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A B S T R A C T 

This work investigates the relationship between the smoothness measure and the function norm in 

the space     
 ( ) , where modified symmetric difference based on the Ditzian-Totik function 

 ( )  √     are employed to assess the behavior of functions within centered subintervals. The 

focus is on the weighted smoothness measure of order     used to derive both local and global 

estimates of the function. The weighted smoothness measure can be bound in terms of a series 

involving   ( ) , which represents the optimal approximation of the function by polynomials. The 

following estimate incorporates the effects of the weight, partial smoothness, and derivative 

behavior into a precise quantitative expression linking approximation properties with smoothness 

analysis. The results contribute to a deeper understanding of the interplay between function 

smoothness and behavior in approximation function spaces, and they open pathways to accurate 

numerical applications. 
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1. Introduction 

In this paper, a weighted normed space     
 ( ) where as          (   -              | |       

positive then the norm distance on      
 ( )  is  ‖ ‖

    
 ( )

     
 ( )     . Defined the function       

 ( )  as follows: 

‖ ‖
    
 ( )

 ‖ ‖    ( )  |   
( )

( )(   ) |                   (1.1) 

The modulus of smoothness of order     take the form of : 

 ̃ 
 
(     )      ̃ 

 
(   )       

| |  
‖   

( )

( )
(   )‖

    
 
( )

   ,   -   (1.2) 

Let       ( )             ,   -  , then the symmetric difference (see [1, 2]) of order    defined by: 
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Where ( 
 
)  

  

   (   ) 
  is the binomial coefficient. 

The error of optimal approximation of a function   with polynomials of degree    in norm     
 
( ) , and 

expressed by the symbol  ̃ ( )    , it can be estimated in terms of the    order smoothness scale as: 

 ̃ ( )     ( )  ̃ 
 (  

 

 
)
   

 

Where  ̃ ( )     it is the error of the optimal approximation of the degree     in the space     
 
( ). 

2. Main Result 

In this part , we show several dependencies between the modulus of smoothness and the norm of the function   in 
the space     

 
( ). And provide estimates for the approximation error based on the order of smoothness, in the first 

figure, the relationship between the modulus of smoothness at different orders is shown, where the relation 
remains valid for different values of  , in the second figure, the validity of the relation is shown with the existence of 
a constant satisfying Jacksons inequality (see [3]). 

Lemma 2.1 [4].  Let        ( )   
 (  )        then 

‖   
( )

( )
(   )‖

    ( )

  ( ) ‖ ‖    ( ) 

Corollary 2.2. Let       
 ( )  then for        we have  

  ̃ 
 (   )        

 
(   )    

Where           (          )       

Proof. From the inequality  
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( )
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When         then 
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 ( )

 (   )    
| |  
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( )

( )
(   )‖

    ( )

 

    By using definition the modulus of smoothness (1.2) and (1.3)  

We get  

  ̃ 
 (   )        

 
(   )    

Where   (   )  and     (          )   and      

Theorem 2.3. Let              ,then for       
 ( )          there exist a fixed       so that : 
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Proof. We will first find a relation between the subintervals of the interval    ,        - and  ̃ ̃  ,        -    
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    What we do is split the interval    into two intervals, which are: 
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Fig. 1 - The figure shows that the inequality is satisfied when the constant value         . 

Lemma 2.5. For       
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Based on the definition of the modulus of smoothness in the space     
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   (   )         

It follows that a function   belonging to the apace      
 
( )  of order   exhibits greater smoothness than a function 

of order, where      

Example 2.6.  Let  

1)  ( )  √| |     ( )  
 

    
        

2)                   ,   -   

Using the definition of the modulus of smoothness in formula (1.2) when     and again when       we get 
the following results. 
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and, 
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Hence  
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Table 1 - The table shows the comparison of the modulus of smoothness at different orders and preserves 
same relation at different values of  . 

  |  
( )
(   )|

  
 |  

( )
(   )|

  
 

0.01 0.000068 0.0000000283 

0.02 0.000255 0.0000003904 

0.03 0.000543 0.000001719 

0.04 0.000917 0.000004759 

0.05 0.001362 0.00001025 

0.06 0.001870 0.00001884 

0.07 0.002431 0.00003113 

0.08 0.003039 0.00004757 

0.09 0.003686 0.00006856 

0.10 0.004368 0.00009440 
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Fig. 2 - A comparison between the modulus of smoothness at orders     and    . 

Theorem 2.7. Let        
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By using (Theorem (1.5.1), (v), [2]) we have for        that 
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To investigate the behavior of the approximation error associated with hierarchical polynomial approximations 
of a function     we consider error contributions from successive approximation levels. specifically, we examine the 
cumulative error arising from polynomial approximation at levels    and        and observe that their combined 
contribution at each step can be estimated by 
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This quantity represents the total error due to two consecutive approximation levels. 

By aggregating such pairwise error contributions at to level      we obtainan an upper bound on the overall error 
accumulated across all intermediate levels. More formally, we have the inequality: 
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