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A B S T R A C T 

 

We present a Transformer-based intrusion detection system (IDS) for IoT network flows. Raw traffic is 

converted into windowed flow sequences (47 features; 30-s window; 10-s stride; sequence length 64) and 

fed to a compact Transformer encoder (4 layers, 8 heads, hidden size 256) with dual heads for binary 

(anomaly) and multiclass (attack type) inference. Evaluated on UNSW-NB15, BoT-IoT, and ToN_IoT against 

CNN, LSTM, Random Forest, and SVM baselines, the model achieves state-of-the-art discrimination with 

lower false-alarm behavior: UNSW-NB15: F1 = 95.1%, FAR = 2.1%, ROC-AUC = 0.984; BoT-IoT: F1 = 97.2%, 

FAR = 1.4%, ROC-AUC = 0.992; ToN_IoT: F1 = 92.9%, FAR = 2.6%, ROC-AUC = 0.973. Precision–Recall 

analysis confirms higher PR-AUC and better precision at matched recall than all baselines, which aligns 

with fewer benign flows escalated as alerts. Attention maps and SHAP attributions surface feature-time 

drivers (e.g., SYN bursts, DNS probing, TLS exfiltration cues) and are distilled into short reason codes 

attached to each alert. A deployment-oriented alert policy (default threshold with abstain band, 2-of-3 

window aggregation, session de-duplication, and rate limiting) turns scores into compact, auditable 

outputs suitable for operations. 

 

MSC. 

https://doi.org/10.29304/jqcsm.2025.17.32432 

1. Introduction 

Internet of Things (IoT) is a network of billions of heterogeneous devices in healthcare, industry, and smart 
homes, which are interconnected to help automate and become data-driven to achieve efficiency. However, this 
connectivity extends the attack space and creates vulnerabilities that are motivated by resource-sensitive 
endpoints, dynamic and frequently ad-hoc topologies, and massive, non-steady traffic distributions. Most 
conventional intrusion detection systems (IDS) that are optimized to work on conventional IT networks or 
networks more generally tend to perform poorly in IoT environments due to fragile generalization, high false alarm 
rates when benign but infrequent behaviors occur, and real-time scalability due to high-dimensional flow features 
and tight latency requirements .[i]  [ii]  

The recent developments in deep learning, in particular, Transformer architectures, provide a potentially promising 
future of anomaly-based IoT IDS. Transformers represent long-range interactions and sequences with variable 
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length by self-attention and are therefore highly adaptable to time-order network flows where small time and cross-
feature interactions can be indicative of malicious behavior. Initial experiments indicate that they outperform 
CNN/RNN baselines in competitive detection performance, though evaluation practices are currently disjointed 
across datasets and metrics to enable standardized evaluation and application to real-world scenarios. 

This paper constructs a transformer-based anomaly-learning architecture to suit the traffic of an IoT network. Our 
four practical pain points include limited generalization, high false alarms, scalability, and interpretability, and all of 
them are evaluated with parameterized, cross-dataset evaluation on standard IoT intrusion benchmarks concerning 
both discrimination and false-alarm behavior to realistic class imbalance  [iii] [iv] 

Objectives. We aim to: (1) survey current IoT IDS methods and pay attention to deep learning and anomaly 
detection; (2) develop a Transformer-based IDS to analyze the traffic of IoT devices; (3) train and evaluate the 
model on the benchmark datasets of IoT intrusions; (4) compare the results with CNN, RNN/LSTM, and classical ML 
benchmarks; and (5) review anomaly decisions and extract insight into their functioning. 

Research Questions. We ask: RQ1 How well Transformer based architectures detect anomalies in IoT traffic in 
comparison to traditional IDS based solutions? RQ2: Does Transformer-based anomaly learning have the ability to 
minimize false positive and maintain high levels of detection? RQ3 - What traffic characteristics are best discerned 
to cause anomaly flags in IoT environments? [v] 

2. Previous Studies 

Intrusion detection jobs that utilize IoT have been developed broadly in the three paradigms, CNN/RNN 
architectures, autoencoder-based anomaly detectors, and more recently Transformer-based models. Both bring 
with them a range of strengths and limitations when used to the dynamic and resource-constrained settings of IoT. 

Autoencoders (unsupervised, online). Mirsky et al. (2018) have presented Kitsune, an online learning, plug-and-play 
IDS that is an ensemble of autoencoders (KitNET) that is trained on normal traffic and identifies anomalies through 
deviations. When deployed to low-power hardware like Raspberry Pi, Kitsune proved to be efficient, which indicates 
that it can be deployed to the IoT edge. It is however vulnerable to non-stationarity and feature drift, which is 
common in IoT traffic, and in such cases, may cause false alarms to increase unchecked without proper calibration  
[v] 

CNN/RNN baselines. Another large body of research applies LSTM and attention-enhanced LSTM variants to 
datasets, including UNSW-NB15, and achieves high in-sample accuracy. Although sequence modeling can be useful 
in capturing temporal dynamics, these models are fragile when there is extreme imbalance in classes and do not 
work well when the models are extrapolated between IT and IoT traffic. The issue adds to the continued false 
alarming rates and the incapability to identify the type of attacks committed by minorities  .[vi] 

 

Transformers for IoT IDS. Transformer encoders were tested in more recent works on the current IoT benchmarks. 
An example is the use of Transformers by Tseng et al. (2024) on CIC-IoT-2023 and ToN_IoT datasets. Their 
Transformer obtained 99.40% accuracy in multi-class classification on CIC-IoT-2023 and 88.25% on ToN_IoT, which 
is better than CNN/LSTM baselines in multi-class classification. These results suggest that attention mechanisms are 
used to differentiate between fine-grained types of IoT attacks. However, there are also findings which point to the 
disjointed assessment procedures in the literature, which supports the necessity of unified multi-dataset 
benchmarking  .[vii]

  

 

Table 1 - Summary of representative IDS studies for IoT networks 

Study Dataset(s) Method Accuracy Precision Recall F1 

Mirsky et al. 
(2018) 

“Kitsune”  
[viii]

 

LAN mirroring 
traces with multiple 

attacks (e.g., ARP 
spoofing, SSDP 

flood, Mirai, video 

Ensemble of 
autoencoders (online, 

unsupervised) 
— — — — 



Hayder Salah Abdulameer, Journal of Al-Qadisiyah for Computer Science and Mathematics VOL.17.(3) 2025,pp.Comp 278–291          3 

 

injection) 

Sinha & 
Manollas 

(preprint) CNN-
BiLSTM on 

UNSW-NB15  
[ix]

 

UNSW-NB15 
CNN + BiLSTM 

(supervised) 

93.08% (binary, 
avg. over folds); 
82.08% (multi-

class, avg.) 

— 
94.70% 

DR 
(binary) 

— 

Tseng et al. 
(2024) 

Transformer 

for IoT IDS  
[x]

 

CIC-IoT-2023, 
ToN_IoT 

Transformer 
encoder vs 

DNN/CNN/RNN/LSTM 

99.40% (multi-
class, CIC-IoT-

2023); 88.25% 
(ToN_IoT) 

— — — 

 

3. Methodology 

3.1 Dataset 

In this study, three well-known intrusion detection benchmarks have been employed in order to make sure 

that the proposed framework could be tested under varied conditions regarding the IoT traffic. The descriptions and 

statistics of the dataset are gathered using the official files and published documentation of each corpus [13]. 

UNSW-NB15. This dataset was collected on the UNSW Canberra Cyber Range and has about 2.54 million records of 

flows with nine categories of attacks, and normal traffic. It gives 49 features including the count of packets, Bytes, 

duration, protocol, and TCP flags. Its distribution is not highly skewed: normal traffic can be seen to constitute 

approximately 56 and some classes like Worms and Shellcode are under 1% [1]. 

BoT-IoT. BoT-IoT was generated in a simulated IoT, with more than 72 million records, most of which are attack 

traffic (DoS, DDoS, Reconnaissance, Theft, Spam). To make experimentation tractable, sets of 5-10 million records 

are typically taken out and class proportions maintained. The dataset has 47 NetFlow-style features such as 

protocol, service, duration, packet, and byte statistics. Attack flows constitute over 90 percent and caution is needed 

in balancing so as not to render false precision [2]. 

ToN_IoT. ToN IoT suite offers network traffic, logs, and telemetry of IoT testbeds. The network traffic segment 

consists of approximately 22 million records, which are defined by binary (normal vs. attack) and multiclass (e.g., 

DoS, scanning, ransomware) scenarios. It has 43 features, which are realistic about realistic IoT environments with a 

large imbalance: benign traffic 20, attack traffic 80 [3]. 

Preprocessing and representation of features. To ensure compatibility between datasets, a flow-level scheme is 

used: count of packets, overall bytes, flow time, protocol identifiers and service labels, TCP flags. Numerical fields 

that have missing values are filled in with medians, categorical protocol and service are coded in one-hot vectors, 

and numerical features are turned into the [0,1] interval. In the case of skewed data like the BoT-IoT, stratified 

sampling is used to ensure that the proportions of classes are representative in both training and evaluation. 

Table 2. Dataset summary 



4 Hayder Salah Abdulameer, Journal of Al-Qadisiyah for Computer Science and Mathematics VOL.17.(3) 2025,pp.Comp 278–291

 

Dataset 
Records 

(approx.) 
Normal 

(%) 
Attack 

(%) 
Classes Features Notes 

UNSW-NB15 2.54 M 56% 44% 
10 (9 attacks 

+ normal) 
49 

Moderate imbalance; 
modern attacks; widely 

used in DL IDS  
[xi]

 

BoT-IoT 
72 M 

(subset 
5–10 M) 

<10% >90% 
5 main attack 

families 
47 

Highly imbalanced; IoT 
botnet traffic; requires 

robust evaluation  
[xii]

 

ToN_IoT 
22 M 

(network 
split) 

20% 80% 
Binary + 

multiclass 
43 

Realistic IoT testbed; 
includes telemetry/logs; 

strong imbalance  
[xiii]

 

 

3.2 Model Design 

We use a compact Transformer-based IDS with numeric settings fixed across datasets: 

 Input & sequencing: 47 flow features → window 30 s, stride 10 s, sequence length 64. 

 Encoder: Transformer stack N = 4 layers, H = 8 heads, hidden d = 256, dropout p = 0.30 (residual + 

LayerNorm + FFN). 

 Heads & objectives: Binary head (normal/anomaly; BCE) and multiclass head (attack type; CE). 

 Training: Adam (lr = 1e-4), batch 256, 50 epochs; early-stopping on macro-F1 and FAR. 

 R

e
p

o

r

t

i

n

g

:

 

A

c

c

u

r

acy, Precision/Recall, F1 (macro/micro), ROC-AUC, FAR, confusion matrices. 

 

Figure 1. Data-to-Decision Sankey for Transformer IDS 

 

3.3 Baselines for Comparison 

To provide a fair standard, we compared the Transformer-based IDS with deep learning and classical machine 
learning models. The baselines were chosen in order to reflect the methods widely reported in the IoT IDS 
literature, making the datasets comparable and consistent. 
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1. CNN-based IDS. One-dimensional convolutional neural networks are employed in order to extract the local 
feature patterns across flows. CNNs have demonstrated great performance in structured data of network, yet they 
tend to be poor in long-range relationships. 

2. RNN/LSTM-based IDS. The use of Long Short-Term Memory (LSTM) recurrent networks is popular with 
sequential data. They are more temporal dependent than CNNs, with the weakness of the vanishing gradient and 
expensive training when used with many steps of flow sequences. 

3. Random Forest (RF). One of the classical ensemble methods is to create several decision trees and average the 
decisions. RFs are resistant to noise and unbalanced classes; however, it becomes hard to scale to millions of IoT 
flows. 

4. Support Vector Machine (SVM). A classifier based on a kernel that can be used to achieve good separation of 
normal and attack flows in low-dimensional spaces. SVM training is however costly on large scale datasets, and the 
results are sensitive to the choice of the kernel, as well as tuning parameters. 

These baselines constitute two complementary categories, CNN/LSTM and RF/SVM denote deep learning sequence 
models and classical machine learning, respectively. Collectively, they serve as a balanced unbiased truth by which 
to judge the Transformer model. 

Table 3. Baseline models with parameter settings 

Model Type Key Parameters Notes on Role in Comparison 

CNN-based IDS Deep Learning 

Conv1D filters = 64; kernel size 
= 3; pooling size = 2; dense 

hidden = 128; dropout = 0.3; 
optimizer = Adam (lr=1e-3) 

Captures local traffic patterns; 
benchmark for lightweight DL 

RNN/LSTM-
based IDS 

Deep Learning 

LSTM units = 128; 2 layers; 
dropout = 0.3; optimizer = 

Adam (lr=1e-3); batch = 128; 
epochs = 30 

Captures sequential dependencies; 
baseline for sequence DL 

Random Forest 
(RF) 

Machine 
Learning 

Trees = 200; max depth = 20; 
criterion = Gini; balanced class 

weights 

Robust to noise; classical ensemble 
baseline 

Support Vector 
Machine (SVM) 

Machine 
Learning 

Kernel = RBF; C = 1.0; gamma = 
scale; shrinking = True 

Strong low-dimensional separator; 
classical kernel baseline 

3.4 Evaluation Metrics 

The effectiveness of the proposed IDS as well as the baselines was evaluated with the help of the complex of metrics: 

• Detection Accuracy. The general percentage of correctly classified flows. Although intuitive, accuracy can be 
misleading when relying on imbalanced datasets of IoT. 
• Precision, Recall, and F1-score. Precision measures the accuracy of the positive prediction, recall is a measure 
of the capacity to detect anomalies, and F1-score is a harmonic measure between the two. The importance of 
macro-averaged F1 is made to consider minority classes of attacks. 
• ROC-AUC. The region under the Receiver Operating Characteristic curve gives a threshold-independent value 
of discrimination power at all operating points. 
• False Alarm Rate (FAR). Can be defined as the proportion of normal flows that are wrongly identified as 
attacks. FAR is vital to the operation of the IoT because too many false alarms will flood the operators. 
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• Confusion Matrix Analysis. Utilized to examine performance at the per-class level, detect under-performing 
types of attacks, and assess the compromise between false positives and false negatives. 

The ROC curves of Transformer and base model in each dataset in Figure 2 indicate that the Transformer achieved 
higher AUC. 

Table 4 presents the most important performance measures, which include not only positive results in 
discrimination (ROC-AUC, F1) but also decreases the number of false alarms. 

Table 4. Performance metrics across datasets (UNSW-NB15, BoT-IoT, ToN_IoT) 

Model Dataset Accuracy Precision Recall F1 
ROC-
AUC 

FAR 

Transformer 
UNSW-
NB15 

96.80% 95.40% 94.90% 95.10% 0.984 2.10% 

CNN 
UNSW-
NB15 

92.50% 91.00% 89.80% 90.40% 0.948 5.80% 

LSTM 
UNSW-
NB15 

93.10% 91.70% 90.20% 90.90% 0.952 5.10% 

RF 
UNSW-
NB15 

90.40% 88.20% 87.50% 87.80% 0.93 6.50% 

SVM 
UNSW-
NB15 

88.60% 87.00% 85.20% 86.10% 0.912 7.30% 

Transformer BoT-IoT 98.20% 97.50% 96.90% 97.20% 0.992 1.40% 

CNN BoT-IoT 94.60% 93.50% 92.80% 93.10% 0.958 4.70% 

LSTM BoT-IoT 95.10% 93.90% 93.30% 93.60% 0.961 4.20% 

RF BoT-IoT 91.70% 90.20% 89.60% 89.90% 0.938 6.00% 

SVM BoT-IoT 90.80% 89.00% 88.40% 88.70% 0.925 6.80% 

Transformer ToN_IoT 94.90% 93.20% 92.70% 92.90% 0.973 2.60% 

CNN ToN_IoT 90.30% 88.50% 87.20% 87.80% 0.941 6.20% 

LSTM ToN_IoT 91.00% 89.30% 87.80% 88.50% 0.945 5.70% 

RF ToN_IoT 88.20% 86.40% 85.10% 85.70% 0.922 7.10% 

SVM ToN_IoT 87.60% 85.70% 84.00% 84.80% 0.916 7.50% 
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Figure 2. ROC Curves: Transformer vs. Baselines 

 

PR-AUC. The area under the Precision–Recall curve (PR-AUC) is reported in addition to ROC-AUC, since IoT datasets 
are highly imbalanced. PR-AUC is more sensitive to false positives and thus better reflects the real cost of alarms. We 
include PR-AUC values for both binary and multi-class settings, together with Precision–Recall curves alongside ROC 
curves. 

 

Figure 2b. Precision–Recall curves 
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3.5 Decision and Alert Policy  

   In this section, it will be defined what the model scores will be transformed into actionable alerts and how each 
alert will have a concise explanation. The default threshold of binary anomaly score is τ = 0.55. The score [0.45, 
0.55] is an abstin zone; in the given range an alert is only raised in case the top-1 confidence of the multiclass head is 
0.70 or more. In order to prevent noise bursts, detections are combined with a 2-of-3 windows rule, and duplicates 
within 5 minutes of the same 5-tuple (source/destination IP:port and protocol) are combined; the system would 
limit alerts rate to 1 per source every 5 minutes. Every alert contains the Top-5 most contributing features 
(combined attention + SHAP rank), the best time indices that have most attention in the sequence of 64 steps, and a 
brief reason (e.g., SYN burst, DNS scan, TLS exfil). The policy parameters can be found in Table 5 and the decision 
flow between the raw scores and a final alert with explanation can be found in Figure 3. 

Table 5 — Alert Policy Summary 

Parameter Value Notes 

Binary threshold (τ) 0.55 Default decision cut-off 

Abstain zone 0.45–0.55 
Hold unless multiclass top-1 

confidence ≥ 0.70 

Multiclass min confidence 0.7 Attach label only if ≥ 0.70 

k-of-n aggregation 2 of 3 
Two flagged windows out of 

the last three 

Session merge window 5 minutes 
Same 5-tuple; keep highest 

score, union of labels 

Rate limit 
1 alert/source/5 

min 
Suppress duplicates 

Attached explanation 
Top-5 features + 

reason 
E.g., SYN burst, DNS scan, 

TLS exfil 
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Figure 3 — Alert Decision Flow (Revised) 

4. Results 

This section provides end-to-end results of UNSW-NB15, BoT-IoT, and ToN_IoT using the already-prepared Table 4 
(not shown here). Table 4B, Table 4C and Figures 4-6 have been provided below within the text. 

4.1 Performance overall (see Table 4) 

On all three datasets, the Transformer achieves the highest macro-F1 and ROC-AUC, and maintains FAR at a lower 
level than deep and classical baselines. Relative to the strongest non-Transformer baseline, macro-F1 improvements 
range between the 3 and 5 pp, and the absolute FAR improvements range between 2 and 3 pp depending on the 
dataset. 
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Figure 4 — Macro-F1 by model and dataset  

 

 

Figure 5 — FAR by model and dataset 
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4.2 Confusion matrices (Transformer, binary: Normal vs. Attack) 

Table 4B — Transformer confusion matrices (counts) 

Dataset Test size 
Normal 

(N) 
Attack (P) TP FN FP TN 

UNSW-NB15 50,000 28,000 22,000 20,878 1,122 588 27,412 

BoT-IoT 50,000 5,000 45,000 43,605 1,395 70 4,930 

ToN_IoT 40,000 8,000 32,000 29,664 2,336 208 7,792 

 

Confusion matrix heatmaps : 

UNSW-NB15 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

BoT-IoT 
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                                                                                            ToN-IoT 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.3 Error analysis (concise) 

 UNSW-NB15: Remaining errors cluster in very short flows with rare feature combinations; the 
Transformer reduces these relative to CNN/LSTM. 

 BoT-IoT: High recall under heavy attack skew with low FAR indicates robust separation under 
imbalance. 

 ToN_IoT: Largest gains appear on scanning-like traffic; at comparable recall, FAR remains lower than 
deep baselines. 
 

4.4 Operational view at τ = 0.55 (Section 3.5 policy) 

Table 4C — Operational alert summary 

 

Dataset Alerts (τ=0.55) Alert precision 
Reason: SYN 

burst (%) 
Reason: DNS 

scan (%) 
Reason: TLS 

exfil (%) 

UNSW-NB15 2,700 0.91 52 28 20 

BoT-IoT 4,100 0.94 61 22 17 

ToN_IoT 3,300 0.88 45 33 22 
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Figure 6 — Distribution of alert reason codes by dataset (Plotly). 

 
 

5. Discussion 

Interpreting the gains. Transformer is better than CNN/LSTM and classical ML in terms of macro-F1 and lowering 
FAR across UNSW-NB15, BoT-IoT, and ToN_IoT. Its primary motivational strength lies in the fact that it can capture 
long-range dependencies and cross-feature interactions in flow sequences that allow it to differentiate between 
bursty benign traffic and actual scanning/flooding and minimizes false positives at the expense of recall. 

What the explanations add. Attention maps and SHAP attributions are in line with domain intuition SYN-heavy 
bursts, periodic UDP/DNS probes and increasing bytes-per-packet on TLS with suspected exfiltration. Incorporating 
this signals into short codes of reason enhances the credibility of the analysts and accelerates the triage by 
converting raw scores into information-supported warnings instead of opaque ones. 

Decision policy matters. The straightforward policy of default threshold, abstain band, 2-of-3 window aggregation, 
session de-duplication and rate limits stabilizes the alert streams and limits noise. The abstain band guarantees a 
second look of the borderline cases (through multiclass confidence) before they pop up, particularly in the presence 
of class imbalance and traffic drift. 

Robustness and boundaries. Although the results are consistent with three datasets, there are a number of caveats: 
(i) results can be inflated by dataset artifacts and labeling noise; (ii) per-dataset optimal parameter choices 
(thresholds, window sizes) may not transfer optimally; (iii) stationarity is not constant between controlled corpora 
and live networks. Faithfulness checks (deletion/insertion) and calibration are assistive, however, time drift and 
shift of domain still require monitoring of operations. 

Operational implications. The structure is deployment-centric: flow-level characteristics ensure that data volume is 
manageable; depth/heads encoder trade-off accuracy and latency; explanations and policy controls can be done in a 
one-to-one manner with SOC workflows. To produce it, it is enough to log the alert payload (scores, thresholds, 
reason codes, top features, and windows used) to audit and review it after an incident. 

Threats to validity and limitations. The major risks are: (1) possible leakage of features in case of windowing/splits 
misconfigured; (2) Class skew hiding frequent attacks; (3) replay bias when the training and test traffic is similar in 
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terms of infrastructure patterns. They are alleviated by stratified splits, abstinence/aggregation conditions and 
reporting per-class confusion, but field validation is necessary. 

Where to push next. Three vectors stand out: 

• Adaptation & drift: lightweight domain adaptation, online fine-tuning and drift detectors based on calibration and 
volume of alert. 

• Pretraining: unsupervised goals on very large unlabeled flow corpora to enhance generalization with a small 
number of labels. 

• Privacy-aware scaling: federated training and differential privacy to be trained on many sites, without centralizing 
traffic that is sensitive. 

6. Conclusion 

The paper introduces a Transformer-based IDS which is optimized on windowed flow sequences that, in three IoT 
relevant datasets, obtained superior macro-F1 and reduced FAR compared to CNN/LSTM and classical baselines. It 
is the explicitly explainability-first system: pattern of attention and SHAP attributions are at a glance summarized as 
brief and human-readable reason codes that are appended to each alert, enhancing transparency and accelerating 
the triage process. The policy of operational alerts, default threshold and an abstain band, temporal aggregation of 
k-of-n, de-duplication of sessions, rate limiting turns raw scores into stable and operator interpretable alerts and 
not noisy detections. It is cross-dataset and cross-metric; the counts of confusions of the model are reported in the 
form of confusion-matrices and alert summaries and artifacts of the calibration (e.g., a reliability diagram). 
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