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A B S T R A C T 

   In this paper, we consider the study of the persistence and extinction of cancer cells in the 

stochastic system that describes the relationship between cancer cells and the viral effect on 

the growth of cancer cells. The sufficient conditions for the extinction of cancer cells and for 

the survival of normal cells are proposed. In addition, we provide a statistical analysis of the 

stochastic model by studying the expected value, conditional expected value, variance, and 

conditional variance to solve the system. Finally, a numerical simulation of the system is 

introduced  in order to illustrate the results. 

MSC.. 

https://doi.org/10.29304/jqcsm.2025.17.32438 

1. Introduction 

Since the late 1880s, viruses have attracted considerable interest as possible agents of tumor destruction. According 
to the history of oncolytic viruses, physicians have seen that some cancer patients do experience remission 
following a viral infection [26]. Therefore, the viral therapy method has received significant attention from 
researchers interested in studying cancer tumor treatments. The chief problem that the researchers sought to 
answer is how to undermine the ability of those viruses that cause the disease so that they convert appropriate as 
medicines [6]. 

     It turns out that viruses can eliminate cancer patients' tumor materials in the right circumstances. It has been 
established that the harm done to tumorous matter is significantly more severe than the harm done to normal host 
matter. The majority of these viruses were deemed unsafe for use in cancer treatment due to their pathogenicity. 
However, most viruses may have their pathogenicity removed without losing their oncolytic effectiveness thanks to 
adaptability and genetic engineering approaches [32]. 

     Viruses used in this treatment can only reproduce specifically in cancer cells, leaving healthy normal cells mostly 
unharmed. The newly released viruses from the lysed cells have the potential to cause several infection cycles by 
infecting nearby or distant tumor cells. Much work has recently been done to comprehend the molecular mechanics 
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and dynamics of oncolytic virus cytotoxicity. These initiatives offered an intriguing potential substitute treatment 
strategy to aid in the recovery of cancer patients. However, both the immune response and the virus-cancer 
interaction play a complex role in the results of virotherapy ([17, 18, 33, 36]).  The majority of cancer treatments 
currently in use were created empirically [21]. Nonetheless, a number of mathematical models have lately been 
created to explain how such interactions will turn out. ([4-7,17–20, 38, 41]). In order to investigate the dynamics of 
virotherapy, other models and methods are being developed. ([ 2, 23, 33, 36, 37–41]). Many traditional 
mathematical models, such as reaction-diffusion models and Lotka-Volterra models, which generally assume that 
populations are well-mixed, have been used to build a number of mathematical models of virotherapy. However, it is 
evident that the spatial constituent and native communications are essential in populace expansion (see, for 
example, [19]), therefore this may not be the case.   In general, there hasn't been any experimental evidence to 
support many of the modeling techniques used today.  An in computer model that can spatially explicitly depict the 
dynamics between the virus and tumor populations has been developed in order to solve this issue [5, 6]. The 
qualitative characteristics of the model from [5, 6]are examined in [1], along with the qualitative  of fixed points and 
the long-term behavior of the  solution. Significant features of the model make it intriguing from a mathematical and 
clinical standpoint. In [28], the cells were separated into three categories: normal cells, cancer cells, and responsive 
cells. The stochastic mathematical model of the formation of cancerous tumors with targeted treatment was 
presented. The system's long-term behavior and stability were examined. It has been demonstrated that the tumor-
free equilibrium state is nearly universally stable under specific circumstances. 

2. Primaries 

We present the following definitions [8-13] and hypotheses [15, 16] for the ease of research into the necessary 
circumstances of tumor cell extinction and tumor survival under the influence of microenvironment white noise.  

(i) If               , the tumor cell      will go extinct as soon as possible.  

(ii) If 〈    〉∗            〈    〉   , then the tumor cell      will be very persistent in the mean a.s. 

(iii) 〈    〉  
 

 
∫     

 

 
  ,    〈         〉  

 

 
∫      

 

 
  . 

Definition 2.1 [27,29,30]: If the stochastic process               is admitted to the following axioms, then      

  a solution of  the following stochastic differential equation (SDE) 

                                           (1) 

 (a) The function        is continuous and   -adapted 

 (b)                           and                               

 (c) Equation (1.2) is true for all   in        with full measure. 

 

The solution        is considered unique if any other solution   ̃      is undifferentiated from       . 

        ̃                       

Remark 2.2 [27,29,30]: (a) Use            to represent the solution of equation (1). Then, for each   in the interval 

      , 

              ∫             ∫               
 

 

 

 
 on            (2)            

However, because this is a stochastic differential equation   with the initial value                , and because the 

solution is represented by  (              ), the semigroup axiom is satisfied by the solution of (1).   
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      ,      (              )                       .          (3)     

(b) As long as they are adjusted, the coefficients      can generally depend on  . For additional information, read 

Gihman and Skorohod [3].  

Proposition 2.3 [27,35]: Consider the  SDE  

                    ,                             (4) 

where        and   are constants and   represents a typical Brownian motion. The  solution  of (4)  is provided by   

                 ∫
 

    
    ∫

 

    
      

 

 

 

 
                (5) 

where  

        ((   

 
  )       )                                            (6) 

Because they may be used to describe strictly positive processes, scalar linear SDEs with multiplicative noise are 
extremely common in financial applications. The Black-Scholes model is an illustration of one of these SDEs. 

Theorem 2.4 [29,30]The solution      of the nonhomogeneous linear stochastic differential equation 

                                                                                 (7) 

can be written  

          ,     ∫   
                       

 

 
   ∫   

          
 

 
     -    (8) 

were 

         ,∫ *      
 

 
  

    +
 

 
   ∫      

 

 
     -. 

Proposition 2.5 [29,30] Consider the SDE  

                       ;       .         (9) 

(a) The solution to the SDE is provided by  

   
   ,(   

 

 
  )     -

     ∫    ,(   
 

 
  )     -

 
   

;    .             (10) 

(b) The conditional expectation and the conditional variance of the solution     are given by   

                                                  (11)          

and     
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                                    (12) 

All types of cells are killed by conventional chemotherapy medications at varying rates, and this can have serious 

side effects like anemia, exhaustion, hair loss, and more. Targeted chemotherapy, on the other hand, focuses 

primarily on cancer cells in order to minimize adverse effects. 

3. Model Formulation 

This section focuses to study the deterministic and stochastic model of our main problem.    

3.1 Deterministic Model  

 The model being examined is a traditional three-species Lotka-Volterra system.  These systems have been crucial in 

simulating interspecies competition, which has a big influence on research into various opposition representations 

in medicine ecology and biology. For example, see [21, 22, 32]. Three different cell types are involved in our concept: 

normal cells denoted as  , cancer cells  , and infected cancer cells  .  

The relationship between tumor growth and viral infection of tumor cells is described by this mean-field model, 

which is based on predator-prey interactions. 

        Table1: Parameters Description, ref. [5] 

Parameter Description Value  Unit 

  Proliferation of normal cells 0.5     cell 

  Death rate of normal population 0.2     cell 

  Proliferation of the uninfected cells 1.0        cell 

  Death rate of uninfected population 0.1     cell 

  Proliferation of the infected cells 1.2        cell 

  Death rate of the infected cells 0.1     cell 

        Estimate   

        Estimate 

        Estimate 

 

This rivalry can have a geographical impact on normal cells, even though the important communication is mostly 

among infected and uninfected cells. As a result, the fundamental dynamics of such an interaction can be captured 
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by the three model compartments. The following situation is used to formulate the model: The virotherapy in 

question can be modeled using a net and knots filled with the three different kinds of cells in addition to empty ones. 

Although infested cells may lone assault as well as inhabit a knot occupied via a cancer cell since the virus is 

designed to bout individual cancer cells and travels from cell to cell, while a cancer or normal cell multiplies, the 

recently formed cell must inhabit a near void knot ([31,34]). 

Assuming that the growth and death rates of the three cell types can be modified, as well as that viral infection 

parameters can be set, the model assumes that the virus arrival times vary but follow the Poisson process with time 

to the next event being exponentially distributed ([5, 6]). 

The model, described above, is governed by the following system of differential equations, where all of the 

parameters are nonnegative: 

             

{
 
 

 
 

  

  
                         

  

  
                               

  

  
         

                                     (13) 

and the initial conditions are:              ،           ،and           : 

where      and   stand for the corresponding population's death rates, and   for proliferation. The model was fitted 

to data from in vitro investigations and makes the assumption that mass action kinetics occur ([5, 6]). 
 

3.2 Stochastic Model   

The stochastic  model that corresponding to (13) can be  formulated as follows: 

It may happen that  the  effector cells’ natural death rate (  ), intrinsic growth rate of tumor cells (  ) , maximum 

carrying capacity of tumor cells  (     ), normal cells’ growth rate (   )  and decay rate of targeted chemo-drug (  ) 

are not completely known but subject to some random environmental effects, so that  

             ̇ ,               ̇  , and              ̇ , 

where the exact behavior of the noise terms    ̇  ,(such that       represent the customary independent Brownian 

motions and      ,        )   are unknown only their probability distribution. The functions     ,     , and     ,  

are assumed to be nonrandom and constants. Thus the system (13) becomes  

{

                                                        

                                                                     

                     

 

                                                                                                                                  (14) 
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4. Persistence and Extinction 

In the study of long-term population behavior, Communities may behave differently depending on the level of noise 
 ,  either extinction or persistence. So in this item we will assume the persistence and extinction of     . 

Theorem 4.1: The densities of tumor cells       in (14) , satisfied: 

          
 

 
           almost surely,                (15) 

with positive initial value     . 

Proof: By the second equation of (14) and the Itô's formula, we get  

                                                                                   

                                                                         (16) 

Construct a comparison system: 

    ̅  *        ̅   
  

 

 
+         ,   ̅   ̅   . 

Define         ̅ . Applying Itô's formula, it is obtained that 

            ̅        ̅     ̅      

          *   ̅       ̅  
  

 

 
+               

Now,                         ,  where       *   ̅       ̅  
  

 

 
+. 

Integrating from   to  , we can get that 

       ̅        ̅  ∫   *   ̅          ̅     
  

 

 
+

 

 
    

                                          ∫     
 

 
      . 

Set       ∫     
 

 
      , then 〈           〉  ∫      

  

 
   (the quadratic variation) .So , for any  ̅ ,         , we 

have   

 ,        ̅ 
*      

  

 
〈           〉+    -                                      (17) 

(This follows from the exponential martingale inequality [29,30]). Using the analogous technique as Zhu et al. [22], 

put   ̅     ,          , 

   
         

 
, where     ,      ,    ,    . Hence, 
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 ,          *      
      

 
〈           〉+  

         

 
-    

    

By using Borel–Cantalli Lemma, we arise 

      
      

 
〈           〉  

         

 
,         . 

Choose    ⋂   
 
    for some       . Then        . Define  

                          ,       . 

 Hence,  

  ∑      
 
    

      

 
〈           〉  

         

 
,         . 

satisfies. So, if         , then  

       ̅        ̅  ∫   *   ̅          ̅     
  

 

 
           +

 

 
    

                                          
         

 
 

Hence, 

   ̅          ̅     
  

 

 
            

has the supremum for all            . That is , there is     such that 

   ̅          ̅     
  

 

 
              . 

  For any               with         , 

     ̅        ̅      
     

         

 
 

Then  

   ̅    

   
 

   ̅ 

      
 

         

   
 

         

 
 

Then  

         
   ̅   

   
 

   

 
 . 

 Thus, by setting    ,     and    , t follows that           
   ̅   

   
    a.s.. 
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Corollary 4.2: According to sumption of Theorem 3.1, we have  

         
 

 
              almust surly. 

Proof:  In view  of Theorem 3.1,   

         

 

 
                 

 

   
                 

 

 
      

                                  
 

 
     . 

Since          
 

 
       , then           

 

 
         . 

Theorem 4.3: Consider the tumor cell densities      in  (1.1), 

 (i) if    
  

 

 
  , then the tumor cell densities       will lean towards to extinct a.s.. 

(ii) if    
  

 

 
  , then the tumor cell densities      is weakly persistent in the mean almost surly. 

 Proof: (i) According to   

                                                     

we construction a comparison stochastic system [5]: 

  ̅   ̅     ̅       ̅       ,   ̅   ̅   .          (18) 

The Itô's formula has given us 

     (    ̅  
  

 

 
)            . 

By performing the integration from   to   for the two sides of the equation above, yields   

        ̅        ̅  ∫ *    ̅    
  

 

 
+

 

 
   ∫   

 

 
       

                                   ∫ *    ̅    
  

 

 
+

 

 
   ∫   

 

 
      ,  

Thus  

 ̅     ̅    ,∫ *    ̅    
  

 

 
+

 

 
        -  

where       ∫   
 

 
      . According to strong law of large numbers, yields  
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  . 

Thus, 

         
 

 
     ̅      

  
 

 
   a.s. . 

Due  to the comparison theorem for SDEs, we get  

         
 

 
     ̅     , then                . 

(ii) Demonstrating the existence of a constant     such that 〈    〉∗      is satisfied by any solution of (18). 

On the other hand, assume that the outcome is inaccurate. Select    be arbitrarily tiny in order that 

    
  

 

 
       ,    

  
 

 
      . 

Then the solution   ̅     ̅      exists for any          ̅     ̅     such that    〈 ̅   〉∗       . 

Consequently,  

    ̅  (  ̅     
  

 

 
)           . 

By performing the integration from   to   for the two sides of the equation above and then divide by  , yields  

 

 
    ̅       ̅     

 

 
∫ .    

  
 

 
/

 

 

   
 

 
∫   ̅   

 

 

   
 

 
∫   

 

 

       

                               
  

 

 
  

 

 
∫  ̅   

 

 
   

     

 
 ,                         (19) 

where       ∫   
 

 
      . According to strong law of large numbers,           

     

 
  . Hence, 

           
 

 
   ̅        

  
 

 
      .  

So         ̅     . Furthermore, 

    ̅    0   ̅    
  

 

 
1             

Consequently,  

  
 

 
    ̅       ̅     

 

 
∫ (  

  
 

 
)

 

 
   

 

 
∫   ̅   

 

 
   

     

 
 

                                            
  

 

 
 

 

 
∫   ̅   

 

 
   

     

 
. 
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By the strong law of large numbers,           
     

 
    is certified. Hence,  

          
 

 
   ̅      

  
 

 
        . 

This resulted in a conflict with Theorem 3.1. Hence, 〈    〉∗    .  
 

Theorem 4.4: If     
  

 

 
     

  
 

 
   , then the density of normal cells      extinct a.s.. 

Proof: If It is clear from the comments that  〈    〉∗     , when   
  

 

 
    . According to the same method as 

inequality (19), we get 

    ̅    0   ̅    
  

 

 
1            

Consequently,  

  
 

 
    ̅       ̅     

 

 
∫ (  

  
 

 
)

 

 
   

 

 
∫  ̅   

 

 
   

     

 
 

                                            
  

 

 
 

 

 
∫  ̅   

 

 
   

     

 
. 

By the strong law of large numbers,           
     

 
    is certified. Hence,  

          
 

 
   ̅      

  
 

 
   . 

So         ̅       . Then                . Furthermore, if   
  

 

 
    , there exists     for all      such that 

     

 
     for    . Then 

   ̅       ̅    ∫ .  
  

 

 
/

 

 

   ∫  ̅   
 

 

   
     

 
 

    (  
  

 

 
   )   ∫  ̅   

 

 
   

It follows that 〈 ̅   〉∗  (  
  

 

 
   ). Let     , then 

 〈 ̅   〉∗  (  
  

 

 
). Therefore 

         

 

 
           

  
 

 
   〈 ̅   〉∗ 
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    (  

  
 

 
)  

Then           
 

 
   ̅     . As a result          ̅       . 

5. Statistical Analysis 

This section will cover our study of the statistical analysis for the stochastic differential equations that given in (14). 
As in [29,30], the expected of the densities of effector cells is: 

          
 

  
 .

 

  
     /         then                    

 

  
. 

and the variance is 

             
  

 

   
          . 

Mean and variance that are asymptotically conditional. The mean and variance of the process  , conditioned on 

the starting value     , exist since      has a finite second moment.  

                              
 

  
           and  

 

               

{
 
 
 
 
 
 

 
 
 
 
 
        [      

 

  

      
 

  

]              (     
 

  

)
 

 (
 

  

)
 

 
  

 

  

  

      
 

  

[
 

  

     ]        (     
 

  

)
 

  
  

  

   (
 

  

)
 

  
 

  

           
  

 

  

  

(
 

  
)
   

 

  

  
  

 

  

  
  

 

  

      
 

  
 

 

  

  
  

 

  

           (     
 

  

)
 

  (  
     ) [      

     
 

  

  
  

 

  

 
 (

 

  
)

 

   
  

 

  
    

  
 

  
 
]  

         

 

 

Since 
 

  
    , from (            ). Thus, the asymptotic mean of z must exist. It is provided by   

                            
 

  
 . 

 From (              ), it implies that the asymptotic variance of   exists under the constraint 
  

 

  
   . It is provided 

by 

                                        
(

 

  
)
   

 

  

  
  

 

  

 
(

 

  
)
 

   
  

   
  

 

Similarly ,         
 

          so                 ,   

                                                            

and  



12 K.  K.  Hashim , Ihsan Jabbar Kadhim, Journal of Al-Qadisiyah  for Computer Science and Mathematics VOL.17.(3) 2025,pp.Math 180–194

 

                                         
  

 

 
               . 

 Also,              (     
 

  
)  

 

  
  and so               

 

  
 . 

6. Numerical Similation of The Stochastic Model 

Here, we do a numerical simulation to validate the findings, assess their realism, and strengthen the validity of our 
conclusions. The analogous estimation equations are: 

                                                      

                                               *  √       
  

 

 
     

      +  

                                                           

                                                       *  √       
  

 

 
     

      + 

                                   *  √       
  

 

 
     

      +. 

The values of the parameters shown Table 1 are used as considered in the study [4] in conducting all numerical 
simulations. Parameter units were selected arbitrarily.                             

 

Figure 1: Dynamics of the model with initial values         ,         , and       . 
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Figure 2: Dynamics of the model with initial values         ,         , and        . 

 

Figure 3: Dynamics of the model with initial values         ,         , and         . 

 

7. Discussion 

In this paper, we discussed the persistence and extinction of cancer cells in the human body under the influence of 
targeted chemotherapy, which is considered one of the best methods of treating tumors, because it targets cancer 
cells without affecting other healthy cells. Where we used the mathematical model represented by the system of 
coincidental differential equations (14) as in [15]. 

8. Conclusion 

There are a number of conclusions that were reached during the research. We have shown that the stochastic model 
provides more accurate results than the corresponding deterministic model. Through the stochastic model, we were 
able to calculate the expected value of the stochastic system solution, which allows us to predict tumor behavior 
with high accuracy. In addition to calculating the variance of the system's solution, we can also determine the 
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probability distribution that describes the solution to the stochastic system. Finally, some conditions on the 
parameters that ensure the extinction of cancerous tumors are given below: 

 (i) if    
  

 

 
  , then the densities of tumor cells        will lean towards to extinct a.s.. 

(ii) if    
  

 

 
  , then the densities of tumor cells       is weakly persistent in the mean a.s.. 

(iii) If     
  

 

 
     

  
 

 
   , then the density of normal cells      will lean towards extinct a.s.. 
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