula [1, p. 220].  

 



Journal of Al-Qadisiyah for Computer Science and Mathematics 
Vol. 3      No.1          Year 2011 

 78 

Definition 8 

         The set of all continuous linear functional defined on some linear space E 

forms a linear space. It is called the dual space of E and denoted by E *.  

 

Definition 9 
         Linear space E, which is given a certain rate, called a normed space.  

 

Definition 10 
         The sequence is weakly convergent to, if for each the relation.  

Theorem 4. If (xn) - weakly convergent sequence in a normed space, then there 

exists a constant C that [10, p. 187].  

 

1.2 problems, carrying into definition of Dirac delta function.  

          From a physical point of view, the Dirac delta function, used in 

mathematical physics for solving problems, which are concentrated at a single 

point value (load, charge, etc.) is presented as a simple generic function that 

allows to record the spatial density of a physical quantity (mass, charge, the 

intensity of the heat source, power, etc.), concentrated and applied at the point 

of a space Rn. It describes, for example, the density of the mass distribution, 

which at one point focused unit mass, and any interval not containing this point, 

free from the masses.  

        

1.2.1. problem on impulse.  

Consider the function  

                             
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     shown in Figure 5.                                                                     

                                                                                                                                                                                                                                                                                           
  If this feature interpreted as a force acting during the time interval from  0 to h, 

and the rest of the time equal to zero, the momentum of this force, calculated by 

the formula is equal to unity.  
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On the basis of formulas (1) and (2) image of this function will  
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In mechanics it is convenient to consider the forces acting very short period of 

time, as the forces acting instantaneously, but with a finite momentum. 

Therefore, we introduce the function δ (t) as the limit function ),(1 ht  at 0h  

:  

                                                            ),(lim)( 1
0

htt
h




  

This is called the unit impulse function or a delta function, and 




1)( dtt  , as 

the momentum of force equal to unity.  

 

1.2.2. The problem of the density of the material point.  
    Try to determine the density, created a material point of mass 1.  

We assume that this point is the origin. To determine the density, the unit mass 

distribute uniformly inside a ball of radius ε centered at 0. The result is the 

average density fε(x), equal  

 

                                                       





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









.,0
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






x

x

xf  

 

But we are interested in density 0  (ie, ε tends to 0 on the right). Let us 

first as the desired density δ (x) the limit of the mean densities fε(x) if 0  

that is the function  

                           









 .0,0

,0,
)(lim)(

0 x

x
xfx


                                               

    (3)  

 

From the density δ is natural to require that its integral over all space would 

give the total mass of substance, ie  

                                                             




1)( dxx                                    (4)  
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But for the function δ (x), defined by (3), 




 0)( dxx  . This means that the 

function does not restore a lot (does not meet the requirement (4)) and therefore 

can not be taken as the desired density. Thus, the limit of the average densities 

fε (x) is not suitable for our purposes, ie can not be taken as the density δ (x).  

 

For any continuous function φ (x) we find the weak limit of a sequence 

 dxxxf )()(   with 0  .  

Show that  

                                             


)0()()(lim
0




dxxxf                              (5)  

Indeed, the continuity of φ (x) for any η> 0, there is ε0>0such 

that   )0()(x  , as soon 0x . Hence, for all 0   we get  
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We will show that 
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Since 
3
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dx  (dx is actually equal to dV), then VdVdx
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volume of a sphere of radius ε. Consequently  
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Equation (5) indicates that the weak limit of a sequence of functions fε (x), 
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0  , is the functional φ (0) (and not a function!), Associating each 

continuous function 

φ (x) the number of φ (0) - its value at x = 0. This functional was adopted for 

determining the density δ (x) - this is the Dirac delta function. So, we can write  

                                        , 0  

 

meaning there by limiting relation (5). The value of the functional δ function at 

φ - the number of φ (0) - denoted as follows:  

 

                                                    )0(),(                (6)  

This equation gives the exact meaning of the delta functions, introduced by 

Dirac, which has the following properties:  

                             δ (x) = 0, x ≠ 0,   )0()()(  dxxx  ,  C.     

The role is played by the integral  dxxx )()(  value ),(   - the value of the 

functional δ function on φ.  

Thus, the delta-function - a functional that assigns the formula ),(   = φ (0) for 

each continuous function φ the number of φ (0) - its value at zero.  

Verify that the functional δ recovers the total mass. Indeed, the integral 

role 




dxx)(   played by the quantity )1,( , equal to, by virtue of (6), the value 

of the function identically equal to 1, at x = 0,that is )1,(  = 1 (0) = 1.  

Thus, the density corresponding to a point mass distribution can not be 

described within the classical notion of function, and its description should 

include the linear (continuous)  functional.  

 

 

 1.3. Matematical definition of Dirac.  
       The function δ (x) is applied not only in mechanics, and in many areas of 

mathematics, particularly in solving many problems of mathematical physics 

equations.  

Let f (t) - function, continuous on (a; b), and ),(  t  - needle-shaped function. 

To further determine the introduction of Dirac delta function the behavior of the 

integral  

                           
b

a

dtttf ),()(   at 0   

Let (a; b), containing the point t = 0, that is  a <0 <b and ),min( ba  . The 

definition of an acicular function and the generalized mean value theorems we 

obtain:  
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            where );(   .  

 

If 0 , then 0 , and in the continuity of the function f (t) and 

)0()( ff  . Therefore, when a <0 <b  

                                        


b

a

fdtttf )0(),()(lim
0




  (7)  

If the numbers a and b of the same characters (a <b <0 or 0 <a <b), ie (a; b) does 

not contain within itself the point t = 0, then  

                                                0),()(  dtttf
b

a

    

for all sufficiently small λ.  

If the numbers a and b have the same sign, then when a  , if a> 0 (Fig. 6), 

or b if b <0 (Fig. 7), the interval );(   will not overlap with (a; b), and 

therefore for all );( bat          

                                       0),(  t   and   
b

a

dtttf 0),()(     .  

Consequently  

                                                   


b

a

dtttf 0),()(lim
0


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              (8)  

 

 

                                               

 

 

Introduce the notation:  


b

a

b

a

dtttfdtttf )()(),()(lim
0




                      (9)                 

Thus, δ (t) - a distribution which characterizes the limit behavior of acicular 

function ),(  t  at 0  and used in the calculation of integrals  

Delta-function can be applied formally, using only read the main properties 

derived from equation (7) - (9) for any continuous function.  
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

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
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0 a b x 0 a b x 

Fig.6 Fig.7 
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We introduce the substitution  
b

a

dttttf )()( 0 =  


b

a

dttttf ),()(lim 0
0




, then  
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








b

a
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battf
dttttf

);(,0

);(),(
)()(

0

00
0                     (11)  

The property, described by relations (10) and (11) is called the filtering 

properties of the delta- function.  

If  f (t) ≡ 1, (9) - (11) take the form  
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If the interval (a; b) take the entire axis, then 




1)( dtt         .  

 2- Application of the Dirac  

2.1. Discontinuous functions and their derivatives.  
XX - XI century finds a lot of constructive solutions to what seemed impossible 

in the XIX century. Since the delta function, determine the derivative at the 

point of discontinuity (in particular, to break the form of a finite jump).  

Consider the integral of the function δ (x) depending on its upper limit, ie the 

function  

   



x

dxxx )()(   . (12)                                                                                                                                                                                                                                                                                                                       

This function has the form of "step" (Fig. 8). While x <0, the region of 

integration in formula (12) is entirely where δ (x) = 0. Consequently, θ (x) = 0 

for x <0. If x> 0, then the integration includes the neighborhood of the origin, 

where )0( . On the other hand, since for x> 0 and δ (x) = 0, then the value 

of the integral does not change when the upper limit varies from 0,1 to 1, or to 

10, or to ∞. Consequently, for x> 0 we have  

                                  







x

dxxdxxx 1)()()(   

as shown in Figure 8.  

Thus, with the help of the delta function to construct a simple discontinuous 

function θ (x) such that x <0, θ (x) = 0, and in x> 0, θ (x) = 1. When x = 0, θ 

discontinuity from 0 to 1.  
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Not knowing the delta-function, have to say that the derivative can not find 

where the function is discontinuous. We've built a discontinuous function of θ 

(x). By the theorem on the existence of a primitive for a limited function with 

finite or countable number of discontinuity points, the general rule between the 

integral and derivative has the form:  

                                          
x

x

dxxgxF

0

)()(    .  

                     Then            
dx

dF
xg )( .  

Apply it to the expression (12), we obtain  

                                                         )(
)(

x
dx

xd



  . 

So, for the derivative of a discontinuous function does not need to make an 

exception: just at the point of discontinuity is equal to the derivative of "special" 

function - Dirac delta function.  

The derivative of the discontinuous function is defined as follows:  

                                      f’(x)={f’(x)}+[fx0 ]δ(x – x0)                                                                                                              

where fx0 - the value of the gap at the point x0,  

{f’(x)} - a derivative everywhere except at the point x0.  

With Dirac delta function derivatives can be found 

in more complex cases.  

 

2.2. Finding derivatives of discontinuous 

functions.  
Example 1: Find the derivative of  

                     









1,2

1,

xx

xx
y  .                                           

The graph of Figure 8. The gap occurs at x = 1. 

The value of discontinuity   y (1 +0)-y (1-0) = 1-2-

1 = -2, where  

y (1 +0) - is the limit when approaching y  at x  1 on the right (from x> 1), y 

(1 - 0) - the same on the left. Hence, we find that  

 

 

                        )1(21  x
dx

dy
                        (13)  
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Such a record better than 1
dx

dy
 the assertion that everywhere except  

the point x = 1, where the function is discontinuous and has  

no derivative. In writing (13) is contained in one line and    

the fact that the gap (once entered δ), and his place (x = 1),                                 

 and magnitude  (factor (- 2) with δ). 

 

 

Example 2:  

                                    









1,

1,

2

2

xx

xx
y                                        

                                    









1,2

1,2
'

xx

xx
y  

The gap at the point x = 1. The value of the gap: y (1 +0)-y (1 - 0) = 2.  

Now we can point x = 1 attached to the left pane, and then write  

                                        









1,2

1),1(22
'

xx

xxx
y


   .  

Or another option - you can add x = 1 to the right pane, and then with an equal 

right to write  

                                        









1),1(22

1,2
'

xxx

xx
y


   .  

You can also write  

                                        )1(2)('  xxy  ,                                                             

                                 where 









).1(2

),1(2
)(

xx

xx
x  

 

 

Example 3  
Consider the model of current flow along the chain provided in the MN 

Dubaylovoy "Application of Fourier series for solving problems in 

electrodynamics" [7].  

We find the derivative of the function provided by the plot of the current 
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strength of the time:                  

 
The graph shows that the current strength at the points α / (2ω), 2π-α / (2ω), 2π 

+ α / (2ω), 4π-α / (2ω), ... instantly falls from A to 0 or from 0 to -A, ie, the 

current instantly reduced to 0, and again appears with a negative value. The 

disappearance of current in the circuit means that the chain is broken, so the 

actual process appears again after some time can not talk spontaneously. Such a 

model of current flow along the chain is controversial.  

In fact, current strength does not change instantaneously, but within a short 

finite period of time. The actual process can be represented by the following 

graph (Fig. 10). 

               

    
In physics, a simplified model, the schedule is presented in Figure 9, as well as 

the work of the current in a short finite time interval Δt is equal to zero 

  (A=  Idt =A1+A2=A1+(-A1)=0, geometrically the number of A1 and A2 express 

Square shaded figures, see Figure 10).  

In mathematics Fig.9 is not a graph of the function (one value of t corresponds 
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to an infinite set of values of I). Therefore, mathematics is considering a 

simplified model, abstracted from the real process, disrupting the function graph 

of this model presented in Figure 11.  

                                  

 
We find the derivative of this function.  

For this function ask the following:  

                                           
















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[)
22

,
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





























TT
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T
TT

t

TTtA

tf  .  

Gaps occur when )
2

(),
22

(),
22

(,
2 














 T

TT
.  

Values are gaps-A,-A, A, A, respectively. Hence, we find that  
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

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Conclusion  

     In the final qualifying work goals achieved, there were some detail the 

mathematical and physical approaches to the definition of Dirac, and physical 

approach to the determination carried through the solution of physical problems 

of impulse and density of the material point. Application of the Dirac function 

for finding the derivatives of discontinuous functions was illustrated with the 

help of mathematical and physical examples, revealed the usefulness of the 

delta function for finding the derivatives of discontinuous functions. Theoretical 

material is confirmed by the decision of various examples.  

Thus, the Dirac delta function - one of the most essential and widely used 

concepts in physics and in mathematical analysis.  
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    الخلاصة  
( وتطبيقاتها  Dirac delta functionهذا البحث يقدم طرق مختمفة لعرض وتحديد دالة دلتا ديراك )    

( في الرياضيات التحميمية  delta functionفي حل بعض المشاكل واضهار امكانية استخدام دالة دلتا)
 والفيزياء.

 


