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We present a Transformer-based intrusion detection system (IDS) for IoT network flows. Raw traffic is
converted into windowed flow sequences (47 features; 30-s window; 10-s stride; sequence length 64) and
fed to a compact Transformer encoder (4 layers, 8 heads, hidden size 256) with dual heads for binary
(anomaly) and multiclass (attack type) inference. Evaluated on UNSW-NB15, BoT-IoT, and ToN_IoT against
CNN, LSTM, Random Forest, and SVM baselines, the model achieves state-of-the-art discrimination with
lower false-alarm behavior: UNSW-NB15: F1 = 95.1%, FAR = 2.1%, ROC-AUC = 0.984; BoT-IoT: F1 = 97.2%,
FAR = 1.4%, ROC-AUC = 0.992; ToN_IoT: F1 = 92.9%, FAR = 2.6%, ROC-AUC = 0.973. Precision-Recall
analysis confirms higher PR-AUC and better precision at matched recall than all baselines, which aligns
with fewer benign flows escalated as alerts. Attention maps and SHAP attributions surface feature-time
drivers (e.g, SYN bursts, DNS probing, TLS exfiltration cues) and are distilled into short reason codes
attached to each alert. A deployment-oriented alert policy (default threshold with abstain band, 2-of-3
window aggregation, session de-duplication, and rate limiting) turns scores into compact, auditable
outputs suitable for operations.

MSC.

https://doi.org/10.29304/jqcsm.2025.17.32432

1. Introduction

Internet of Things (IoT) is a network of billions of heterogeneous devices in healthcare, industry, and smart
homes, which are interconnected to help automate and become data-driven to achieve efficiency. However, this
connectivity extends the attack space and creates vulnerabilities that are motivated by resource-sensitive
endpoints, dynamic and frequently ad-hoc topologies, and massive, non-steady traffic distributions. Most
conventional intrusion detection systems (IDS) that are optimized to work on conventional IT networks or
networks more generally tend to perform poorly in [oT environments due to fragile generalization, high false alarm
rates when benign but infrequent behaviors occur, and real-time scalability due to high-dimensional flow features
and tight latency requirements .[i [il

The recent developments in deep learning, in particular, Transformer architectures, provide a potentially promising
future of anomaly-based [oT IDS. Transformers represent long-range interactions and sequences with variable
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length by self-attention and are therefore highly adaptable to time-order network flows where small time and cross-
feature interactions can be indicative of malicious behavior. Initial experiments indicate that they outperform
CNN/RNN baselines in competitive detection performance, though evaluation practices are currently disjointed
across datasets and metrics to enable standardized evaluation and application to real-world scenarios.

This paper constructs a transformer-based anomaly-learning architecture to suit the traffic of an loT network. Our
four practical pain points include limited generalization, high false alarms, scalability, and interpretability, and all of
them are evaluated with parameterized, cross-dataset evaluation on standard IoT intrusion benchmarks concerning
both discrimination and false-alarm behavior to realistic class imbalance [iiil [iv]

Objectives. We aim to: (1) survey current IoT IDS methods and pay attention to deep learning and anomaly
detection; (2) develop a Transformer-based IDS to analyze the traffic of IoT devices; (3) train and evaluate the
model on the benchmark datasets of 10T intrusions; (4) compare the results with CNN, RNN/LSTM, and classical ML
benchmarks; and (5) review anomaly decisions and extract insight into their functioning.

Research Questions. We ask: RQ1 How well Transformer based architectures detect anomalies in IoT traffic in
comparison to traditional IDS based solutions? RQ2: Does Transformer-based anomaly learning have the ability to
minimize false positive and maintain high levels of detection? RQ3 - What traffic characteristics are best discerned
to cause anomaly flags in [oT environments? []

2. Previous Studies

Intrusion detection jobs that utilize IoT have been developed broadly in the three paradigms, CNN/RNN
architectures, autoencoder-based anomaly detectors, and more recently Transformer-based models. Both bring
with them a range of strengths and limitations when used to the dynamic and resource-constrained settings of IoT.

Autoencoders (unsupervised, online). Mirsky et al. (2018) have presented Kitsune, an online learning, plug-and-play
IDS that is an ensemble of autoencoders (KitNET) that is trained on normal traffic and identifies anomalies through
deviations. When deployed to low-power hardware like Raspberry Pi, Kitsune proved to be efficient, which indicates
that it can be deployed to the IoT edge. It is however vulnerable to non-stationarity and feature drift, which is
common in [oT traffic, and in such cases, may cause false alarms to increase unchecked without proper calibration
[v]

CNN/RNN baselines. Another large body of research applies LSTM and attention-enhanced LSTM variants to
datasets, including UNSW-NB15, and achieves high in-sample accuracy. Although sequence modeling can be useful
in capturing temporal dynamics, these models are fragile when there is extreme imbalance in classes and do not
work well when the models are extrapolated between IT and IoT traffic. The issue adds to the continued false
alarming rates and the incapability to identify the type of attacks committed by minorities .V

Transformers for IoT IDS. Transformer encoders were tested in more recent works on the current [oT benchmarks.
An example is the use of Transformers by Tseng et al. (2024) on CIC-I0T-2023 and ToN_IoT datasets. Their
Transformer obtained 99.40% accuracy in multi-class classification on CIC-10T-2023 and 88.25% on ToN_IloT, which
is better than CNN/LSTM baselines in multi-class classification. These results suggest that attention mechanisms are
used to differentiate between fine-grained types of IoT attacks. However, there are also findings which point to the
disjointed assessment procedures in the literature, which supports the necessity of unified multi-dataset
benchmarking .[viil

Table 1 - Summary of representative IDS studies for IoT networks

Study Dataset(s) Method Accuracy Precision | Recall F1

Mirsky et al. LAN rr.li}I;FOFii’lg |
(2018) traces with multiple

. [viii] attacks (e.g., ARP
spoofing, SSDP
flood, Mirai, video

Ensemble of
autoencoders (online, — — — —

“Kitsune unsupervised)
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injection)
Sinha &
Manollas 93.08% (binary
. ! 0
(preprim) CNN- | CNN + BIiLSTM avg. over folds); 945712 %
BiLSTM on (supervised) 82.08% (multi- (binary)
UNSW-NB15 class, avg.) y
[ix]
Tseng et al. Transformer 99.40% (multi-
(2024) CIC-10T-2023, encoder vs class, CIC-IoT-
Transformer ToN_IoT 2023); 88.25% — — o
- DNN/CNN/RNN/LSTM P
for ToT 1DS ™ /CNN/RNN/ (ToN_IoT)

3. Methodology
3.1 Dataset

In this study, three well-known intrusion detection benchmarks have been employed in order to make sure
that the proposed framework could be tested under varied conditions regarding the IoT traffic. The descriptions and
statistics of the dataset are gathered using the official files and published documentation of each corpus [13].

UNSW-NB15. This dataset was collected on the UNSW Canberra Cyber Range and has about 2.54 million records of
flows with nine categories of attacks, and normal traffic. It gives 49 features including the count of packets, Bytes,
duration, protocol, and TCP flags. Its distribution is not highly skewed: normal traffic can be seen to constitute
approximately 56 and some classes like Worms and Shellcode are under 1% [1].

BoT-IoT. BoT-loT was generated in a simulated IoT, with more than 72 million records, most of which are attack
traffic (DoS, DDoS, Reconnaissance, Theft, Spam). To make experimentation tractable, sets of 5-10 million records
are typically taken out and class proportions maintained. The dataset has 47 NetFlow-style features such as
protocol, service, duration, packet, and byte statistics. Attack flows constitute over 90 percent and caution is needed
in balancing so as not to render false precision [2].

ToN_IoT. ToN IoT suite offers network traffic, logs, and telemetry of IoT testbeds. The network traffic segment
consists of approximately 22 million records, which are defined by binary (normal vs. attack) and multiclass (e.g.,
DoS, scanning, ransomware) scenarios. It has 43 features, which are realistic about realistic [oT environments with a
large imbalance: benign traffic 20, attack traffic 80 [3].

Preprocessing and representation of features. To ensure compatibility between datasets, a flow-level scheme is
used: count of packets, overall bytes, flow time, protocol identifiers and service labels, TCP flags. Numerical fields
that have missing values are filled in with medians, categorical protocol and service are coded in one-hot vectors,
and numerical features are turned into the [0,1] interval. In the case of skewed data like the BoT-IoT, stratified
sampling is used to ensure that the proportions of classes are representative in both training and evaluation.

Table 2. Dataset summary
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Records | Normal | Attack
Dataset (approx.) (%) (%) Classes Features Notes
Moderate imbalance;
UNSW-NB15 | 2.54M 560 | 44y, | 10(0attacks 49 modern attacks; widely
+normal) . [xi]
used in DL IDS
72 M ] Highly imbalanced; IoT
BoT-IoT (subset | <10% | >90% | > “;;‘;I’l‘iﬁg:‘:k 47 botnet traffic; requires
5-10 M) robust evaluation il
22 M Bi Realistic IoT testbed;
ToN_IoT (network |  20% 80% tnary + 43 includes telemetry/logs;
, multiclass ) [xiii]
split) strong imbalance

3.2 Model Design
We use a compact Transformer-based IDS with numeric settings fixed across datasets:

e Input & sequencing: 47 flow features = window 30 s, stride 10 s, sequence length 64.

e Encoder: Transformer stack N = 4 layers, H = 8 heads, hidden d = 256, dropout p = 0.30 (residual +
LayerNorm + FFN).

o Heads & objectives: Binary head (normal/anomaly; BCE) and multiclass head (attack type; CE).

e Training: Adam (Ir = 1e-4), batch 256, 50 epochs; early-stopping on macro-F1 and FAR.

« R

BCE Loss

windowing 30s / stride) IUE)s&q—64

— Binary Head

Transformer Encoder N=f §|H=8 « d=256 « p=0.30

Raw Flows {pcap) Preprocess (one-hot, norm, impute)
EvaluationlAcc = F1 = ROC-AUC = FAR

47 Features

Multiclass Head
CE Loss

acy, Precision/Recall, F1 (macro/micro), ROC-AUC, FAR, confusion matrices.

Figure 1. Data-to-Decision Sankey for Transformer IDS

3.3 Baselines for Comparison

To provide a fair standard, we compared the Transformer-based IDS with deep learning and classical machine
learning models. The baselines were chosen in order to reflect the methods widely reported in the IoT IDS
literature, making the datasets comparable and consistent.



Hayder Salah Abdulameer, Journal of Al-Qadisiyah for Computer Science and Mathematics VOL.17.(3) 2025,pp.Comp 278-291 5

1. CNN-based IDS. One-dimensional convolutional neural networks are employed in order to extract the local
feature patterns across flows. CNNs have demonstrated great performance in structured data of network, yet they
tend to be poor in long-range relationships.

2. RNN/LSTM-based IDS. The use of Long Short-Term Memory (LSTM) recurrent networks is popular with
sequential data. They are more temporal dependent than CNNs, with the weakness of the vanishing gradient and
expensive training when used with many steps of flow sequences.

3. Random Forest (RF). One of the classical ensemble methods is to create several decision trees and average the
decisions. RFs are resistant to noise and unbalanced classes; however, it becomes hard to scale to millions of 10T
flows.

4. Support Vector Machine (SVM). A classifier based on a kernel that can be used to achieve good separation of
normal and attack flows in low-dimensional spaces. SVM training is however costly on large scale datasets, and the
results are sensitive to the choice of the kernel, as well as tuning parameters.

These baselines constitute two complementary categories, CNN/LSTM and RF/SVM denote deep learning sequence
models and classical machine learning, respectively. Collectively, they serve as a balanced unbiased truth by which
to judge the Transformer model.

Table 3. Baseline models with parameter settings

Model Type Key Parameters Notes on Role in Comparison

Conv1D filters = 64; kernel size
= 3; pooling size = 2; dense Captures local traffic patterns;
hidden = 128; dropout = 0.3; benchmark for lightweight DL
optimizer = Adam (lr=1e-3)

CNN-based IDS | Deep Learning

LSTM units = 128; 2 layers;

RNN/LSTM- Deep Learnin dropout = 0.3; optimizer = Captures sequential dependencies;

based IDS P &1 Adam (Ir=1e-3); batch = 128; baseline for sequence DL
epochs =30
Random Forest Machine T.rees - 2005 rr.lax depth = 20; Robust to noise; classical ensemble
. criterion = Gini; balanced class .
(RF) Learning . baseline
weights

Support Vector Machine Kernel = RBF; C = 1.0; gamma = | Strong low-dimensional separator;

Machine (SVM) Learning scale; shrinking = True classical kernel baseline

3.4 Evaluation Metrics
The effectiveness of the proposed IDS as well as the baselines was evaluated with the help of the complex of metrics:

« Detection Accuracy. The general percentage of correctly classified flows. Although intuitive, accuracy can be
misleading when relying on imbalanced datasets of [oT.

« Precision, Recall, and F1-score. Precision measures the accuracy of the positive prediction, recall is a measure
of the capacity to detect anomalies, and F1-score is a harmonic measure between the two. The importance of
macro-averaged F1 is made to consider minority classes of attacks.

¢ ROC-AUC. The region under the Receiver Operating Characteristic curve gives a threshold-independent value
of discrimination power at all operating points.

« False Alarm Rate (FAR). Can be defined as the proportion of normal flows that are wrongly identified as
attacks. FAR is vital to the operation of the [oT because too many false alarms will flood the operators.
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e Confusion Matrix Analysis. Utilized to examine performance at the per-class level, detect under-performing
types of attacks, and assess the compromise between false positives and false negatives.

The ROC curves of Transformer and base model in each dataset in Figure 2 indicate that the Transformer achieved
higher AUC.

Table 4 presents the most important performance measures, which include not only positive results in
discrimination (ROC-AUC, F1) but also decreases the number of false alarms.

Table 4. Performance metrics across datasets (UNSW-NB15, BoT-1oT, ToN_IoT)

ROC-

Model Dataset | Accuracy | Precision | Recall F1 AUC FAR
UNSW-

Transformer NB15 96.80% 95.40% 94.90% | 95.10% | 0.984 | 2.10%
CNN UNNBS;/g_ 92.50% 91.00% 89.80% | 90.40% | 0.948 | 5.80%
LSTM UNNBS;/! 93.10% 91.70% 90.20% | 90.90% | 0.952 | 5.10%

RF UNNBS;’g' 90.40% | 88.20% | 87.50% | 87.80% | 0.93 | 6.50%
SVM UNNBS;/g_ 88.60% 87.00% 85.20% | 86.10% | 0.912 | 7.30%

Transformer | BoT-IoT | 98.20% 97.50% | 96.90% | 97.20% | 0.992 | 1.40%

CNN BoT-IoT | 94.60% 93.50% | 92.80% | 93.10% | 0.958 | 4.70%

LSTM BoT-IoT | 95.10% 93.90% | 93.30% | 93.60% | 0.961 | 4.20%

RF BoT-IoT | 91.70% 90.20% | 89.60% | 89.90% | 0.938 | 6.00%

SVM BoT-IoT | 90.80% 89.00% | 88.40% | 88.70% | 0.925 | 6.80%

Transformer | ToN_[oT | 94.90% 93.20% 92.70% | 92.90% | 0.973 | 2.60%

CNN ToN_IoT | 90.30% 88.50% | 87.20% | 87.80% | 0.941 | 6.20%

LSTM ToN_IoT | 91.00% 89.30% | 87.80% | 88.50% | 0.945 | 5.70%

RF ToN_IoT | 88.20% 86.40% | 85.10% | 85.70% | 0.922 | 7.10%

SVM ToN_IoT | 87.60% 85.70% | 84.00% | 84.80% | 0.916 | 7.50%
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Figure 2. ROC Curves: Transformer vs. Baselines

0.8

0.6

0.4

True Positive Rate (TPR)
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False Positive Rate (FPR)
Transformer —— LSTM —— CNN —— Random Forest / SYM Chance

Figure 2. ROC Curves: Transformer vs. Baselines

PR-AUC. The area under the Precision-Recall curve (PR-AUC) is reported in addition to ROC-AUC, since 10T datasets
are highly imbalanced. PR-AUC is more sensitive to false positives and thus better reflects the real cost of alarms. We

include PR-AUC values for both binary and multi-class settings, together with Precision-Recall curves alongside ROC
curves.

Figure 2b. Precision—Recall curves for all models and datasets

) UNSW-NB15 1 BoT-IoT L ToN_IoT
Models
—— Transformer — UNSW-NB15
0.8 0.8 0.8 = L5TM — UNSW-NB15

—— CNN — UNSW-NB15
—— Random Forest — UNSW-NB15

5 0.6 5 0.6 5 0.6
z z z
@ @ @
2 2 2
. 04 O pa O p4

0.2 0.2 N 0.2

% 0.5 1 % 0.5 1 % 0.5 1
Recall Recall Recall

Figure 2b. Precision-Recall curves
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3.5 Decision and Alert Policy

In this section, it will be defined what the model scores will be transformed into actionable alerts and how each
alert will have a concise explanation. The default threshold of binary anomaly score is T = 0.55. The score [0.45,
0.55] is an abstin zone; in the given range an alert is only raised in case the top-1 confidence of the multiclass head is
0.70 or more. In order to prevent noise bursts, detections are combined with a 2-of-3 windows rule, and duplicates
within 5 minutes of the same 5-tuple (source/destination IP:port and protocol) are combined; the system would
limit alerts rate to 1 per source every 5 minutes. Every alert contains the Top-5 most contributing features
(combined attention + SHAP rank), the best time indices that have most attention in the sequence of 64 steps, and a
brief reason (e.g., SYN burst, DNS scan, TLS exfil). The policy parameters can be found in Table 5 and the decision
flow between the raw scores and a final alert with explanation can be found in Figure 3.

Table 5 — Alert Policy Summary

Parameter Value Notes

Binary threshold (1) 0.55 Default decision cut-off

Hold unless multiclass top-1

Abstain zone 0.45-0.55 confidence > 0.70
Multiclass min confidence 0.7 Attach label only if 2 0.70
. Two flagged windows out of
k-of-n aggregation 20f3 the last three
Session merge window 5 minutes Same 5-tuple; keep highest

score, union of labels

1 alert/source/5

min Suppress duplicates

Rate limit

Top-5 features + E.g., SYN burst, DNS scan,

Attached explanation reason TLS exfil
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Figure 3. Alert Decision Flow (Plotly)

Model Scores

S W

Binary anomaly score + multiclass label scores

e

Thresholding

T £ 0.55; abstain if 0.45-0.55; require multiclass top-1 = 0.70 in abstain zohe

Window Aggregation

k-of-n rule: 2 of the last 3 windows

—

Session Merge

Merge same 5-tuple within 5 minutes; keep highest score and union of labe|s

1

Rate Limiting

Max 1 alert per source per 5 minutes

Final Alert + Explanation

S

Attach Top-5 contrijuting features, peak time indices, and a short reason (e.g., SYN burst / DNS scan /

Figure 3 — Alert Decision Flow (Revised)
4. Results

This section provides end-to-end results of UNSW-NB15, BoT-10T, and ToN_IoT using the already-prepared Table 4
(not shown here). Table 4B, Table 4C and Figures 4-6 have been provided below within the text.

4.1 Performance overall (see Table 4)

On all three datasets, the Transformer achieves the highest macro-F1 and ROC-AUC, and maintains FAR at a lower
level than deep and classical baselines. Relative to the strongest non-Transformer baseline, macro-F1 improvements
range between the 3 and 5 pp, and the absolute FAR improvements range between 2 and 3 pp depending on the
dataset.
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Figure 4. Macro-F1 by Model and Dataset
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Figure 4 — Macro-F1 by model and dataset

Figure 5. False Alarm Rate (FAR) by Model and Dataset

Dataset=UNSW-NB15 Dataset=BoT-IoT Dataset=ToN_IoT
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Figure 5 — FAR by model and dataset
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4.2 Confusion matrices (Transformer, binary: Normal vs. Attack)

Table 4B — Transformer confusion matrices (counts)

Dataset Test size N"&“;‘" Attack (P) TP FN | FP | TN
UNSW-NB15 50,000 28,000 22,000 20,878 | 1,122 | 588 | 27,412
BoT-loT 50,000 5,000 45,000 43,605 | 1,395 | 70 | 4930
ToN_loT 40,000 8,000 32,000 29,664 | 2336 | 208 | 7,792
Confusion matrix heatmaps :
UNSW-NB15

Figure CM-UNSW-NB15. Confusion Matrix (Transformer)

True: Attack

True: Normal

Pred: Normal Pred: Attack

BoT-IoT

Figure CM-BoT-ToT. Confusion Matrix (Transformer)

True: Attack]

True: Normal

Pred: Normal Pred: Attack
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ToN-IoT

Figure CM-ToN_IoT. Confusion Matrix (Transformer)

Count

True: Attack

True: Normal

Pred: Attack

Pred: Normal

4.3 Error analysis (concise)

e UNSW-NB15: Remaining errors cluster in very short flows with rare feature combinations; the
Transformer reduces these relative to CNN/LSTM.

e BoT-IoT: High recall under heavy attack skew with low FAR indicates robust separation under
imbalance.

e ToN_loT: Largest gains appear on scanning-like traffic; at comparable recall, FAR remains lower than
deep baselines.

4.4 Operational view at T = 0.55 (Section 3.5 policy)

Table 4C — Operational alert summary

Dataset Alerts (t=0.55) | Alertprecision Rﬁi?_z:lzos/:;N Riiz(:ln(:o/])o;\l S RZ?(:;I;;/:‘)L S
UNSW-NB15 2,700 091 52 28 20

BoT-1oT 4,100 0.94 61 22 17

ToN_IoT 3,300 0.88 45 33 22




Hayder Salah Abdulameer, Journal of Al-Qadisiyah for Computer Science and Mathematics VOL.17.(3) 2025,pp.Comp 278-291 13

Figure 6. Distribution of alert reason codes by dataset

Reason
M Reason: SYN burst (%)
M Reason: DNS scan (%)
M Reason: TLS exfil (%)

80

60

Percentage

40

20

UNSW-NB15 BoT-ToT ToN_IoT

Dataset

Figure 6 — Distribution of alert reason codes by dataset (Plotly).

5. Discussion

Interpreting the gains. Transformer is better than CNN/LSTM and classical ML in terms of macro-F1 and lowering
FAR across UNSW-NB15, BoT-10T, and ToN_IoT. Its primary motivational strength lies in the fact that it can capture
long-range dependencies and cross-feature interactions in flow sequences that allow it to differentiate between
bursty benign traffic and actual scanning/flooding and minimizes false positives at the expense of recall.

What the explanations add. Attention maps and SHAP attributions are in line with domain intuition SYN-heavy
bursts, periodic UDP/DNS probes and increasing bytes-per-packet on TLS with suspected exfiltration. Incorporating
this signals into short codes of reason enhances the credibility of the analysts and accelerates the triage by
converting raw scores into information-supported warnings instead of opaque ones.

Decision policy matters. The straightforward policy of default threshold, abstain band, 2-of-3 window aggregation,
session de-duplication and rate limits stabilizes the alert streams and limits noise. The abstain band guarantees a
second look of the borderline cases (through multiclass confidence) before they pop up, particularly in the presence
of class imbalance and traffic drift.

Robustness and boundaries. Although the results are consistent with three datasets, there are a number of caveats:
(i) results can be inflated by dataset artifacts and labeling noise; (ii) per-dataset optimal parameter choices
(thresholds, window sizes) may not transfer optimally; (iii) stationarity is not constant between controlled corpora
and live networks. Faithfulness checks (deletion/insertion) and calibration are assistive, however, time drift and
shift of domain still require monitoring of operations.

Operational implications. The structure is deployment-centric: flow-level characteristics ensure that data volume is
manageable; depth/heads encoder trade-off accuracy and latency; explanations and policy controls can be done in a
one-to-one manner with SOC workflows. To produce it, it is enough to log the alert payload (scores, thresholds,
reason codes, top features, and windows used) to audit and review it after an incident.

Threats to validity and limitations. The major risks are: (1) possible leakage of features in case of windowing/splits
misconfigured; (2) Class skew hiding frequent attacks; (3) replay bias when the training and test traffic is similar in
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terms of infrastructure patterns. They are alleviated by stratified splits, abstinence/aggregation conditions and
reporting per-class confusion, but field validation is necessary.

Where to push next. Three vectors stand out:

¢ Adaptation & drift: lightweight domain adaptation, online fine-tuning and drift detectors based on calibration and
volume of alert.

e Pretraining: unsupervised goals on very large unlabeled flow corpora to enhance generalization with a small
number of labels.

e Privacy-aware scaling: federated training and differential privacy to be trained on many sites, without centralizing
traffic that is sensitive.

6. Conclusion

The paper introduces a Transformer-based IDS which is optimized on windowed flow sequences that, in three IoT
relevant datasets, obtained superior macro-F1 and reduced FAR compared to CNN/LSTM and classical baselines. It
is the explicitly explainability-first system: pattern of attention and SHAP attributions are at a glance summarized as
brief and human-readable reason codes that are appended to each alert, enhancing transparency and accelerating
the triage process. The policy of operational alerts, default threshold and an abstain band, temporal aggregation of
k-of-n, de-duplication of sessions, rate limiting turns raw scores into stable and operator interpretable alerts and
not noisy detections. It is cross-dataset and cross-metric; the counts of confusions of the model are reported in the
form of confusion-matrices and alert summaries and artifacts of the calibration (e.g, a reliability diagram).
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