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1. Introduction

In 1965, L. A. Zadeh [1] established the first successful attempt to incorporate non-probabilistic uncertainty—that
is, uncertainty not caused by the improbability of an event—into mathematical modeling with his significant theory

on fuzzy sets (FST).

Each component of the universe includes a part of a fuzzy set, but the membership value of each component is a
quantity (or level of belongingness) that ranges from 0 to 1. This gradation concept works well for tasks that include
ambiguous input, such language processing, artificially intelligent handwriting, speech recognition, etc.

A further development of this fuzzy set, known as fuzzy sets having intuitive characteristics (IFS), was introduced by

Atanassov [2] in 1986. Furthermore, to its membership value, each component in IFS has a not being a member
value. Furthermore, it is necessary for the sum of these two values to equal or fall below unity. In IFS, belongingness
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and non-belongingness are not independent; the former determines the latter. Fuzzy set theory may be seen as a
particular instance of an IFS where the degree of non-belongingness of an element is exactly equal to one belongingness.
Both whole and partial ambiguous data can be handled by IFS. Fuzzy sets built around intuition are very useful in
scenarios where the level of non-belongingness is as important as the level of belongingness, including database fusion,
systems for expertise, and systems of beliefs.

Neogothic logic was introduced by Smarandache [3] in 1995. This logic assigns a grade of falsehood (F), a level of truth
(T), and a level of indeterminacy (I) to each proposition. The unusual unit interval [0,1]" is a neutrophilic set, meaning
that each element of our universe has a certain amount of truth, ambiguity, and deceit, respectively.

Smarandache's neutrosophic concept has several real-time applications in the fields of [4,5,6,7,8,9, and 10]. information
systems, practical mathematics, intelligent machines, computer science, and decision-making. Knowledge of
administration, medicine, technology and electricity, mechanics, etc.

Salama and Alblowi [11] introduced the new term for neutrosophic topological space in 2012. A neutrosophic closed class
with neutrosophic continuous functions was introduced by Salama et al. in 2014 [12]. Arokiarani et al. [13] were the first
to present the neutrosophic a-closed framework for neutrosophic topological spaces.

In 2018, enlarged Neutrosophic closed sets were introduced by Dhavaseelan and Jafari [14]. Mani Parimala et al.5
introduced neutrosophic ay-closed sets in 2018. In 2019, extended closed sets utilizing neutrophilic topological spaces
were introduced by Pushpalatha et al. [15]. Renu Thomas et al. [16] introduced and investigated semi-pre-open, or [3-open,
sets in neutrosophic topological spaces. Neutrosophic Topological spaces NB*-closed structures were very recently
created and studied in 2022. Furthermore, Subasree and Basari Kodi [17-18] introduced an additional type of categories
within neutrosophic topological space are Ny and Nf.

lately Nandhini and Vigneshwaran [20-21] developed the concept of V#,-closed sets in neutrosophic spaces for
topology and studied some of its characteristics. Furthermore, in neutrosophic topological space, Vg4t -continuous as
well as IV #y-irresolute function [20] was initiated and studied.

This article presented a new class of mappings in NTS: weakly neutrosophic ¥B-continuous mapping (WN yS-CM)
strongly neutrosophic ¥ - continuous mapping (SN 1 8-CM), neutrosophic Y B-weakly continuous mapping (NypSW-CM)
and neutrosophic P8 -weakly continuous mapping (NyYBS-CM). Furthermore, we introduced weakly neutrosophic Y-
Irresolute mapping (WN yB-IM) strongly neutrosophic Y - Irresolute mapping (SN ¥ S-IM), neutrosophic Y B-weakly
Irresolute mapping (N BW-IM) and neutrosophic Y B -weakly Irresolute mapping (NipBS-IM) and some of its features
are investigated. Finally, we studied the composition for these mappings in neutrosophic topological spaces.

2. Basic Concepts

In this section, we will give some definitions of the neutrosophic topological space that we need in our work.

Definition 2.1.[22] “A neutrosophic set (NS, for short) g represents a structure of the form
9 = {(s, Us(5), Vg (5), Wy (5): se)}, where Ug(s), Vg(s), and Wg(s) respectively represent the degree for
membership, the degree of indeterminacy, and the degree of non-membership for every member seg to the set $".

Definition 2.2. [22] “Assume that $ and K are NSs of the form $ = {(s, Ug(s), Vg (5), Wy (s): se)} and
K = {(s, Uy (5), Vi (s), Wy (5): se)}. Next,

(i) € K ifand only if Ug (s) < Uy (), Vg (s) < Vic(s) and We(s) = Wyc(s);
(D)5 = {(Wy(s), Vo(s), Us(s): se));

(i) § N5 = ({5, Us(5) A Use(5), Vs (5) V Vic(s), W (s) V Wi (s): se)};
(V) § UK = ({5, Us(5) V Usc(5), Vs (5) A Vic(s), Wy (5) A Whe(s): seg))’”

Definition 2.3. [11] “If an extended family 7" of a NS in X satisfies the following axioms, then X has a
neutrosophic topology (NT):
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(1) Oy, 1y € T;

(ii) Forany M, N e Tthen M N N eT.

(iii) For each random family {M; i € K} € T,thenu M;e T".
Definition 2.4.[11] “Suppose Q be a NS of a neutrosophic topological space X. It follows that:

i.  Nint(M) =U {W: W represents NOS in X,and W € M } is referred to as a neutrosophic interior for M.
ii. Ncl(M) =n{G: G represents NCSin X,and § 2 M } is referred to as a neutrosophic closure of M.

Definition 2.5.[17] “If M is a NOS in (X, 7) and Ncl(M) € U whenever M € U, then a subset M of a NTS (X, 1)
is a neutrosophic generalized closed (NgC) set”.

Definition 2.6.[17]. “Let (X, 7) be a NTS and let M be a subset of (X, 7). Then M is:

1. A neutrosophic semi generalized —-closed (NsgC) sets if NscI(M) € U whenever M' € U and U is a NsO-
setin (X, 7).

2. Aneutrosophic -closed (NYC) sets if Nscl(M) € U whenever M' € U and U is a NsgO-setin (X, 1)".

Definition 2.7.[17] “If Nscl(M) € U whenever M' € U and U is a neutrosophic y-open set in (X, ), then a
subset M of a NTS (X, 7) is referred to as a neutrosophic Sip-closed (NS CS)”.

Definition 2.8.[23] “If M is a subset of NTS (X, t) then M is called:
i. WN y3-CS if it meets the requirements listed below:
1. M = Nypcl(M);
2. IfM < U, then foreach Uis NGpOS in X:
Nyint(U)u M + Q.
ii. SN y3-CS if it meets the requirements listed below:
1. M = Nypcl(M);
2. IfM < U, then foreach Uis NGyOS in X:
Nyint(U) N M + Q.
iii. NYSW-CSif M € Nicl(U) whenever M € U, and U is a NFOS such that
Nyint(U) U Nypcl(M) # @.
iv. NyYSS-CS if M € Nycl(U) whenever M € U, and U is a NSOS such that
Nyint(U) N Nycl(M) += @".

Definition 2.9.[23] “let (X,7)and (Y,0) be a NTS and let h be a mapping from X to Y then h is neutrosophic
continuous mapping, if the preimage h=1(M) is NOS in (X, ) forany NOSV € (Y,0)".

Definition 2.9.[24] “let (X,7) and (Y,0) be a NTS and let h be a mapping from X toY then h is neutrosophic
irresolute mapping, if the preimage h=1 (M) the NSOS in (X, 7) for any NSOSV € (Y, 0)".
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3. New Classes of Continuous Mappings in NTS

In this part, we present a new class of continuous mapping including WNyg — CM,SYSW — CM, NYSW —
CM,NyYSS — CM and WNyYS — IM,SYSW — IM, NYySW — IM,NypBS — IM and investigating relationships among
themselves.

Definition 3.1. let (X, 1), (Y,0) bea NTS and let h be a function from X toY then h is:
i.  NyBW — CM if the preimage h™1 (M) WNypB-0S in (X, ) forany NOS M € (Y,0).
ii.  SNyB — CM If the preimage h~1(M) SNy B-0S in (X, 1) for any NOSM € (Y, o).
iii. Ny BW — CMIf the preimage h~1 (M) Ny BW-0S in (X,7) forany NOSM € (Y, o).
iv. Ny BS — CMIf the preimage h=1 (M) NypBS-0S in (X, 7) forany NOSM € (Y, 0).

Example 3.2. LetX ={{v,u}, v, ={0y 15,4} with A ={(¢0.50.7,0.4), (v, 0.4,0.5,0.3), (&, 0.8,0.7,0.9)} and
¢ ={(§0.1,0.7,0.3), (v, 0.2,0.2,0), (1, 0.8,0.3,0.9)} satisfies NyBW — OS

Y = {a,B,y}, T, = {Oy, 1y, B} with B = {(a, 0.4,0.6,0.3), (B, 0.3,0.4,0.2), (¥, 0.7,0.6,0.8)}

and D = {(a, 0.2,0.2,0.1), (B,0.6,0.6,0.6), (v, 0.8,0.9,0.9)} satisfies NOS. Then a map f: X — Y defined by f(a) = §,
f(B) = v, f(y) = urepresents NYBW — CM, where T, T, are NyW — OS

Example 3.3. Let X = {§,v,1}, 7, = {Oy, 1y, A} with A = {(£,0.4,0.5,0.3), (v,0.3,0.4,0.1), (1, 0.6,0.5,0.8)}
€ ={(£,0.2,0.1,0.7), (v, 0,0.2,0.5), (1, 0.6,0.1,0.7)} satisfies WNpB — 0S
Y ={a,B,v}, T, = {Oy, 1y, B} with B = {(,0.5,0.6,0.4), (8,0.4,0.5,0.2), (y,0.7,0.6,0.9)}

D = {(a,0.3,0.2,0.8),(B,0.1,0.3,0.6), (y,0.7,0.2,0.8)} satisfies NOS. Then a map f:X — Y defined by f(a) =¢,
f(B) =v, f(y) = urepresents WNy§ — CM, where t,,t, are NySW — OS.

Example 3.4. Let X ={v,u}, T, = {0y, 1y,4,B} with A ={(¢,0.7,0.8,0.5), (v, 0.5,0.6,0.4), (&, 0.9,0.9,0.8)}
,B = {(£,0.5,0.8,0.7), (v,0.4,0.6,0.5), (1, 0.8,0.9,0.9) } and C = {(,0.2,0.4,0.6), (v, 0.4,0.5,0.4), (1, 0.8,0.9,0.9)} satisfies
NyBS — 0S

Y ={a,B,v} 1, ={0y,1y,M,N} with M = {(a,0.6,0.7,0.4), (8,0.4,0.5,0.3), (v, 0.8,0.8,0.7)}
, N ={(a,0.4,0.7,0.6),(5,0.3,0.50.4),(y,0.7,0.8,08)} and S ={(a 0.1,0.30.5),(8,0.3,0.40.3),(y,0.7,0.8,0.8)}
satisfies NOS. Then a map f:X—Y defined by f(a)=¢ f(B)=v, f(y)=u represents
NYpS — CM,where 1,7, are NYW — OS.

Example 3.5. Let X={&v,u}, 7, ={0y 1y, 4, B} with A ={(£ 0.7,0.8,0.5), (v,0.1,03,0.1), (1, 0.8,0.8,0.7)}
, B={(0.3,0.5,0.6),(v,0.50.5,0.5), (x 0.6,0.8,0.8)} and ¢ =1{(¢,0.1,0.5,0.3), (v, 0.6,0.4,0.5), (4, 0.6,0.5,0.8)}
satisfies SN — OS and

Y ={a,B,v} 1, = {0y, 15,M,N} with M = {(a,0.7,0.5,0.6), (8,0.5,0.5,0.5), (y, 0.6,0.5,0.5)}
, N ={(a,0.3,0.4,0.7),(8,0.505,0.5),(y,0.60606)} and S=1{(a 0.20.40.3),(B,0.40.40.4),(y,0.6060.7)}
satisfies NOS. Then a map f:X — Y defined by f(a) =&, f(B) =v, f(y) =u represents SNYB—CM,
where 1,,T, are NYBS — 0S.

Theorem 3.6. Every SNy — CM is WNyS — CM

Proof: Assume that(X, 1), (Y,0) be a NTS and f:X — Y be a mapping. Since f represents SNy — CM, this implies
h=1(M) SNy B-0S in X for any NOSM € Y. Since every SN y-CS is WN y3-CS. Thus h=1 (M) WNyB-0S [23] for
any NOS M € Y.Consequently, a map f represents WNyS — CM.
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The example 3.3. demonstrates that the converse of Theorem 3.6. is not required to be true.
Theorem 3.7. Every SNy — CM is NYBS — CM

Proof: In the same way above.

The example 3.4. demonstrates that the converse of Theorem 3.6. is not required to be true.
Theorem 3.8. Every WNy B — continuous mapping is NYBW — continuous mapping
Proof: Obvious.

The example 3.2. demonstrates that the converse of Theorem 3.7. is not required to be true.
Theorem 3.9. Every Ny S — continuous mapping is Ny SW — continuous mapping
Proof: Obvious.

The example 3.2. demonstrates that the converse of Theorem 3.8. is not required to be true.

Remark 3.10. The diagram that follows Figure 3.1 be Show the Relationships across different neutrophilic
continuous mapping.

SNy — CM WNyB — CM

NyYBS — CM NYBW — CM

Fig 3.1. The relationship between the new varieties of continuous mappings

Definition 3.12. let (X,7),(Y,0) be a two neutrosophic topological space and let f be a mapping from X to Y
then fis neutrosophic irresolute continuous mapping,

i. If the preimage f~1(M) is WNyB-0S in (X, ) for any WNyB-SOS € (Y, o).
ii. If the preimage f~1(M) is SNyB-0S in (X, 1) for any SNyB-SOS € (Y, o).
iii. If the preimage f~1(M) is NyyfW-0S in (X, 7) for any NyyBW-SOS € (Y, o).

iv. If the preimage f~1(M) is Ny8S-0S in (X, 7) for any Ny BS-S0S € (Y, 0).

Example 3.13. Let X = {§,v,u}, 7, = {0y, 15,4} with A = {(§,0.2,0.1,0.7), (v, 0,0.2,0.5), (4, 0.6,0.1,0.7)} satisfies
WNyB — 0S
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Y ={a, B, u, 7, = {0y, 1y, B} with B = {(«,0.1,0,0.6), (8,0,0.1,0.4), (y, 0.5,0,0.6)} satisfies WNyB — 0S. Then a map
f:X — Ydefinedby f(a) =¢&, f(B) =v, f(y) = urepresents WNyB — IM, where t,,, are WNy — OS.

Example 3.14. Let X ={&,v,u}, 7, = {0y, 15,4} with 4 = {(£,0,0.6,0.2), (v,0.1,0.1,0), (&, 0.7,0.2,0.8)} satisfies
NypW — 0S

Y ={a,B,v}, 1y = {0y, 1y, B} with B = {(«,0.1,0.1,0),(f, 0.5,0.5,0.5), (¥, 0.7,0.6,0.6)} satisfies NyyW — OS. Then a
map f: X — Y defined by f(a) =&, f(B) =v, f(y) = urepresents NYpW — IM, where t,,t, are NpSW — OS.

Example 3.15. Let X ={&v,u}, 7, = {0y, 15,4} withA = {(¢,0.1,0.3,0.5), (v, 0.3,0.4,0.3), (4, 0.7,0.8,0.8) } this
satisfies NYSS — 0S

Y ={a,B,v} 1, = {0y, 1y, B} with B = {(«,0,0.2,0.4),(f, 0.2,0.3,0.2), (¥, 0.6,0.7,0.7) } this satisfies NipS — 0S. Then
amap f:X — Y defined by f(a) =&, f(B) =v, f(y) = urepresents NS — IM, where t,,t, are NS — OS.

Example 3.16. Let X ={&v,u}, 7, ={0y, 14,4} with A4 ={(¢ 0.2,0.4,0.6), (v, 0.4,0.5,0.4), (u, 0.8,0.9,0.9)}
satisfies SNy — 0S

Y ={a,B,v}, 1, = {0y, 1y, B} with B = {(«,0.1,0.3,0.5), (8, 0.3,0.4,0.3), (v, 0.7,0.8,0.8) } satisfies SNy — 0S. Then a
map f: X — Y defined by f(a) =&, f(B) =v, f(y) = urepresents SNY§ — CM, where t,,t, are SN — 0S

Theorem 3.17. Every SNy — IM is WNyB — IM

Proof: Assume that(X, 1), (Y,0) be a NTS and f:X — Y be a mapping. Since f represents SNy — IM, this implies
h=*(M) SNy B-0S in X for any SNyB-0S M € Y. Since every SN yS-CS is WN -CS. Thus h=1 (M) WNy5-0S [23]
for any SNy 5-0S M € Y.Consequently, a map f represents WNyf — IM.

The example 3.13. demonstrates that the converse of Theorem 3.17. is not required to be true.
Theorem 3.18. Every SNyS — IMis NyYBS — IM

Proof: In the same way above.

The example 3.15. demonstrates that the converse of Theorem 3.18. is not required to be true.
Theorem 3.19. Every WNyf — IMis NySW — IM

Proof: In the same way above.

The example 3.14. demonstrates that the converse of Theorem 3.19. is not required to be true.
Theorem 3.20. Every NygS — IM is NYySW — IM

Proof: In the same way above.

The example 3.14. demonstrates that the converse of Theorem 3.20. is not required to be true.
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Remark 3.20. The diagram that follows Figure 3.2 be Show the Relationships across different neutrophilic
continuous mapping.

SNYB — IM \ WNyB — IM

| b

NYBS — IM \ NYBW — IM

Figure 3.2. The relationship between the new varieties of irresolute mappings

Theorem 3.21. Suppose that d,: (X,7) - (Y, o) be a mapping. Then
1. Every SNyfS — CM is SNyS — IM
2. Every WNYB — CM is WNyp —IM
3. Every NYSW — CMis NypW — IM
4. Every NYfSS — CMis NyBS — IM

Proof: 1. Assume that(X,7), (Y,0) be a NTS and f:X — Y be a SNy — CM. Since f represents SNy — CM, this
implies h~=1 (M) SNy 8-0S in X for any NOS M € Y. Since every NOS is SN y5-CS. Thus h~*(M) WNyB-0S [23] for
any SNy S-0S M € Y.Consequently, a map f represents WNyS — IM.

proof of the rest in the same way.

Theorem 3.22. Suppose thatd,: (X,7) = (Y,0)and d,: (Y,0) = (¥,J) are two mappings. Then the following
holds:

1. Ifd, and d, is NyBW- CM, then the composition &, o &,: (X,7) = (¥, J) is NYySW- CM.

2. Ifd, and d, is NYSS—- CM, then the composition &, o d,: (X,7) = (¥,J) is NYBS- CM.

3. Ifd, and d, is WNyS- CM, then the composition &, o d,: (X, 1) = (¥,J) is WNy - CM.

4. 1Ifd, and d, is SNy - CM, then the composition &, o 4,: (X,7) = (¥, J) is SNy 3- CM.
Proof: 1. LetM be a NOS in (X, 7). Since &, is NYySW- CM, the image &, (M) is Ny SW-0OS in (Y, o). Since 4, is
Ny W - CM so, the image e(d,(M)) is Ny SW-0S in (¥, J). Now, consider the composition &, o d,: (X,7) = (K, )
For any NOSWM in (X, 7),d,(M) is NOS in(Y,0), ande(d,(M)) is NYBW-0S in (K, J). By the definitions of

NYpW-CM, d, o d,(M) satisfies the conditions of NipSW-CM. Therefore, the composition &, o d,: (X, 1) = (¥, )
is Ny SW-CM.
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proof of the rest in the same way.

Theorem 3.23. Suppose thatd,: (X,7) - (Y,0)and d,: (Y,0) — (¥,J) are two mappings. Then the following
holds:

1. Ifd, and d, is NyBW - IM, then the composition &, o &,: (X, 1) — (K, J) is NYSW IM.

2. Ifd,isand d, is NYSS-IM, then the composition &, o d,: (X, ) — (¥,J) is Ny SS- IM.

3. Ifd, and d, is WNyB- IM, then the composition &, o d,: (X,7) - (K,J) is WNyB- IM.

4. 1Ifd, and d, is SNy B- IM, then the composition &, o &,: (X, ) — (¥, J) is SNy S- IM.
Proof: 1. Let M be a NyBW -0S in (X, 7). Since &, is NYSW - IM, the image &, (M) is Ny SW -0S in (Y, 0). Since 4,
is NyW- IM so, the image e(d,(M)) is NyYySW-0S in (¥, J). Now, consider the compositiond, o d,: (X,7) —
(K, J) For any NyBW-0S M in (X, 1), d; (M) is NYyBW-0S in (Y, o), and e(d,(M)) is NYSW-0S in (¥, J). By the
definitions of NyYSW-IM, d, o d,(M) satisfies the conditions of NyYSW-IM. Therefore, the composition d; o
dy: (X,7) = (X, J) is Ny BW-IM.

proof of the rest in the same way.

4. Conclusions

we presented the new class of neutrosophic continuous mappings called; WN ¢5-CM, SN y3-CM, Ny SW-CM and
Ny/$S-CM and discussed a few of their characteristics. Moreover, we introduced the notions of WN y-CIM, SN ¢ (3-
CIM, Ny SW-CIM and Ny BS-CIM in NTS were examined, along with a few traits that are associated with them. Lastly,
we looked at how continuous with irresolute mappings for various types relate to one another. These findings
significantly advance our understanding for neutrosophic topological spaces with broaden their applications.
Among other areas, connectedness, compactness, topological qualities, and hereditary features are areas where this
idea may be developed and improved.
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