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1. Introduction

We refer to A to be the class of functions that are analytic within the open unitdisk U ={z € C :|z| <1}

and have the subsequent normalization from:
f@=z+ Z a,z". (1.1
n=2

We refer via Z the subclass of A including functions that are univalent in U. As per the Koebe One-Quarter
theorem [22], all function f € = possesses an inverse f~! characterized via

@) =2@zeD)

also
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frw) =w, (Wl <n(n() 23),

location
gw) = f1w) =w — a,w? + (2a2 — a;)w3 — (543 — 5a,a; + a,)w?* + . (1.2)

A function f € Ais said to be bi-univalent in U if both of them f also f~! are univalent in U. We refer to X the
class of bi-univalent functions in U characterized as given in (1.1).

Furthermore, in discussing geometric function theory, it is imperative to address the examination of operators
that are fundamental to mathematics in general and particularly within geometric function theory. Dziok and
Srivastava [15], along with Libera and Zlatkiewicz [28], introduced an integral operator and investigated particular
properties of starlike functions under this operator. Salagean, in 1983 [10], studied the class of analytic functions
defined by differential also linear operators, which are significant in geometric function theory. The estimation of
coefficients for bi-univalent functions is a significant and intriguing aspect of the geometric function theory of
analytic functions, which plays a crucial role in this domain.

In 1967, Lewin [18] established the concept of the family Z of bi-univalent analytic functions. He demonstrated
that |a,| < 1.51 for each function f € Z. Brannan and Clunie [6] subsequently postulate that |a,| < V2. The most
recognized estimate for functions in ~ was obtained by Tan in 1984 [9], |a,| < 1.487. For a concise history and
notable examples within the family X, refer to the seminal do tasks by Srivastava et al. [14], which has revitalized
the examination of bi-univalent functions in recent years.

In this paper, we introduced a novel subclasses K;'t(a, w,p,q) and ;"t(ﬁ, U, p, q) of bi-univalent functions in the
open unit disk U and also we estimated the coefficients |a,| and |a;| by using a new integral operator Mf )

Example 1. The well-known instances regarding this class are as detailed below:

. . 1, 1
1. Theinverse of function s 1- =

2. Theinverse of function tan™! z is tanw.
3. Theinverse of function log(z2 + 1) is Ve%” — 1.

The following images (Figure 1) clarify the notion of the analytic function and its equivalent inverse. This also
signifies that structure (1.2) is fulfilled.
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Figure 1. Graphs of the analytic function and its inverse.

A substantial number of sequels to the work of Srivastava et al. [12] have introduced also examined various
subclasses of the bi-univalent function <class X by numerous authors (for instance,
[5,8,15,16,19,20,21,34,35,336,37,38]); however, many of these recent publications have solely yielded non-sharp
estimates for the preliminary coefficients |a,| also |a;| in the Taylor-Maclaurin expansion (1.1). The issue of
determining the universal boundaries for the Taylor-Maclaurin coefficients.

la,| (n € N\{1,2};N = {1,2,3,..}),

the issue concerning functions f € X remains inadequately resolved for numerous subclasses of the bi-univalent
function class X' (see, for instance, [4,11,13,23,33]).

In [3], Frasin introduced the subclass G (¢, s,t) of analytic functions f fulfilling the subsequent criterion:

(s —t)zf'(s2)
Re {W} @

for certain individuals 0 < a < 1,t € C accompanied by |s| < 1; |t| < 1;s # t also for everyone z € U.

Lemma 1.1. The operatorof f € A, for0 <p < 1,q = 1is denoted by ]V[cf and we defined it as following :
M;’: A=A,

1 [ (s
M f(z) =————= | tP~re V1) f(zt)dt.
T e (=) f

1+q

Proof:

Mf(2) = ——=n f e-1e ) fanyae
I'(p) 0

1
()

[oe]
t
_ 1 _f tp—le_( (11—4—;))
0

- +1

re (22)

1+q

[oo)
zt + Z a,z" t"l dt
n=2
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1 ¢ _(t(1+q)) > v _(t(1+q))
= zf tPe \ 10 /dt + Z anz”f thtnle Vi / dt
I'(p) (1_:;) 0 0

n=2

Letx = “Hq) —>t(1+q)=x(1—p)then ift =0, we getx = 0,t = oo, we getx = oo, thendt(1l +q) = (1 —p)dx.
Thus
r 1-p - r1- p\P! 1-p
P — xPe —(x) Z n ( ) p+n—1 —(x) < )
M, f(2) o [zf 1+q (1+q>dx + anzf TTq x T+ q dx
Tan 0 n=2 0
1+q
1 1-— p+1 p+n
= T Z(1+q) (p)+Zaz ( ) I'(p+n)
re (532)
=z+ Z D(p,q,n)a,z",
where
_ Iptn) (1-p n-1
®(p: q, n) - F(p) (1+q) ' o

We now reiterate the subsequent lemma that shall be utilized to substantiate our principal results.

Lemma 1.2 [22]. Ifj € 3, subsequently |c, | < 2 for each % € N, in which denoted by 2 is the class of all functions j
analytic in U for which

Re(j(z)) > 0,(z € U),
Location
j@=1+cz+cz>+-,(z € V). O
Unless stated otherwise, we assume across this document that

s,tECwithls| <Lt <1L;s#50<a<1,0<pB<L0<u<1,0<p<1l;q=1

2. Bounds on Coefficients for the Class .‘K“;t(a, nwy,q)

Definition 2.1. A function f € X defined accompanied by (1.1) is classified within the category ?C}_f’t(a, u,p,q) if it
fulfills the subsequent criteria:

6~z (MIF@)
M; f(s2) — M, f (tz)

arg + (1 -wz (]V[;’f(z))” < az_n ,0<a<1,zel), (21

also
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5

G — w (M7 fw))
M, f(sw) — M, f(tw)

arg

Theorem 2.1 delineates our primary finding.
Theorem 2.1. Let f € X' (a, B, 4, b, q) be given by (1.1). Then

2uva

|a2

and

| < 2a + 2u?(6 — 23% — 2t — 2ts)
T (B-s2—t2—ts—6uk (B-—-s2—t2—ts—6u)(4—s—t—2u)2k’

las
where

m=9({,q2), k=Dp,q,3).

Proof. It follows from conditions (2.1) and (2.2) that

G~ z(MIf@)
M7 f(sz) — M, f (tz)

+ -0z (M @) | = @)

and

(s — tw (M7 w))

M Gow) — MO Cw) T T (M2 rw)) | = w1

Location g = f~1 also u,p in P possess the subsequent series representations:
u@)=1+uz+uyz2 +uyz3 + -
and
o(w) =1+ o,w+o,w? + w3 + -,
By equating the corresponding coefficients of (2.3) and (2.4), we determine that

(4 —s—t—2uW)ma, = au,,

[(B3—s%—t% —ts —6pka; — (25 + 2t — 5? — t? — 2ts)m?a2] = au, + 5

—(4—-s—t—2w)ma, = av,
and

[((6 — 252 — 2t — 2ts) — 2(25 + 2t — 5% — t2 — 2ts))m?al — (3 — 2 —t? —ts5 — 6u)ka3]

ala —1) 5

= av, + ———i.

| <
\//ml(6— 262 — 2t — 2t5) — 2(25 + 2t — 62 — t2 — 2t5)u? —a(a — 1)(4 — s —t — 2)?|

ala —1) 5

ul,

ra-pw (e rw) || < “2—” O0<a<l;wel) (2.2)

(23)

(2.4)

(2.5)

(2.6)

.7)

(2.8)

(2.9)

(2.10)
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Utilizing (2.7) and (2.9), we derive
u = —u; (2.11)
and
2(4 —s—t—2u)?m?a2 = p?(u? + v2). (2.12)
If we add (2.8) to (2.10), we obtain

ala—1)

((6 — 282 — 2t — 2ts) — 2(25 + 2t — 5% — t2 — 2ts) )m?a3 = a(u, + v,) + > u? + 02 ).
(2.13)
From (2.12), we conclude that
o = au?(u, +0,) |
[(6 — 282 — 2t — 2ts) — 2(25 + 2t — 6% — t?2 — 2t6)u? —a(a — 1)(4 — s — t — 2u)?|m?
(2.14)
By calculating the modulus of (2.14) also utilizing Lemma 1.1 regarding the coefficients u, also v,, we derive
2uva
la. | < JmI(16 — 287 — 21— 2ts) — 2(25 + 2t — 52 — £2 — 2ts)p2 — ar(a — 1) (4 — 5 — t — 200)7]
To determine the limit on |as |, by deducting (2.10) from (2.8), we derive
2(3—s%—t? —ts — 6u)ka; — (6 — 252 — 2t — 2ts)m?a3 = a(u, —v,) + @(uf —3).
(2.15)
It follows from (2.11), (2.12) and (2.15) that
o u?(6 — 252 — 2t — 2ts) (u? + v?) a(u, —0,) 2.16)

S IG -9 -t -6 —s—1—20%k 23— - —ts— 6k "

Calculating the modulus of (2.16) also reapplying Lemma 1.1 for the coefficients u,, u,, v, also v,, we derive

20 2u?(6 — 2% — 2t — 2ts)
las| < + )
B—-¢2—t?—ts—6k (B—-9s*>—t?—ts—6p)(4—s5—t—2u)%k
This concludes the proof of Theorem 2.1. m|

3. Bounds on Coefficients for the Class ? B.uw,p.9)

Definition 3.1. A function f € ¥ As stated in (1.1), it is classified inside the category ?{;"t(ﬁ,u, p, q) if it fulfills the
subsequent criteria:
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-z (MPf@)
VM7 fG2) - MTF )

+(1-wz (M;”f(z))" >8,0<B<1,zel), (3.1

and
Re) " —Ow (3417 00) + - pw (2 fw)” 0<B<1lweU). (32
- >p, <p <1 € . .
12T Gow) — M w) i (Mo f prlosp<tiw :2)
Theorem 3.1 below articulates our second fundamental result. O

Theorem 3.1. Consider the function f € H;'(8,1,p,q) be provided by (1.1). We have

la,| < -5 (3.3)
20 Iml[(6 — 252 — 2t — 2ts) — 2(25 + 2t — 52 — t2 — 2t5)]|’ '

and

2(1 — B)2(6 — 2% — 2t — 2ts) 2(1-p)
las| < (3—g2—1t2 —ts—6,u)(4—s—t—2u)2n+(3 —s2—t2—ts—6u)n’ G4

Proof. Conditions (3.1) and (3.2) imply the existence of u,» € P in such a manner that

- z(MIf@)
M} f(sz) — M f (t2)

+A-wz(M @) =p+(1-pu) (35)
and

s —w (MZfw))
MfGaw) — MO w)

A —ww(MIfW))  =F+(1-pow), (36)

where u(z) and n(w) are defined by equations (2.5) and (2.8), respectively. Equating the coefficients of (3.5) and
(3.6) we get

4—-s—t—2wma, = (1 - Pluy, 3.7)

[(B—6%—t? —ts — 6p)kas — (25 + 2t — 52 — t2 — 2ts)m?a3] = (1 — Plu,, (3.8)

—(4—-s—t—2w)ma, =1 - B, 3.9
and

[((6 — 252 — 2t — 2ts) — 2(25 + 2t — 6% — t? — 2t5))m?a} — (3 —s* — t? — ts — 6p)kas]
=1 - B)o,.

(3.10)
From (3.7) and (3.9), we get
u = -0 (3.11)

and
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204 —s—t—2u)?m2a? = (1 — B)2(u? + v2). (3.12)
Adding (3.8) and (3.10), we obtain
((6 — 282 — 2t — 2ts) — 2(25 + 2t — 5% — t2 — 2ts) )m?a3 = (1 — B)(u, +v,). (3.13)
Therefore, we have

_ (1—pB)(u; +v;)
T om2[(6 — 252 — 2t — 2ts) — 2(25 4 2t — 52 — t2 — 2t5)]

a3

Utilizing Lemma 1.1 regarding the coefficients u, also v, , we derive

J 1-p)
|a2| < .
m|[(6 — 2% — 2t — 2ts) — 2(25 + 2t — 52 — t2 — 2t5)]|

This provides the requisite estimate regarding |a,| as stated in (3.3).
To ascertain the limit on |a;|, we deduct equation (3.10) from the equation (3.8), yielding

23 — % —t?2 —ts— 6uka; — (6 — 252 — 2t — 2ts)m?aZ = (1 — B)(u, — vy),
By replacing the value of a2 from (3.12), it may be inferred that

_2(1- B)2(6 — 257 — 2t — 2ts) (u? + v?) 2(1-p)
BT B2 —t2—ts—6p)(d—s5—t—20)%k  (3—s2 —t% —ts— 6k’

(3.14)

Reapplying Lemma 1.1 for the coefficients u;, u,, »; and o, , we obtain

la.| < 2(1 = B)%(6 — 25 — 2t — 2ts) N 21 -p)
Bl=B 22 ts—6u)(d—s—t—20)%k  (B—92—t2—ts— 6k’
This concludes the proof of Theorem 3.1. m|

4. Corollaries and Conclusions

By placing u = 1 from Theorem (2.1), we derive the subsequent corollary:
Corollary 1. If f(2) € K;'(a, 8, 1,7, q) defined in (1.1), then we have

la,| < 2a
Jml(6 — 282 — 2t — 2ts) — 2(25 + 2t — 52 — t2 — 2ts) — a(@ — 1)(2 — s — t)?|

and

20 2(6 — 252 — 2t — 2ts)
las] < + .
(—s2—t2—ts—3)k (-3—s2—t2—15)(2—5—1)%k

By puttings = 1,u = 1 from Theorem (2.1), we derive the subsequent corollary:
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Corollary 2. If f(2) € K3"'(a, 8, 1,7, q) defined in (1.1), then we have

2Va

la,| <
Jmla(1 —¢) —2(1 + 2t —t2 = 2t) — a(a — 1)(1 — 1)?|

and

|< 20 8(1-1)
Stk 4—e-da-d%k

|a3

By puttingt = —1,s = 1 from Theorem (2.1), we derive the subsequent corollary:
Corollary 3. If f(z) € 7621'_1(&, B, 1, p,q) defined in (1.1), then we have

] < 2l
© 7 Jml8 —2a(a—- D@ — 2

and

< a N 8u?
T (A-3wk - A-3wWQ@ - w2k’

las

By putting t = 0,4 = 1, from Theorem (2.1), we derive the subsequent corollary:
Corollary 4. If f(2) € 7(;0 (a,B,1,p,q) defined in (1.1), then we have

2Va

|a2| <
Jml2(3 —s2) —25(2 — 5) — ala — 1)(2 — 5)?|

and

- 2a 4(3 —s?)
s T ey o e

|a3

By placing u = 1 from Theorem (3.1), we derive the subsequent corollary:

Corollary 5. If f (2) € H5'(B,1,p,q) defined in (1.1), then we have

o] <2 1-p
28=7 Im[(6 — 252 — 2t — 2ts) — 2(25 + 2t — 52 — t2 — 2t5)]|”
and
2(1 = B)2(6 — 282 — 2t — 2ts) 2(1-p)
las| <

G-s—t2-t5)(2—5-D%k B--? -tk
By Placing s = 1,4 = 1 from Theorem (3.1), we derive the subsequent corollary:

Corollary 6. If f(2) € H,"'(B,1,p,q) defined in (1.1), then we have
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1-5)
m|[4(1—1) —2(1 - )]’

|a2| <2

and
8(1—p)? 2(1 -
las| < 2( B) n ( B) .
-t?-t)1 -tk @-t2-1Dk
By puttingt = —1,5 = 1 from Theorem (3.1), we derive the subsequent corollary:

Corollary 7. If f(z) € 3-[21'_1(& U, p,q) defined in (1.1), then we have

|a2| <2 %;
and
4(1 - pB)? 1-p)

%l < T 3pe -k T a2k

By putting t = 0 in Theorem (3.1), we have the following corollary :

Corollary 8.If f(z) € 7-[;'0 (B, 1, », q) defined in (1.1), then we have

1-p
0l <2 G = ) — sz =l
and
la.| < 4(1-p)*B —5%) 2(1-p)
sl = B—-s2—6u)4—5—2uw*k @B-s*—6Wk’
Conclusions

This study introduces and examines two novel subclasses of bi-univalent functions associated with a novel
integral operator qu of analytic functions within the open unit disk U. Additionally, we acquired the second and

third Taylor-Maclaurin coefficients of functions inside these subclasses. Plays a significant function in geometric
function theory to establish novel generalized subclasses of analytic univalent functions also thereafter examine
their owners features [1,2]. The specific instances derived from the primary findings validate the aforementioned
outcomes. We indicated that the aforementioned estimations for the coefficients |a,| also |a;| pertaining to the

function classes JCg't(cx, u,»,q) and f]-[;"t(ﬂ,u, p,q) are not precise. Determining the precise upper bounds for the

aforementioned estimations remains an intriguing unresolved challenge, particularly for |a, |, wheren > 4.
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