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1. Introduction

Brain illnesses encompass a wide variety of disorders affecting physical, cognitive, and emotional health. Traumatic
trauma, infections, tumors, and neurodegenerative conditions such as Alzheimer's disease (AD), Parkinson's
disease, and Amyotrophic Lateral Sclerosis (ALS) are part of them [1,2]. Of these, AD is one of the most common
neurodegenerative illnesses where there is abnormally deposited beta-amyloid (A) plaques and tau protein
tangles. These pathological changes affect neuronal function, leading to cell death[3]. Their interaction leads to a
domino effect of neurodegenerative processes that finally affect memory, cognitive functions, and language [3, 4].

Development of stages of brain in AD is depicted in Figure. 1, where the difference between No Impairment "normal
cognition (NC)" as healthy, mild decline "mild cognitive impairment (MCI)" as midle, and severe decline
"Alzheimer's disease (AD)" as clinical .
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AD is the single most frequent cause of dementia in older adults and an important public health problem globally.
The primary risk factor is age, and available estimates suggest that the incidence of AD will double in 2050, with
roughly half of individuals older than 85 years affected [5]. This anticipated growth will put immense pressure on
healthcare systems, families, and caregivers, especially in low- and middle-income countries, highlighting the
imperative need for effective healthcare planning and policy interventions [6, 7]. Still, the early diagnosis of AD
remains one of the greatest challenges for clinicians considering that the disease typically is diagnosed at late stages
after irreversible damage has already occurred [8]. Symptoms will blur with typical aging and other neurologic
illnesses and are typically diagnosed by clinical examination and neuroimaging [9]. Earlier correct diagnosis can
even enhance treatment greatly to offer interventions that prevent the deterioration of symptoms and enhance
quality of life in patients and caregivers [10, 11]. This demand has fueled greater interest in more sophisticated
diagnostic tools, namely artificial intelligence (Al) and machine learning (ML), that are able to measure subtle
changes in the brain that are linked with AD in its initial phases [12].

Neuroimaging forms a critical part of early detection because progression of brain atrophy in AD can be noted on
MRI scans [13]. MRI is capable of precise anatomical brain examination and can detect early structural changes,
such as hippocampal atrophy, which are highly related to memory loss and emerge in the early stages of the disease
[14]. Although MRI is superior in many ways, it has pragmatic drawbacks such as being very expensive, with time-
consuming scanning times, noise, and conflicting with certain medical devices [15]. Furthermore, early AD
pathology is still hard to differentiate from aging [16], so Al-based automated image analysis is a good complement
to conventional radiological examination [17].

Against this backdrop, ML and deep learning techniques became central drivers of identifying salient patterns from
high-dimensional medical imaging data [18]. CNNs, in particular, have proven outstanding capacity to learn
discriminative features automatically from MRI scans, bypassing labor-intensive processing, enhancing diagnostic
accuracy relative to traditional methods, and facilitating stage-wise classification of AD, ranging from mild cognitive
impairment (MCI) to late-stage dementia [19, 20].
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Figure 1. The Progress of brain stages for Alzheimer’s disease [21].
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This review combines recent advances in MRI-based deep learning for the diagnosis of Alzheimer's, and with a focus
on CNN-based feature extraction, preprocessing and augmentation methods, and interpretability issues, the
distance is to be bridged between model performance and clinical adoption.

The rest of the paper is organized as follows: Section 2 outlines the literature review. Section 3 outline materials and
methods. Section 4 presents preprocessing methods and data augmentation in MRI, and Section 5 is about
Interpretability Techniques in Medical Al Models. Section 6 lists Overfitting problem in DL and mitigation methods,
then Section 7 on the evaluation measures. Section 8 gives the challenges, and section 9 directions for future work,
and Section 10 summarizes the paper.
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2. Literature Review

Alzheimer's disease (AD) prediction and diagnosis with brain MRI has emerged as a significantly expanded research
area over the last few years, particularly following the application of machine learning (ML) and deep learning (DL)
models. In this review article, we provide an overview of ten representative studies, classified by methodological
approach (traditional ML, CNN-based models, transfer learning, hybrid/ensemble approaches), and highlighting
their respective strengths and weaknesses.

2.1 Traditional Machine Learning Approaches

Kavitha et al. [22] compared classical machine learning models, such as decision trees, random forests, SVM, and
XGBoost, on the OASIS and Kaggle datasets for binary classification (non-dementia vs. dementia). Random forest
achieved the best performance, with an accuracy of 86.92%. However, the study relied on limited data and focused
only on binary classification, which limits the clinical application of the work for diagnosing Alzheimer's disease
across multiple stages.

Hala Al-Shamlan et al. [23] employed SVM, Random Forest, and Logistic Regression with feature selection methods
(mRMR and MI) on the OASIS-2 dataset (373 scans). mRMR-backed Logistic Regression achieved accuracy of
99.08% for two-class classification. Although promising, the work was based on two classes alone and did not probe
intermediate stages of AD.

2.2 CNN-BASED APPROACHES

Fazal Ur Rehman and Kwon [24] constructed a CNN trained on entire-brain MRI to distinguish AD, MCI, and CN
subjects. The model attained 96.41% accuracy, surpassing more profound models such as ResNet and VGG.
However, dataset size was constrained (489 scans), and there were concerns regarding the generalizability of the
model. Further, accuracy in separating AD from MCI (88%) was poorer compared to binary conditions.

Abd El-Latif et al. [25] proposed a lightweight CNN trained on Kaggle Alzheimer's data for four classes: Non-
Demented, Very Mild Demented, Mild Demented, and Moderate Demented. The accuracy achieved for binary
classification was 99.22%, and for multi-class classification was 95.93%, surpassing ResNet50 and DenseNet201.
The model was not yet clinically strong enough for deployment.

De Silva and Kunz [26] applied a CNN to the MIRIAD dataset and reached 89% accuracy for AD vs. HC. Despite
respectable performance, the study’s binary classification task overlooked the more clinically relevant challenge of
multi-class classification.

Sara Esam and Mohammed [27] used Kaggle MRI data with a custom CNN achieving 97% multi-class accuracy.
However, resizing images to 150x150 may have reduced spatial detail. Furthermore, training optimization
techniques such as early stopping and learning rate scheduling were not employed, and interpretability methods
were absent.

2.3 Transfer Learning

Jain et al.[28] employed VGG-16 pre-trained on ImageNet as a feature extractor with entropy-based slice selection
for improving AD/MCI/CN classification robustness. It attained 95.73% accuracy despite handling a very small
dataset (150 MRIs). Shortcomings include the potential loss of spatial information in 3D-to-2D conversion and
disregarding inter-slice relationships.

Duaa AlSaeed and Omar [19] used ResNet-50 as a feature extractor with different classifiers such as Softmax, SVM,
and Random Forest, on ADNI and MIRIAD data. They achieved a best performance of 99% (AD vs. NC). While high,
the study only considered binary classification and did not include MCI.



4 7.A Kareema,A.S. Abdalrada, Journal of Al-Qadisiyah for Computer Science and Mathematics VOL.17.(3) 2025,pp.Comp 215-229

2.4 Hybrid and Ensemble Approaches

Diogo et al. [29] proposed combining CNN feature extraction and Random Forest for early AD/MCI classification on
ADNI and OASIS. Their HC vs. AD model achieved 90.6% balanced accuracy, whereas multi-class performance
(62.1%) was considerably worse, indicating the difficulty in distinguishing MCI from AD.

Tanjim Mahmud et al. [30] presented an explainable Al solution incorporating pre-trained CNNs into ensembles
(VGG16+VGG19; DenseNet169+DenseNet201) with Grad-CAM visualizations. The model reached 96% accuracy,
which was higher than baseline CNNs. However, despite enhanced interpretability, accuracy was still not sufficient
for clinical application.

From the papers reviewed above, several major trends emerged. Convolutional neural network (CNN)-driven
approaches dominate the scene since they are able to learn hierarchical features from unprocessed MRI data itself.
Performance is very sensitive to the dataset size, preprocessing techniques, and utilization or absence of multi-class
classification. Transfer learning has a tendency to improve accuracy but may have domain mismatch between
natural images (ImageNet) and medical imaging. Ensemble and hybrid methods yield small improvements at the
cost of added complexity, making real-world application difficult. On balance, common disadvantages are reliance
on small or imbalanced datasets, better accuracy in binary over multi-class, poor interpretability for all but a few
models, and insufficient clinical validation for widespread use. Table 1 provides a comparative summary of studies.

Table 1 Summarize of Related work on AD.

Study, year Dataset Technique Accuracy Drawback
Kavitha et al OASIS, Relatively low accuracy, the limited
(2022) [22]' Kaggle MRI | Random Forest | Binary 86.92%. | number of the used images, and the fact
Dataset that the classification was only binary.
L However, a limitation of this study is
;—izlla ?;()Szhiﬂlza% OASIS Rgorgel:;lii)n Binary 99.08% that it classified only two classes
' & (Demented and Non-Demented)
The main limitations of this study is the
Fazal Ur Rehman relatively small dataset size, with onl
and Kwon ADNI CNN 96% Tl ik e Y
(2022) [24] 489 MRIs, which may impact the
generalizability of the model
Alzheimer : :
. The achieved accuracy was still
Abd El-Latif etal. 4 MRI CNN 95.93% insufficient for reliable clinical
(2023) [25] classes licati
dataset application.
De Silva and . A limitation of this study is that it has a
0
Kunz (2023) [26] MIRIAD CNN Binary 89% binary classification (AD vs. HC) only.
Alzheimer Despite the good results, the accuracy
Sara Esam and : : . :
4 MRI Multiclass: still needs to be improved using
Mohammed CNN S .
(2024) [27] classes 97% optimization techniques and to enhance
dataset the interpretability of the model.
) CNN (VGG-16, .
Jain et al (2019) ADNI Transfer 95.73% The sample size was very small (150
[28] Learning) MRI images)
g
CNN Binary:
Dl;izlgrss::d ADN]I, (ResNet50), Softmax99% A limitation of this study is that it
(2022) [19] MIRIAD Softmax, SVM, SVM 92% classified only two classes (AD and NC),
RF RF 85.7%
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The accuracy of the triple classification
Diogo et al. ADNI, CNN + RF Binary 90.60% is lower than expected, which means
(2022) [29] OASIS Multiclass 62.1% | that distinguishing between MCI and AD
remains a challenge.
Tanjim Mahmud EfficientNet + The achieved accuracy is still
OASIS 96% critical clinical insufficient for
etal. (2024) [30] CNN applications,

3. Materials and methods

This review provides a summary of the significant materials and methods reported in Alzheimer's diagnostic
research, including medical imaging modalities, publicly available datasets, standard preprocessing, and CNN-
based feature extraction approaches.

3.1 Dataset

Brain imaging databases from various modalities are of utmost significance in Alzheimer's disease diagnosis studies.
Such datasets serve as the foundation for constructing and validating Al-based diagnostic models of Alzheimer's
disease [31], The most widely utilized public databases are:

The Alzheimer's Disease Neuroimaging Initiative (ADNI) - provides extensive information from MRI and positron
emission tomography (PET) scans across various stages of the disease, ADNI data is currently divided into four
stages, ADNI-GO, ADNI-1, ADNI-2 and ADNI-3 [32].

The Open Access Imaging Study Series (OASIS) - provides MRI scans of healthy individuals and Alzheimer's patients
across a broad age spectrum, It provides 3 types of data sets: OASIS-1, OASIS-2, OASIS-3 [31].

(Kaggle) Open Access MRI Datasets - provides expert-selected brain MRI datasets, divided into categories (e.g., no
dementia, very mild dementia, mild dementia, moderate dementia) for building and evaluating deep learning
models [33].

3.2 Medical Imaging

Medical imaging modalities are crucial in AD diagnosis and monitoring to enable clinicians to visualize structural
and functional changes in the brain. Different imaging techniques are utilized in AD clinical practice and research
and each offers differential diagnostic information [34].

Positron Emission Tomography (PET) allows visualization of pathologic protein deposits such as $-amyloid and tau,
significant Alzheimer's disease pathology biomarkers. PET is highly sensitive in detecting these pathological
changes even before the development of clinical symptoms but is hampered by exposure to radiation through
radioactive tracers, making it costly to repeat [35].

Computed Tomography (CT) offers rapid imaging with the broad availability of scanners, thus being present in most
clinical environments. However, CT has insufficient soft tissue contrast, making it less sensitive for early detection of
neurodegeneration, particularly in differentiation of subtle cortical atrophy characteristic of AD [36].

Functional Magnetic Resonance Imaging (fMRI) measures brain function by detecting changes in oxygenation levels
of blood and the possibility to map functional deficits in neural networks, such as the Default Mode Network (DMN),
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that are compromised in the preclinical stages of AD. Despite being valuable for research purposes, fMRI is less
commonly used for everyday clinical diagnosis due to complex acquisition protocols [37].

Of all these techniques, Magnetic Resonance Imaging (MRI) is the most suitable modality for early and non-invasive
diagnosis of Alzheimer's disease. Structural MRI (sMRI) provides great images of brain anatomy, well capturing
hippocampal atrophy and thinning of the cortex—both being hallmark features of AD development. Moreover, MRI
does not use ionizing radiation, making it safer for follow-up. The compatibility of the modality with artificial
machine learning and deep learning algorithms, including convolutional neural networks (CNNs), contributes to its
value in clinical application and research [38, 39]. Table 2 shows a comparison between imaging methods.

Figure 2 depicts the percentage utilization of various imaging in the diagnosis of Alzheimer's disease.

Figure 2. Utilization of each different medical imaging with AD diagnosis [21].

Table 2: Comparison of Medical Imaging methods for AD.

Imaging type Primary Use Advantages Limitations Suitability for AI/DL
Integration

PET Detects $-amyloid Sensitive to early Radiation exposure, Limited (due to cost
and tau protein pathological high cost, limited and radiation
deposition changes availability exposure)

CT General brain Fast, widely Poor soft tissue Low (lacks fine
structure and available contrast, limited structural detail for
atrophy sensitivity to early AD | DL analysis)

fMRI Measures functional | Maps early Complex acquisition, )
brain activity and functional deficits less available clinically | Moderate (requires
connectivity careful preprocessing)

MRI Structural imaging High spatial Expensive, time-

to detect brain
atrophy (e.g.,
hippocampus)

resolution, non-
invasive, no
radiation,
compatible with Al

consuming, noisy,
contraindicated for
some patients

High (best suited for
DL models like CNNs)
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models

3.3 Feature Extraction with CNN

Convolutional Neural Networks (CNNs) have become a cornerstone of Alzheimer's disease (AD) research as they
offer an unmatched ability to automatically hierarchically extract features from brain MRI scans from local, low-
level textures to global, disease-specific patterns, without manual feature engineering (e.g., intensity thresholds or
hand-designed biomarkers) [24]. This allows models to be more accurate, robust, and generalizable to diagnose AD
than traditional machine learning methods [40].

Early studies employed simple CNN architectures such as LeNet-5 and AlexNet, which achieved reasonable
classification performance in discriminating AD from healthy controls. The models, however, typically
underperformed as generalizers due to the unavailability of plentiful training data [41, 42].

The emergence of deeper models—such as ResNet, DenseNet, and EfficientNet—had a significant improvement in
AD detection performance. Specifically, ResNet-152 applied to ADNI MRI data had extremely strong discriminative
power in multi-stage classification (e.g., AD vs. MCI vs. CN) [19], while a DenseNet-201-transfer learning model
attained a 98.24% accuracy in five classes of AD with augmented MRI datasets [43].

all three variants of 3D ResNet with attention and probabilistic fusion provided superior performance for binary
and multi-class AD classification [44], While very accurate, these models do come with trade-offs: deeper networks
are computationally intensive to run, require large amounts of labeled data, and can overfit unless properly
regularized. Hybrid and ensemble models, while powerful, introduce complexity that can make clinical deployment
challenging [28].

Hybrid techniques combining CNNs with other techniques, such as RNNs or attention, have further enhanced the
identification of mild stages of AD, particularly the Very Mild Demented to Mild Demented [22]. Transfer learning
from pre-trained models is also used more and more to circumvent small sizes of available datasets to allow models
to utilize features learned on large-scale natural image datasets such as ImageNet [23].

Despite the success, CNN-based approaches are faced with issues like high computation demands, need for large
labeled datasets, and tendency for overfitting in data-poor scenarios. Careful regularization, architecture fine-
tuning, and data augmentation still remain crucial to transform these models into reliable, real-world clinical tools
[45].
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4. Preprocessing and Data Augmentation in MRI

Preprocessing and data augmentation are two crucial steps in developing robust MRI-based deep learning models
for the diagnosis of Alzheimer's disease. Proper preprocessing ensures that the input images are normalized, noise-
free, and model-improving generalization [46].

Before feeding MRI images into a convolutional neural network (CNN), several common preprocessing steps are
typically applied, the most prominent of which are:

Resizing: Image resizing is an important preprocessing step in medical image analysis, especially in deep learning
models that require images of a uniform size . This process ensures consistency of input data, reduces
computational costs, and improves model stability. Input images are typically resized to a relatively small spatial
resolution (e.g.,, 224x224 pixels), and the predefined resolution is applied to both training and testing, which
contributes to improving the computational efficiency of the model [47].

Grayscale Conversion: In medical image processing, converting MRI, CT, or X-ray images to grayscale compresses
the information into one channel, reducing computational overhead without eliminating essential anatomical
details [48]. When diagnosing Alzheimer's disease, grayscale MRI slices allow the model to focus on structural
patterns rather than redundant color information, improving the efficiency of classification and reducing input
dimensionality without compromising diagnostic accuracy [49].

Intensity Normalization: Intensity normalization is among the most critical preprocessing steps in MRI-based
Alzheimer's diagnosis [50]. It converts all pixel intensity values in all images to the scanner setting-induced or
light-induced variability-free state so that model learning will not be influenced by these variations. Through
conducting operations such as Z-score normalization (scaling around a fixed mean and by a fixed standard
deviation) or min-max scaling (scaling intensities to a fixed range), the model achieves faster convergence, more
stable training, and invariant input distribution—ultimately leading to improved classification accuracy [51].

Noise Reduction: Noise removal in medical image pre-processing removes unwanted pixel intensity variations
caused by sources like scanner noise or patient movement [52]. In MRI-based diagnosis of Alzheimer's disease,
methods like Gaussian smoothing or median filtering enhance structural definition without removing critical
details. This enhances the signal-to-noise ratio to enable CNN models to focus on critical brain features and
enhance classification accuracy[49].

4.1 Role of Data Augmentation

Data augmentation is essential for improving the generalization of deep learning models in MRI-based Alzheimer’s
diagnosis [53]. It expands the training dataset by creating altered versions of existing images—such as through
flipping, rotation, and brightness or contrast changes—introducing realistic variability that prevents overfitting.
This helps the model focus on important structural patterns rather than memorizing specific details. In addition,
augmentation is particularly valuable for balancing datasets by increasing samples for underrepresented classes,
leading to more accurate detection across all stages of the disease [54].
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5. Interpretability Techniques in Medical Al Models

Interpretability techniques for medical Al models are required to render predictions transparent, understandable,
and trustworthy for both clinicians and patients. In medical uses, where decisions can have significant
consequences, it is not enough for a model to simply be accurate—it must also provide insight into why it would
make a particular decision. They work to bridge the gap between complex deep learning models and the human
intuition required in clinical decision-making [55].

One popular method is saliency-based visualization, such as Grad-CAM, that emphasizes the most relevant regions
in medical images that drove the model to its decision. This allows doctors to verify whether the Al is attending to
clinically relevant features (e.g., brain areas affected by Alzheimer's disease) and not to irrelevant patterns.
Similarly, occlusion sensitivity can be used by sequentially occluding parts of the input image to assess how
prediction changes to identify the salient areas for classification [56]. Figure 3 illustrates Grad-CAM applied to MRI
images of different stages of AD.

A second important class includes feature attribution methods, e.g., Layer-wise Relevance Propagation (LRP) or
Integrated Gradients, which trace back the contribution of each input pixel or feature to the output. These methods
are especially valuable for medical imaging, where understanding the mapping from input patterns to diagnostic
outcomes can facilitate early detection and reduce bias.

Finally, model-agnostic techniques such as Local Interpretable Model-agnostic Explanations (LIME) and SHapley
Additive exPlanations (SHAP) are applicable to both image and structured medical data. They approximate the
behavior of complex models with more interpretable models locally around individual predictions, enabling
clinicians to understand local decision-making logic without needing to fully interpret the deep learning
architecture [55].

MildDemented

Grad-CAM

Superimposed

VeryMildDemented

Figure 3 Grad-CAM applied to MRI images
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6. Overfitting problem in DL and mitigation methods

Overfitting is a common problem of deep learning (DL) in medical imaging, as the model learns to become overly
complex in order to fit the training data and capture noise and irrelevant patterns rather than generalizable
features. In the case of Alzheimer's disease (AD) diagnosis from MRI, overfitting is typically induced by small
annotated dataset sizes, high-dimensional imaging data, and complex model architectures. This creates poor
generalization performance, whereby the model performs well on the training set but significantly less well on
novel unseen test data [57].

Some of the mitigation strategies to combat overfitting in DL-based MRI analysis:

Dropout Regularization: Dropout is one of the most effective and widespread regularization techniques in deep
learning to combat overfitting. Temporarily disabling a portion of neurons during training forces the model to
learn redundant representations, making it more robust and less dependent on specific neurons [58].

Data Augmentation: Applying transformations such as rotation, flip, scale, and brightness modifications increases
the diversity of the dataset without capturing new images, thereby improving model generalization [59].

Early Stopping: Tracking the validation loss during training and halting when the performance begins to
deteriorate on the validation set prevents overfitting to the training set [60].

Cross-Validation: K-fold cross-validation ensures the model is validated on multiple splits of the data, providing a
more accurate estimate of its generalization capability [61].

Batch Normalization: Adding Batch Normalization layers between the hidden layers stabilizes learning and
reduces the model's dependence on the specific statistical distribution of training data, thus the better
generalization [62].

Reduce the Complexity: Using less complex architectures or fewer layers and neurons can restrict the threat of
memorizing noise in the training set. This is particularly handy when the dataset is comparatively small [25].

7. Evaluation metrics used in AD detection

In deep learning detection of Alzheimer's disease (AD), quantifying model performance is of utmost importance to
determine reliability, clinical utility, and reproducibility. There should be adequate metrics that provide
quantitative evidence of a model's ability to generalize to unknown MRI scans, quantify class-level performance,
and address the issue of class imbalance problems common in medical imaging data[63]. The performance metrics
are:

7.1 Accuracy

Accuracy is a measure that determines the proportion of instances that were correctly classified out of all the
instances. While it is an indicator of overall model performance, it is not representative in imbalanced sets, which
are common for AD diagnosis—where one class dominates the distribution, using the following equation 1 [63].

(TP + TN)

Accuracy = (TP + TN + FP + FN) 1)

7.2 Precision

Precision indicates the proportion of true positive predictions to all positive predictions. High accuracy for AD
classification means that the model will rarely misclassify non-AD samples as AD, which is very important in
avoiding false diagnoses, using the following equation 2 [64].
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Precision = ——— (2)
(TP + FP)

7.3 Recall (Sensitivity)

Recall quantifies the number of true positive cases that are correctly detected by the model. High levels of recall in
the medical setting ensure that most AD patients are detected and few are missed, using the following equation 3
[65, 66].

Recall = ————
(TP + FN)

(3)

7.4 F1-score

F1-score is the harmonic mean of precision and recall that provides an balanced estimate when false positives and
false negatives are both high. It is especially useful in class distribution when it is unbalanced, using the following
equation 4 [63].

(Precision x Recall)
Flgeore = 2 % (4)

(Precision+ Recall)

7.5 MMC

The Matthews Correlation Coefficient (MCC) is a robust evaluation metric that takes into account all elements of the
confusion matrix (TP, TN, FP, FN) and is thus particularly suitable for unbalanced classes, using the following
equation 5 [67].

(TP X TN — FP x FN) (5)

McCC = /(TP + FP)(TP + FN)(TN + FP)(TN + FN)

7.6 Confusion Matrix Analysis

Confusion matrix provides a precise classification of model predictions for each class, offering an effective tool to
identify specific misclassification patterns. such as, it highlights the confusion between Very Mild Demented and
Mild Demented stages, as illustrated in Figure 4 [68].
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Figure 4 Example of a Confusion Matrix Graph [30].

8. Challenges

While CNN-based models have shown impressive prospects in predicting the stages of Alzheimer's disease from

MRI scans, a number of challenges still exist before such models are generally embraced in clinical applications.
Scarcity and heterogeneity of data: Having plenty of and standardized data is rare due to patient privacy
restrictions, cost of obtaining them, and heterogeneity in MRI procedures within hospitals. All these factors curtail
model robustness and may cause performance decline when applied to new-hospital or new-scan data.

Black-box nature of CNNs: The poor interpretability of CNNs is a challenge to clinical adoption since clinicians
require clear and unambiguous reasoning to support the algorithmic outputs. Even with Grad-CAM providing some
insight, more advanced tools (e.g., LIME, SHAP) are required in order to achieve increased trust.

Large computational demands: Deep learning model training is computationally demanding, which restricts their
application in low-resource clinical environments.

Class imbalance: Minority disease phases (e.g., very mild or moderate dementia) remain underrepresented in data
sets, with consequent poor classification for these classes [69].

9. Future Directions

There are several directions for research that can help overcome such challenges and make Al-based diagnosis of
Alzheimer's more clinically useful:

Multi-modal integration: Combining MRI with PET scans, genetic information, and clinical tests to provide more
accurate diagnoses.

3D volumetric MRI analysis: Moving from 2D slices to complete 3D reconstructions to provide better spatial and
structural descriptions.

Lightweight optimized models: Developing efficient architectures to enable real-time deployment on low-power or
mobile hardware for low-cost screening.

Federated learning: Applying privacy-preserving collaborative training methods inside institutions without sharing

sensitive patient information.

Greater interpretability: Bounding-leading explainable Al methods to enable clinician trust, regulatory sign-off, and

safe adoption in healthcare pipelines.

10. Conclusion

This review has examined recent advances, methodologies, and challenges in using deep learning—particularly
Convolutional Neural Networks (CNNs)—to diagnose and stage Alzheimer's disease from MRI data. The reviewed
literature states the key promise of CNN-based models for high diagnostic performance, early diagnosis, and giving
automated, scalable decision support within the clinic. Preprocessing techniques such as grayscale conversion,
normalization, removal of noise, and image resizing, as well as data augmentation techniques, have been shown to
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enhance model performance and generalizability. Besides, interpretability techniques such as Grad-CAM and other
explainable Al methods are crucial in bridging the gap between Al models and clinical uptake through visual and
numerical explanations of model decision-making.

In spite of remarkable progress, some challenges remain, including dataset scarcity, imaging protocol
heterogeneity, model interpretability limitations, and deployment in low-resource settings. Future research needs
to focus on multi-modal data fusion, 3D MRI analysis, real-time deployable light-weight models, and collaborative
learning frameworks with privacy preservation. Overcoming these limitations and leveraging novel Al
interpretability tools, deep learning models can become more reliable, trustworthy, and widely applicable
diagnostic tools against Alzheimer's disease.
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