

Available online at www.qu.edu.iq/journalcm

JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS

ISSN:2521-3504(online) ISSN:2074-0204(print)

Large Small compressible and Large Small retractable Modules

Rawnag Khaleel Ibrahim^a, Sahira M. Yassen^b

ab Department of Mathematics, University of Baghdad, College of Science. Baghdad, Iraq. Email: rawnaq.kalel@gmail.com

ARTICLEINFO

Article history:
Received: 15/03/2025
Rrevised form: 17/06/2025
Accepted: 28/07/2025
Available online: 30/09/2025

Keywords:

large small Compressible (LS-Compressible) module

large small Retractable (LS-retractable) module.

Small submodule

Larg small submodule

ABSTRACT

We consider R is any ring with identity and M is a non-zero unitary left R-module. In this article we introduce the notion of large small Compressible modules and large small Retractable module. Also, we will discuss and study many basic properties about these concepts with its generalization to the ring. Where a submodule X of M is said to be large small of M denoted by $X \ll_L M$ if for $F \leq M$ such that X + F = M then F is essential in M.

https://doi.org/10.29304/jqcsm.2025.17.32426

1. Introduction

Suppose M is a unitary left R-module and R is an associative ring with identity. A proper submodule X of M is named small in M ($X \ll M$), if for any submodule S of M such that X + S = M implies that M = S, see [1] and [2]. A non-zero submodule X of M considered as essential in M ($X \le_e M$) if for every $0 \ne S \le M$ then $X \cap S \ne 0$ [3], [4]. A non-zero module M called uniform if all its non-zero submodule are essential in M see [5], [6] and [7]. The annihilator of a module M is the set $ann(M) = \{r \in R: rM = 0\}$, as well as M is said to be faithful if ann(M) = 0, see these [8], [9], and [10]. A module M is called multiplication module if for all submodule M of M is called multiplication module if M is equivalently if for all M is called multiplication module if M is equivalently if for all M is equivalently if M i

A. Abduljaleel in [21] and [22] introduced the definition of large small submodule (LS-submodule) as a submodule X of M called large small (LS) of M denoted by ($X \ll_L M$) if for $F \leq M$ such that X + F = M, then F is essential in M. The ideal A is called LS-ideal if for $A \subseteq R$ such that A + S = R, then S is essential ideal in R. And M is called L-hollow (every proper submodule of M is large small in M). Let us recall the most important definitions which are the

*Corresponding author: Rawnaq Khaleel Ibrahim1

Email addresses: rawnaq.kalel@gmail.com

Communicated by 'sub etitor'

essential concepts for our study such as Compressible modules and retractable modules as A module M is said to be compressible if it could be immersed in any of its non-zero submodule X of M. That is for all $0 \neq X \leq M$, there is a monomorphism $\Psi \colon M \to X$. A ring R is compressible if R is compressible module. see [23], [24], and [25]. M is said to be small compressible if M could be immersed in any its non-zero small submodule. Equivalently if there is a monomorphism from M into X whenever $0 \neq X \ll M$, then M is called small compressible [26] A module M is called retractable if $Hom(M,X) \neq 0$ for each submodule $0 \neq X$ of M. and called small retractable if $Hom_R(M,X) \neq 0$ for any $0 \neq X \ll M$ [27-32]. Our work is to study the large small Compressible (LS- Compressible) modules and large small retractable (LS- retractable) modules as a generalization of Compressible and retractable modules. Also, we generalize it on the rings. And discuss some of these results on finitely generated faithful multiplication modules (FGFM) and give some Characterizations of LS- Compressible and LS- retractable modules

2. Large Small Compressible Modules.

In this section we have provided a definition of LS-Compressible modules and study its basic properties. Also provides many of remarks to help understand this topic. Also, we give some characterizations of this concept and discuss the relationships with some other modules.

Definition 2.1: A module *M* is called LS-Compressible if *M* could be immersed in any of its non-zero LS-submodule.

Equivalently, M is LS-Compressible if there is a monomorphism from M into X whenever $0 \neq X \ll_L M$. A ring R is called LS-Compressible if R is LS-Compressible module. That is R could be immersed in any of its non-zero LS-ideal.

Examples and Remarks 2.2:

- 1. Each compressible module is LS-Compressible, but the converse is not generally true, and as an example: Z_6 as Z-module is not compressible by [26], Remark and Example (2.1.4)] but Z_6 is LS-Compressible since $\langle 0 \rangle$ is the only LS-submodule of Z_6 .
- 2. Each small compressible module is LS-Compressible, but the converse is not generally true. And as an example: $Z \oplus Z$ as Z module is LS-Compressible but not small Compressible since for every submodule $nZ \oplus mZ$, $g.c.d(n,m) \neq 1$, is LS- submodule of $Z \oplus Z$. For all $\varphi \neq 0$, $\varphi: Z \oplus Z \to nZ \oplus mZ$ define by $\varphi(x,y) = (nx,my)$, clear that φ is homomorphism and $Ker\varphi = \{(x,y) \in Z \oplus Z, \varphi(x,y) = (nx,my) = (0,0)\}=\{0\}+\{0\}$. So φ is monomorphism. And clear that $nZ \oplus mZ$ is proper in $Z \oplus Z$, which is LS- submodule in $Z \oplus Z$, but not small.
- 3. Q as Z-module isn't LS-Compressible because $Z \ll_L Q$ and Hom(Q, Z) = 0. Also Z_4 as Z-module isn't LS-Compressible, because $\langle \overline{2} \rangle \ll_L Z_4$ and Z_4 can not be immersed in $\langle \overline{2} \rangle$.
- 4. The opposite of the point (1) appears if that each submodule of *M* has non-zero LS- sub of *M*, so *M* is compressible. the same applies if the module *M* is L-hollow.

Proof: Suppose $0 \neq X \leq M$. By default there is LS- submodule $0 \neq F \ll_L X$, then $F \ll_L M$ [22], proposition (2.1.3)] and because M is LS-Compressible there exists a monomorphism $\varphi: M \to F$, and by the inclusion homomorphism $i: F \to X$ we have a monomorphism $i\varphi: M \to X$, hence M is compressible.

5. R is LS-Compressible ring if and only if R is an integral domain.

Proof: \Rightarrow) Let $0 \neq x \in J$, and $J = \langle x \rangle$, where J is LS-ideal in R, and suppose that $x, y \in R$, such that xy = 0. but R is LS-Compressible so there is a monomorphism \emptyset : $R \to J$. Let $\emptyset(1) = rx$ for some $0 \neq r \in R$. Then $\emptyset(y) = y\emptyset(1) = y(rx) = r(xy) = 0$, implies y(rx) = 0 therefore y = 0. So, R is integral domain.

- \Leftarrow) Suppose R is an integral domain and J be a non-zero ideal of R. Then there is an element $0 \neq x \in J$. Define \emptyset : $R \to J$ by $\emptyset(r) = rx \ \forall \ r \in R$. Since R is an integral domain so that \emptyset is a homomorphism and monomorphism. Hence R is LS-Compressible. By the way Z as Z-module is LS-Compressible ring.
- 6. Each simple module is LS-Compressible but the converse isn't true as an example *Z* as a *Z*-module is LS-Compressible by (5) and clear it isn't simple.

Now we can give a characterization of LS-Compressible module.

Proposition 2.3: M is LS-Compressible module if and only if it could be immersed in Rx for all $0 \neq x \in M$ and $Rx \ll_L M$.

Proof: \Rightarrow) By the definition of LS-Compressible.

 \Leftarrow) Let $0 \neq X \ll_L M$ and let $0 \neq x \in X$. Then, $Rx \ll_L M$ ([22], proposition (2.1.3)). By default there exists a monomorphism $\vartheta \colon M \to Rx$ so, the composition $M \stackrel{\vartheta}{\to} Rx \stackrel{i}{\to} X$ is a monomorphism with $i \colon Rx \to X$ is the inclusion homomorphism. Hence M is LS-Compressible.

Corollary 2.4: If every cyclic submodule of *M* is LS- sub in *M* then the LS-Compressible module *M* is compressible.

Proof: Let $0 \neq X \leq M$ and $0 \neq x \in X$. By default, $Rx \ll_L M$ so there is $\theta \colon M \to Rx$ which is a monomorphism and hence the composition $M \stackrel{\vartheta}{\to} Rx \stackrel{i}{\to} X$ is a monomorphism where i is the inclusion map, that is M is compressible.

Corollary 2.5: Let M be a module in which every cyclic submodule of M is LS-submodule in M. Then M is compressible if and only if M is LS-Compressible.

Proposition 2.6: The LS- submodule of LS-Compressible module is LS-Compressible.

Proof: Let M be LS-Compressible module and $0 \neq X \ll_L M$. Let $0 \neq K \ll_L X$. Then $K \ll_L M$ [22], proposition (2.1.3)]. As M is LS-Compressible implies there exists a monomorphism, say $\varphi \colon M \to K$ and therefore $\varphi i \colon X \to K$ is a monomorphism where $i \colon X \to M$ is the inclusion homomorphism. Hence X is LS-Compressible.

Proposition 2.7: A direct summand of LS-Compressible module is LS-Compressible.

Proof: Let $M = C \oplus D$ be a LS-Compressible module and let $0 \neq K \ll_L C$. Then $K \oplus 0 \ll_L M$ [22], proposition (2.1.17)] and hence there is a monomorphism, $\varphi \colon M \to K \oplus 0$ clearly $K \oplus 0 \simeq K$, so $\varphi \colon M \to K$ is a monomorphism and the composition $C \xrightarrow{jC} M \xrightarrow{\varphi} K$ is a monomorphism where jC is the injection of C into M. Therefore C is LS-Compressible.

Proposition 2.8: Let M_1 and M_2 be two isomorphic modules. Then M_1 is LS-Compressible if and only if M_2 is LS-Compressible.

Proof: Assume that M_1 is LS-Compressible and let $\varphi: M_1 \to M_2$ be an isomorphism. Let $0 \neq X \ll_L M_2$. Then $0 \neq \varphi^{-1}(X) \ll_L M_1$. [22], proposition. **(**2.1.12)]. Put $A = \varphi^{-1}(X)$. Let $\vartheta: M_1 \to A$ be a monomorphism and let $g = \varphi|_A$ then $g: A \to M_2$ is a monomorphism and $g(A) = \varphi(\varphi^{-1}(X)) = X$, so $g: A \to X$ is a monomorphism. Now, we have the composition $M_2 \xrightarrow{\varphi^{-1}} M_1 \xrightarrow{\vartheta} A \xrightarrow{g} X$. Let $h = g\vartheta\varphi^{-1}$ is a monomorphism. Implies that M_2 is LS-Compressible.

Remark 2.9: A homomorphic image of LS-Compressible module need not be LS-Compressible in general. For example, Z as a Z-module is LS-Compressible and $Z/4Z \simeq Z_4$ is not LS-Compressible.

Proposition 2.10: Let $M = M_1 \oplus M_2$ be an R-module such that $annM_1 + annM_2 = R$. Then M is LS-Compressible if and only if M_1 and M_2 are LS-Compressible.

Proof: \Rightarrow) Follows from proposition (2.7).

 \Leftarrow) Let $0 \neq X \ll_L M$. Then by [33, proposition (4.2)], $X = K_1 \oplus K_2$ for some $0 \neq K_1 \leq M_1 \leq M$ and $0 \neq K_2 \leq M_2 \leq M$. And as $X \ll_L M$, then $K_1 \ll_L M_1$ and $K_2 \ll_L M_2$ by [22], proposition (2.1.19)]. But M_1 and M_2 are LS-Compressible, so there are monomorphisms $\varphi: M_1 \to K_1$ and $\vartheta: M_2 \to K_2$. Define $h: M \to N$ by $g(a, b) = (\varphi(a), \vartheta(b))$. It can be easily checked that g is a monomorphism and hence M is LS-Compressible.

3. large Small Retractable Modules.

In this section we will introduce the definition of LS- retractable modules as a generalization of retractable module and study the form of the relationship between it and LS-Compressible.

Definition 3.1: An R-module M is called LS-retractable if $Hom_R(M, X) \neq 0$ for each nonzero LS-submodule X of M. A ring R is called LS-retractable if the R-module R is LS- retractable. That is $Hom_R(R, I) \neq 0$ for each non-zero LS- ideal I of R.

Examples and Remarks 3.2:

- 1. Every retractable module is LS-retractable but the converse is not always hold. See example (3.3).
- 2. Every small retractable module is LS- retractable. But not converse in general see Examples and remarks (2.2(2)).
- 3. The L-hollow module *M* is retractable if and only if *M* is LS-retractable.
- 4. *Q* as Z-module isn't LS-retractable since $Z \ll_L Q$ but $Hom_R(Q, Z) = 0$.
- 5. Every integral domain is small retractable ring [26] and so is LS- retractable ring by (2) but not conversely, for instance Z_6 as Z_6 -module is LS- retractable but Z_6 not an integral domain.
- 6. Every semisimple module is LS-retractable, however the converse is not true in general, for example *Z* is LS-retractable Z-module but it is not semisimple.
- 7. Every module over a semisimple ring is small retractable [26] and by (1) is LS-retractable.
- 8. Every LS-Compressible module is LS-retractable and the converse is not true in general, for example Z_{24} as Z-module is LS-retractable but not LS-Compressible since $\{0, 12\}$ is the LS-submodule in Z_{24} and $\varphi: Z_{24} \to \{0, 12\}$ such that $\varphi(\bar{x}) = 12\bar{x}$ for all $\bar{x} \in Z_{24}$ is a homomorphism but not monomorphism.
- 9. Z_4 as Z-module is LS- retractable since $Hom_Z(Z_4, (\bar{2})) \neq 0$. In fact, Z_n as Z-module is LS-retractable for all $n \in Z^+$ (since it is retractable)[31].
- 10. $Zp\infty$ as Z-module is not LS-retractable (Since every submodule of $Zp\infty$ is LS-submodule. And $Zp\infty$ is not retractable) [31].
- 11. M is LS- retractable R-module if and only if M is LS- retractable R/annM-module. **Proof:** \Rightarrow) Put $\bar{R}=R/annM$ We have $Hom_R(M,X)=Hom_{\bar{R}}(M,X)$, for all $X\leq M$, by [34]. Let $0\neq X\ll_L M$ as R-module, then $X\ll_L M$ as \bar{R} -module. But M as R-module is LS- retractable R-module then $Hom_R(M,X)\neq 0$ for all $X\ll_L M$, so $Hom_{\bar{R}}(M,X)\neq 0$ for all $X\ll_L M$, thus M is LS- retractable R/annM-module. The converse is similarly.

Example 3.3: Let $S = \{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} : a, b, c \in R \}$ where R be a commutative ring with identity. S is a ring with identity with respect to addition and multiplication of matrices. The non-zero ideals of S are: $I_1 = S$, $I_2 = \{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} : a, b \in R \}$, $I_3 = \{ \begin{pmatrix} a & 0 \\ 0 & c \end{pmatrix} : a, c \in R \}$, $I_4 = \{ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} : a \in R \}$ or $I_5 = \{ \begin{pmatrix} 0 & 0 \\ 0 & c \end{pmatrix} : c \in R \}$.

In each of these cases one can easily define a non-zero homomorphism from S to I, which means that S is a retractable S-module. Now, let $I = \{\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} : a, b \in R\}$. we claim that I is not a retractable submodule of S. Note that $I = \{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} S$, and $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ is an idempotent element and hence I is an idempotent ideal. Let $J = \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix}$: $b \in R\}$. J is a subideal of I and JI = 0. Suppose that there is a homomorphism, $f: I \to J$. Then $f(I) = f(I^2) = f(I)I \subseteq JI = 0$ and hence f(I) = 0, that means f = 0, therefore Hom(I, J) = 0. Hence, I is not retractable. on the other hand, the only LS-submodule of I is the zero submodule, hence I is LS-retractable.

Recall that a ring R is called Boolean ring in case each of its element is an idempotent [35].

Proposition 3.4: Let M be an R-module such that $End_{\mathbb{R}}(M)$ is a Boolean ring. If M is LS-retractable, then every non-zero LS-submodule of M is LS-retractable.

Proof: Let $0 \neq N \ll_L M$ and $0 \neq K \leq N.K \ll_L M$ [22], proposition (2.1.3)]. Then $Hom_R(M,K) \neq 0$. Let $f: M \to K$ be a non-zero homomorphism. Hence $f: N \to K$ is a homomorphism where $i: N \to M$ is the inclusion homomorphism. We

Proposition 3.5: Let M_1 and M_2 be two isomorphic R-modules. Then M_1 is LS- retractable if and only if M_2 is LS-retractable.

Proof: Assume that M_1 is LS-retractable and let $\varphi: M_1 \to M_2$ be an isomorphism. Let $0 \neq N \ll_L M_2$. Then $0 \neq \varphi^{-1}(N) \ll_L M_1$ [22, proposition (2.1.7)]. Put $K = \varphi^{-1}(N)$. Let $f: M_1 \to K$ be a non-zero homomorphism and let $g = \varphi|_K$ then $g: K \to M_2$ is a homomorphism and $g(k) = \varphi(\varphi^{-1}(N)) = N$, hence $g: K \to N$ is a homomorphism. Now, we have the composition $M_2 \xrightarrow{\varphi^{-1}} M_1 \xrightarrow{f} K \xrightarrow{g} N$. Let $h = gf\varphi^{-1}$, then $h \in Hom(M_2, N)$. If h = 0, then $0 = g(f(\varphi^{-1}(M_2)) = g(f(M_1))$, implies that $f(M_1) \subseteq Kerg \subseteq Ker\varphi = 0$. Thus, $f(M_1) = 0$, which is a contradiction. Therefore $HomR(M_2, N) \neq 0$. M_2 is LS- retractable.

Remark 3.6: A direct summand (and a homomorphic image, or a quotient module) of a LS-retractable module may not be LS-retractable in general. For example, $M = Z \oplus Zp \infty$ as Z-module is retractable module by [26] and so it is LS-retractable by Example and remark (2.2.2 (1)), however $Zp \infty$ is not LS-retractable, $M/Z \simeq Zp \infty$ is not LS-retractable and $Zp \infty$ is L-hollow Z- module.

In the following proposition we investigate the direct sum of LS-retractable modules.

Proposition 3.7: If M_1 and M_2 are LS-retractable modules such that $ann\ M_1 + ann\ M_2 = R$, then $M_1 \oplus M_2$ is LS-retractable.

Proof: Let $0 \neq K \ll_L M_1 \oplus M_2$. As $ann \ M_1 + ann \ M_2 = R$ by [33, proposition 4.2] gives $K = N_1 \oplus N_2$ with $N_1 \leq M_1$ and $N_2 \leq M_2$. But $N_1 \oplus N_2 \ll_L M_1 \oplus M_2$ implies $N_1 \ll_L M_1$ and $N_2 \ll_L M_2$ [22, proposition (2.1.19)]. Therefore, $Hom(M_1, N_1) \neq 0$ and $Hom(M_2, N_2) \neq 0$. Let $0 \neq f \colon M_1 \to N_1$ and $0 \neq g \colon M_2 \to N_2$. Define $h \colon M_1 \oplus M_2 \to N_1 \oplus N_2$ by $h(m_1, m_2) = (f(m_1), g(m_2))$ clearly h is a homomorphism. If h = 0, then $h(m_1, m_2) = 0$ for all $m_1 \in M_1, m_2 \in M_2$, so $f(m_1) = 0$ and $g(m_2) = 0$ for all $m_1 \in M_1, m_2 \in M_2$, which is a contradiction since $f \neq 0$ and $g \neq 0$. Therefore $Hom(M_1 \oplus M_2, K) \neq 0$. So $M_1 \oplus M_2$ is LS- retractable.

In the following proposition we give a sufficient condition for LS- retractable module to be retractable.

Proposition 3.8: Let *M* be LS- retractable module. If every non-zero submodule of *M* contains a non-zero LS-submodule then *M* is retractable.

Proof: Let $0 \neq N \leq M$. By hypothesis N contains a non-zero LS-submodule. Let $0 \neq K \ll_L N$. Then $K \ll_L M$ [22], proposition (2.1.3)]. Hence $Hom(M,K) \neq 0$ (since M is LS-retractable), and therefore $Hom(M,N) \neq 0$, so M is retractable.

Note that the converse of Examples and Remarks (3.2 (8)) can be hold under certain conditions:

Proposition 3.9: If M is LS- retractable quasi-Dedekind module, then every nonzero element of Hom (M, N) is a monomorphism for any non-zero LS-submodule N of M.

Proof: Let $0 \neq N \ll_L M$ and let $f: M \to N$ be a non-zero homomorphism. Then $if \in End(M)$ and $if \neq 0$. Since if if = 0, then if(M) = f(M) = 0 implies f = 0, which is a contradiction. Hence $0 \neq if \in End(M)$ and by hypothesis if is a monomorphism which gives that f is a monomorphism.

Corollary 3.10: Let *M* be LS-retractable module. If *M* is quasi-Dedekind, then *M* is LS-Compressible.

Proof: Let $(0) \neq N \ll_L M$. Since M is LS-retractable, then $Hom(M,N) \neq (0)$. Let $f \in Hom(M,N)$ and $f \neq (0)$. Consider the diagram: $M \stackrel{f}{\to} N \stackrel{i}{\to} M$ Since M is quasi-Dedekind Ker(if) = (0). But Ker(f) = Ker(if), then kerf = (0). Thus, M is LS-Compressible.

We shall introduce some characterizations of LS-retractable modules

Proposition 3.11: An R-module M is LS-retractable if and only if there exists $0 \neq f \in End_R(M)$ such that $Im \ f \subseteq N$ for each non-zero LS-submodule N of M.

Proof: \Rightarrow **)** Suppose that M is LS-retractable. Let $0 \neq N \ll_L M$. Then $Hom_R(M, N) \neq 0$. Let $g: M \rightarrow N$ be a non-zero homomorphism and f = ig where $i: N \rightarrow M$ be the inclusion homomorphism, then $f \in End_R(M)$ and $f \neq 0$ since $g \neq 0$ and i is a monomorphism. Clearly, $f(N) = g(N) \subseteq N$.

 \Leftarrow) Let $0 \neq N \ll_L M$. By hypothesis, there exists a non-zero endomorphism $f: M \to M$ and $f(M) \subseteq N$.

Therefore $f: M \to N$ is a non-zero homomorphism that is M is LS-retractable.

The following is another characterization of LS-retractable modules

Proposition 3.12: An R-module M is LS-retractable if and only if for each $0 \neq x \in M$ with $Rx \ll_L M$, $Hom\ R(M, Rx) \neq 0$.

Proof: \Rightarrow) Clear.

 \Leftarrow) To prove M is LS-retractable. Let $0 \neq N \ll_L M$ and let $0 \neq x \in N$, then $Rx \ll_L N$, so by hypothesis, $Hom(M, Rx) \neq 0$ which implies that $Hom(M, N) \neq 0$ and therefore M is LS- retractable.

A sufficient condition for a faithful finitely generated multiplication R-module to be LS-retractable is that R is LS-retractable ring, as it is shown in the following proposition

Proposition 3.13: Let *M* be FGFM module. Then *M* is LS-retractable.

Proof: By [26, proposition 2.3.12] we have M is small-retractable. So M is LS-retractable by (Examples and Remarks 3.2 (2)).

Remark 3.14: The ring Z is LS-retractable but Q as Z-module is not LS-retractable, in fact Q is not finitely generated multiplication Z-module. This means that these two conditions cannot be dropped in the proposition (3.13).

Corollary 3.15: Every faithful cyclic R-module is LS- retractable.

Proof: By [26], Corollary (1.3.23)], every faithful cyclic R-module is retractable and hence is LS-retractable.

Conclusions

We defined large small Compressible (LS-Compressible) modules and large small retractable (LS- retractable) modules as a generalization on small compressible and small retractable modules, respectively. We also presented several key properties and illustrative examples, which will serve as a foundation for future research and establish a connection between our work and previous studies in our field of work.

References

- [1] F. N. Hameed, K. S. Kalaf, "On NM-Hollow Modules," Jornal of AL-Qadisyah for computer Science and Mathematics, vol. 13, no. 1, pp. 168-172, 2021.
- [2] A. Kabban, W. Khalid, "On J-Lifting Modules," Journal of Physics: Conference Series. IOP Publishing, Vol. 1530, No. 1, pp. 1-10, 2020.
- [3] C. Nebiyev, H. H. Ökten, "r-Small Submodules," Conference Proceeding Science and Technology, vol. 3, no. 1, pp. 33-36, 2020.
- [4] A. A. Abduljaleel, "On large-hollow lifting modules, "International Journal of Scientific and Technical Research, vol. 6, no. 1, pp. 2739-2745, 2021.
- [5] A. A. Hussein, W. Khalid, "\(\phi\)-RadJ-supplemented modules, "Journal of Physics, vol. 1818, no. 10, pp. 1742-6596, 2021
- [6] A. A. Kabban, W. Khalid, "On e*-Singular-Hollow-Lifting Modules," *Journal of AL*-Qadisyah for Computer Science and Mathematics, vol. 16, no. 3, pp. 1-10, 2024.
- [7] S. S. RAJAEE, "ESSENTIAL SUBMODULES RELATIVE TO A SUBMODULE," Journal of Algebra and Related Topics, vol. 11, no. 2, pp. 59-71, 2023.
- [8] H. Baanoon, W. Khalid, "e * -Essential Small Submodules and e * -Hollow Modules," *European Journal of Pure and Applied Mathematics*, vol. 15, no. 2, pp.478-485, 2023.
- [9] I. M. Hadi, S. N. Al-Aeashi, "Closed multiplication modules," Italian Journal of Pure and Applied Mathematics, vol. 60, no. 46, pp. 83-90, 2021.
- [10] H. Baanoon, W. Khalid, "e*-essential submodule," European Journal of Pure and Applied Mathematics, vol. 15, no. 1, pp. 224-228, 2022.
- [11] B. Wijayanti, S. Yuwaningsih, "On left r-clean bimodules," Journal of Algebra and Related Topics, vol. 11, no. 2, pp. 1-19, 2023.

- [12] K. A. Amoli, Z. Habibi, R. Behboodi, "Some applications of k-regular sequences and arithmetic rank of an ideal with respect to modules," *Journal of Algebra and Related Topics*, vol. 11, no. 2, pp. 21–35, 2023.
- [13] F. D. Shyaa, H. A. Al-Sada, "Z- Small Quasi-Dedekind Modules," Iraqi Journal of Science, vol. 64, no. 6, pp. 2982-2990, 2023.
- [14] S. Rajaee, P. G. Farzalipour, "Some Properties of S-Semiannihilator Small Submodules and S-Small Submodules with respect to a Submodule," *Hindawi Journal of Mathematics, Tehran, Iran*, vol. 10, no. 1, pp. 19395-3697, 2024.
- [15] A. A. Kabban, W. Khalid, "On e*_Singular Small Submodules," Journal of AIP Conference Proceedings, 3264, 050063 (1-6), 2025.
- [16] I. M. Hadi, F. D. Shya, "S-K-nonsingular Modules," Iraqi Journal of Science, vol. 62, no. 4, pp. 1314-1320, 2021.
- [17] I. M. Hadi, M. Hamil, M. K. Abbas, "Small Second submodules," AIP Conference. Proceedings, vol. 32, no. 1, pp. 168–172, 2024.
- [18] S. M. Diakhate, M. Diakhate, A. D. Diallo, M. Barry, "ON e-SMALL RETRACTABLE MODULES," JP Journal of Algebra Number Theory and Applications, vol. 47, no. 1, pp. 15-29, 2020.
- [19] K. Ahmmed, N. S. Al. Mothafar, "Pr-small R-submodules of modules and Pr-radicals," *Journal of Interdisciplinary Mathematics*, vol. 26, no. 7, pp. 1511-1516, 2023.
- [20] H. A. Shahad, N. S. Al-Muthafar, "Small-Essentially Quasi-Dedekind R-Modules," Iraqi Journal of Science, vol. 63, no. 7, pp. 3135-3140, 2022.
- [21] S. M. Yaseen, A. A. Abduljaleel, "On Large-Small Submodule and Large-Hollow Module," Journal of Physics, vol. 1818, no. 7, pp. 1-7, 2021.
- [22] A. A. Abduljaleel, "Large small submodules with related concepts," Ph.D. Thesis. University of Baghdad, 2022.
- [23] C. Birkhäuser, "Mathematical Book Histories," Trends in the History of Science, vol. 31, no. 10, pp. 23132-3145, 2024.
- [24] F. Kim, H. Wang, "Foundations of Commutative Rings and Their Modules," Springer International Publishing, vol. 31, no. 20, pp. 2653, 2024.
- [25] Sh. N. Al-Aeashi, F. H. Al-Bakaa, "Retractable Modules Relative to a Submodule and Some Generalizations" 2nd International Scientific Conference of Al-Ayen University, 928 042014, 2020.
- [26] I. H. Muslem, L. S. Mahmood, "Some types of Retractable and Compressible Modules," S M..Sc. Thesis, University of Baghdad, 2016.
- [27] F. D. Jasem, A. A. Elewi, "2-Prime Submodules of Modules", Iraqi Journal of Science, Vol. 63, no. 8, pp. 3605-3611, 2022.
- [28] M. B. H. Al Hakeem, N.S. AL Mothafar, M. Haghjooyan, "Semi-Small Compressible Modules and Semi-Small Retractable Modules" *Ibn Al-Haitham Journal for Pure and Applied Sciences*, Vol. 36, no. 4, pp. 407-413, 2023.
- [29] M. A. Ahmed, "Duality of St-Closed Submodules and Semi-Extending Modules", Italian Journal of Pure and Applied Mathematics, vol.44, pp.698–713, 2020.
- [30] A. A. H. Mahmood, "Some Results Concerning Directed Graphs Over Commutative Rings," *Academic Wasit Journal for Pure Science*, vol. 03, no. 3, pp. 69-73, 2024.
- [31] M. B. H. Al Hakeem, N.S. AL Mothafar, "Closed (St-Closed) Compressible Modules and Closed (St-Closed) Retractable Modules," *Iraqi Journal of Science*, vol. 65, no. 4, pp. 2141-2149, 2024.
- [32] S. M. Khuri, "Endomorphism rings and lattice isomorphism", Journal of Algebra, vol.59, no. 3, pp.401-408, 1979.
- [33] M. S. Abbas, "On Fully Stable Modules", Ph.D. thesis, University of Baghdad, 1990.
- [34] F. Kasch, "Modules and Rings," Academic Press. London, 1982.
- [35] A. Abass, A.H. Majeed, "Centralizer and Jordan Centralizer of Inverse Semirings," Iraqi Journal of Science, vol. 65, no.9, pp. 5162-5170, 2024.