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1. Introduction

Since the late 1880s, viruses have attracted considerable interest as possible agents of tumor destruction. According
to the history of oncolytic viruses, physicians have seen that some cancer patients do experience remission
following a viral infection [26]. Therefore, the viral therapy method has received significant attention from
researchers interested in studying cancer tumor treatments. The chief problem that the researchers sought to
answer is how to undermine the ability of those viruses that cause the disease so that they convert appropriate as
medicines [6].

It turns out that viruses can eliminate cancer patients' tumor materials in the right circumstances. It has been
established that the harm done to tumorous matter is significantly more severe than the harm done to normal host
matter. The majority of these viruses were deemed unsafe for use in cancer treatment due to their pathogenicity.
However, most viruses may have their pathogenicity removed without losing their oncolytic effectiveness thanks to
adaptability and genetic engineering approaches [32].

Viruses used in this treatment can only reproduce specifically in cancer cells, leaving healthy normal cells mostly

unharmed. The newly released viruses from the lysed cells have the potential to cause several infection cycles by
infecting nearby or distant tumor cells. Much work has recently been done to comprehend the molecular mechanics
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and dynamics of oncolytic virus cytotoxicity. These initiatives offered an intriguing potential substitute treatment
strategy to aid in the recovery of cancer patients. However, both the immune response and the virus-cancer
interaction play a complex role in the results of virotherapy ([17, 18, 33, 36]). The majority of cancer treatments
currently in use were created empirically [21]. Nonetheless, a number of mathematical models have lately been
created to explain how such interactions will turn out. ([4-7,17-20, 38, 41]). In order to investigate the dynamics of
virotherapy, other models and methods are being developed. ([ 2, 23, 33, 36, 37-41]). Many traditional
mathematical models, such as reaction-diffusion models and Lotka-Volterra models, which generally assume that
populations are well-mixed, have been used to build a number of mathematical models of virotherapy. However, it is
evident that the spatial constituent and native communications are essential in populace expansion (see, for
example, [19]), therefore this may not be the case. In general, there hasn't been any experimental evidence to
support many of the modeling techniques used today. An in computer model that can spatially explicitly depict the
dynamics between the virus and tumor populations has been developed in order to solve this issue [5, 6]. The
qualitative characteristics of the model from [5, 6]are examined in [1], along with the qualitative of fixed points and
the long-term behavior of the solution. Significant features of the model make it intriguing from a mathematical and
clinical standpoint. In [28], the cells were separated into three categories: normal cells, cancer cells, and responsive
cells. The stochastic mathematical model of the formation of cancerous tumors with targeted treatment was
presented. The system's long-term behavior and stability were examined. It has been demonstrated that the tumor-
free equilibrium state is nearly universally stable under specific circumstances.

2. Primaries

We present the following definitions [8-13] and hypotheses [15, 16] for the ease of research into the necessary
circumstances of tumor cell extinction and tumor survival under the influence of microenvironment white noise.

(1) Iflim;_,, ¥(t) = 0, the tumor cell y(t) will go extinct as soon as possible.

(i) If (y(t)), = lim,_, ., inf{y(t)) > 0, then the tumor cell y(¢) will be very persistent in the mean a.s.
(i) (y(©)) =1 [; ¥(s) ds, (y(0),y(0) == [ y*(5) ds.

Definition 2.1 [27,29,30]: If the stochastic process {x(t)};,<;<r is admitted to the following axioms, then x(t) €

R%a solution of the following stochastic differential equation (SDE)
dX, = f(x(t),t)dt + g(x(t), t)dB; (D

(a) The function {x(t)} is continuous and F;-adapted
(b) {f (x(t), 1)} € L1([to, TI; R*) and g(x(t), )} € L2([to, T]; R™);

(c) Equation (1.2) is true for all ¢ in [t,, T] with full measure.

The solution {x(t)} is considered unique if any other solution {% (t)} is undifferentiated from {x(t)}.
P{x(t) =% (t),forallt,<t<T}=1

Remark 2.2 [27,29,30]: (a) Use x(t; to, x,) to represent the solution of equation (1). Then, for each s in the interval
[to, T],

x(t) = x(s) + fstf(x(r), r)dr + fstg(x(r),r)dB(r) ons<t<T (2)

However, because this is a stochastic differential equation with the initial value x(s) = x(s; ty, Xo), and because the

solution is represented by x(t; s, x(s; to,xo)), the semigroup axiom is satisfied by the solution of (1).
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x(s; ty, x0) = x(t;5,x(s; to, X)), tg<s<t<T. (3)

(b) As long as they are adjusted, the coefficients f, g can generally depend on w. For additional information, read

Gihman and Skorohod [3].
Proposition 2.3 [27,35]: Consider the SDE
dx = (ax + c)dt + (bx + d)dB, x(0) = x, (4)

where a, b, ¢, and d are constants and 8 represents a typical Brownian motion. The solution of (4) is provided by

1

dx = Y(O)(xo + (¢ = bd) J; 5

ds +d [, 75 dB(s)) (5)
where

Y(t) = exp ((a— %)t + bA(®)) (6)

Because they may be used to describe strictly positive processes, scalar linear SDEs with multiplicative noise are
extremely common in financial applications. The Black-Scholes model is an illustration of one of these SDEs.

Theorem 2.4 [29,30]The solution X (t) of the nonhomogeneous linear stochastic differential equation
dx(®) = [ ®) + L(OX©]dt + [g,(0) + g, (OX@®)]dW (t) ()

can be written

X(®) = X (0O {X(O) + [ X5 OAG) — 9:1()g2 ()] ds + f, X5 (5)g1 () dW ()} (8)

were

Xo(®) = exp {[; [£o() =3 93()] ds + [} g, () aw ()}
Proposition 2.5 [29,30] Consider the SDE
dX, =rX,(K — X,)dt + 6X,dB, ; X, = x > 0. 9
(a) The solution to the SDE is provided by

X, = eXp{(TK—%g'Z)t+O'Bt} t> 0. (10)

T oxler fot exp{(rK—%Jz)SHTBs}dS'

(b) The conditional expectation and the conditional variance of the solution X, are given by
E[x(t+5s)/x(®)] =K +e ™ (x(t) — K) 11

and
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Var[x(t +s)/x(t)] = #

(1-e7%) (12)

All types of cells are killed by conventional chemotherapy medications at varying rates, and this can have serious
side effects like anemia, exhaustion, hair loss, and more. Targeted chemotherapy, on the other hand, focuses

primarily on cancer cells in order to minimize adverse effects.

3. Model Formulation

This section focuses to study the deterministic and stochastic model of our main problem.

3.1 Deterministic Model

The model being examined is a traditional three-species Lotka-Volterra system. These systems have been crucial in
simulating interspecies competition, which has a big influence on research into various opposition representations

in medicine ecology and biology. For example, see [21, 22, 32]. Three different cell types are involved in our concept:

normal cells denoted as x, cancer cells y, and infected cancer cells z.

The relationship between tumor growth and viral infection of tumor cells is described by this mean-field model,

which is based on predator-prey interactions.

Tablel: Parameters Description, ref. [5]

Parameter Description Value Unit
r Proliferation of normal cells 0.5 1/h cell
a Death rate of normal population 0.2 1/h cell
s Proliferation of the uninfected cells 1.0 mm3 h/ cell
b Death rate of uninfected population 0.1 1/h cell
c Proliferation of the infected cells 1.2 mm3 h/ cell
d Death rate of the infected cells 0.1 1/h cell
01 0.1 Estimate
0, 0.7 Estimate
03 0.2 Estimate

This rivalry can have a geographical impact on normal cells, even though the important communication is mostly

among infected and uninfected cells. As a result, the fundamental dynamics of such an interaction can be captured
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by the three model compartments. The following situation is used to formulate the model: The virotherapy in
question can be modeled using a net and knots filled with the three different kinds of cells in addition to empty ones.
Although infested cells may lone assault as well as inhabit a knot occupied via a cancer cell since the virus is
designed to bout individual cancer cells and travels from cell to cell, while a cancer or normal cell multiplies, the
recently formed cell must inhabit a near void knot ([31,34]).

Assuming that the growth and death rates of the three cell types can be modified, as well as that viral infection
parameters can be set, the model assumes that the virus arrival times vary but follow the Poisson process with time
to the next event being exponentially distributed ([5, 6]).

The model, described above, is governed by the following system of differential equations, where all of the
parameters are nonnegative:

(ax _
lac —

4%=sy(1—x—y—z)—by—cyz (13)

| dz
kE = cyz — 6z

rx(1—-—x—y—2) —ax

and the initial conditions are: x(0) = x, > 0¢«y(0) = y, > 0 <and z(0) = z, > 0:

where a, b, and d stand for the corresponding population's death rates, and r for proliferation. The model was fitted

to data from in vitro investigations and makes the assumption that mass action kinetics occur ([5, 6]).

3.2 Stochastic Model
The stochastic model that corresponding to (13) can be formulated as follows:

It may happen that the effector cells’ natural death rate (d,), intrinsic growth rate of tumor cells (r;) , maximum
carrying capacity of tumor cells (1/b; ), normal cells’ growth rate (1, ) and decay rate of targeted chemo-drug (d,)

are not completely known but subject to some random environmental effects, so that
r(t) = r(t) + o, W, s(t) — s(t) + o,W, , and §(t) — 6(t) — o3 Ws,

where the exact behavior of the noise terms o;W; ,(such that B;(t) represent the customary independent Brownian
motions and o; > 0,i = 1,2,3) are unknown only their probability distribution. The functions r(t), s(t), and §(t),

are assumed to be nonrandom and constants. Thus the system (13) becomes

dx = [re(1—x)—rx(y+2)— axldt + [o;x (1 —x) — oy x(y + z)]|dW,
dy= [sy(1 —y)—sy(x+ 2) = (by+ cyz)ldt + [0y (1 — y) — a,y(x + 2)] dW,
dz = (cy —&)zdt + o5zdW,

(14
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4. Persistence and Extinction

In the study of long-term population behavior, Communities may behave differently depending on the level of noise
y, either extinction or persistence. So in this item we will assume the persistence and extinction of y(t).

Theorem 4.1: The densities of tumor cells y(t) in (14), satisfied:
lim;_, 40 sup%ln y(t) < 0 almost surely, (15)
with positive initial value y(0).
Proof: By the second equation of (14) and the It6's formula, we get
dlny(®)=[sy(1 —y)—sy(x+ 2)—(by+ cyz)|dt+[c2y(1 —y)—c 2y(x+ z)|dW_2
<[sy (1 — y)ldt + g,dW, (16)

Construct a comparison system:
_ — o3 - _
dlny = [s a-y) —7] dt + o,dW,, y, = y(0).

Define V; = et Iny . Applying It6's formula, it is obtained that

dV, =d(efIny) =etdlny+1Inydet
2
=et [lny +s(1-y)— UZ—Z] dt + eta,dW, (t)

2
Now, dV; = LV, dt + e'a,dW,(t), where LV, = et [ln)_/ +s(1-y)— %2 .

Integrating from 0 to t, we can get that
1 = _ ot oo _ _ a%
etlny(t) —Iny, = fo e [lny(‘r) +s(1-y(1)) —7] dr
+ fot e%ay, dW, (7).
Set M, (t) := fot e®o,dB, (1), then (M, (t), M, (t)) = fot e?¢% dt (the quadratic variation) .So, for any ¥,, ¢; ¢, > 0, we

have

€1

P{Suposeeg, [Ma(6) — L (M, (6), My (0))] > ¢} < emre2 (17)

(This follows from the exponential martingale inequality [29,30]). Using the analogous technique as Zhu et al. [22],

put ¥, = Ayv,c; = ge %o?,

_ 6e%0¥In 2,

C, —T,whereﬂoeN,0<s<1,9>1,v>0.Hence,
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ce” fetovIn A,

2, (0, M, ()] >

P{Supostsaov [M1(t) — } < 256

&

By using Borel-Cantalli Lemma, we arise

Agv Agv
(ML (6, My () + 25 0 < £ < A,

ge

M, (t) <
Choose Q, = N?_, Q; for some Q; € Q . Then P(Q,) = 1. Define
Ao(@) = max{d,(w),i = 1,2,...,n},Vw € Q, .

Hence,

ge—lov

Agv
Ty My (6) < S (M, (6, My (0) + 222 0 < £ < A,

2

satisfies. So, if 0 <t < A,v, then

etlny(t) —Iny, < fotef [ln)‘z @) +s1-y@) + %Zz(ses"lo" - 1)] dr

6et0?In 2y
+ —_—
&

Hence,
ai
Iny(s) +s(1 —y(1)) + > (ee5%7 — 1)
has the supremum forall ¢ € [0, 4,v]. Thatis, thereis M, such that
2
Iny(s)+s1—-y())+ %(ees"lo” -1) < M,.

Forany (1, — 1)v <t < Ayv with 4 = A,(@),

fetoVIn A
ety () —Iny, < My(et — 1) + ——2

Then
Iny (¢t Iny, M,(1—et) @e*?InA
y (t) < Yo " 1( ) N 0
Int et Int Int £
Then
. In y(t) fe?
lim sup;_, o S

Iny(t)
Int

Thus, by setting8 T 1, T 1and 8 T 1, t follows that lim sup;_,. <1 as.
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Corollary 4.2: According to sumption of Theorem 3.1, we have

lim supt_m% In y(t) < 0 almustsurly.

Proof: Inview of Theorem 3.1,

1
lim sup;_,e n Iny(t) = limsup;_

. 1
i In y(t)lim supt%o? Int

. 1
<lim SUP¢—o0 In t.

Since lim supt_,oo% In t = 0, then lim supt_,oo% Iny(t) <0.

Theorem 4.3: Consider the tumor cell densities y(t) in (1.1),

@ ifs - %

< 0, then the tumor cell densities y(t) will lean towards to extinct a.s..

(i) ifs - %

> 0, then the tumor cell densities y(t) is weakly persistent in the mean almost surly.

Proof: (i) According to

dy < sy(1 —y)dt + o,ydW,

we construction a comparison stochastic system [5]:

dy = y(s = sy)dt + o, ydW,(t), o, = y(0).  (18)

The [t0's formula has given us

2
diny = (s — sy —Z) dt + o,dW; (©).

By performing the integration from 0 to t for the two sides of the equation above, yields

Iny (&) ~Ingo = Ji [s = s3(0) = 2| dr + f o, dw, (D)

= fot [S —sy(0) — ”722] dr + fot a, dW, (1),

Thus

§(&) = Foexp{J; [s = (@) = Z] dr + M, ()}

where M, (t) = fot 0, dB, (). According to strong law of large numbers, yields
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lim,_, o, sup —= Ml(t) =0.

Thus,
lim supt_m% In y(t) <s — 6722 <0as..
Due to the comparison theorem for SDEs, we get
lim supt_,oo% In y(t) <0, then lim,_,,,y(t)=0.
(ii) Demonstrating the existence of a constant @ > 0 such that {(y(t))* = a > 0 is satisfied by any solution of (18).

On the other hand, assume that the outcome is 1naccurate Select 51 be arbitrarily tiny in order that
—d, ——+ke1 <0, s———se1 > 0.

Then the solution (¥(t), Z(t)) exists forany &; > 0 (¥(t), Z(t)) such that P{{y(t))* < &} > 0.

Consequently,
2
dinz < (ky — d, — Z) dt + 0,dW, (2).

By performing the integration from 0 to t for the two sides of the equation above and then divide by ¢, yields
1 _ 1t a? 10t 1t
—(Inz(t) —Inz(0)) < —j —-d, ——|dt + —J ky(r)dr + —j g, AW, (1)
t tJ, 2 t), tJ,

2
=—d, — Z+ k1 [ 7@ dr + 22, (19)

My (t)

= = 0. Hence,

where M, (t) = f o, dW, (). According to strong law of large numbers, lim sup;_, ;. ——

2
lim;_, sup%ln zZ(t) £ —d, — 02—2 + ke <0.

Solim;_, . Z(t) = 0. Furthermore,

dlny(t) = [s -5 - 0712] dt + o,dW, (t)

Consequently,

Uy ~ny©)] =2 (s~ L) dr — 2 [} sy(@) dr + 22

=s —7—— "5y (1) dr + 228 MZ(t)
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Mz (t)

= 0 is certified. Hence,

By the strong law of large numbers, lim sup;_,, o

2
lim supt_,+oo%ln y(t)=s— 672 +sg > 0.

This resulted in a conflict with Theorem 3.1. Hence, (y(¢))* > 0.

2 2
Theorem 4.4: If (s — 02—2) <cs (Uz—1 — 1), then the density of normal cells x(t) extinct a.s..

2
Proof: If It is clear from the comments that (x(t))* < 0, whenr —671 < 0. According to the same method as

inequality (19), we get

2

dIn%(t) = [r —®(t) - 071] dt + o, dW, (t)

Consequently,

1 _ _ 1t a? 1 0t _ Ms(t)
- [Inx(t) — Inx(0)] —;fo (r—;) ds—;fo x(s)ds + ==

2
— g _Lrte M3(®)
=r——— 0x(s)ds+ -
By the strong law of large numbers, lim sup;_, , M3T(t) = 0 is certified. Hence,
. 1 — 012
lim sup;_, 0 ;ln x@t)=r-— 5 S 0.

2
Solim,_, X(t) = 0. Thenlim,,, x(¢) = 0. Furthermore, ifr —%1 > 0, there exists § > 0 for all &, > 0 such that

Ma(t)

< ¢, fort > 6. Then

Inx(t) —Inx(0) < f t (r - 0712> ds — f t;z(s) ds + —Mzt(t)
0 0

Z t_
< (r—‘;—1+£2)t—f0 x(s)ds
0_2
It follows that (x(£))* < (r - 71 + 82). Lete, — 0, then

x@®) < (r - 0712) Therefore

: 1 o} _
lim SUPtoo In y(t) <s-— > + c3{x ()
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2 2

o2 g1
< — = _—
<(s 2)+c3(r 2)

Then lim sup;_, %ln x(t) < 0.Asaresult lim,_,, x(t) =

5. Statistical Analysis

This section will cover our study of the statistical analysis for the stochastic differential equations that given in (14).
As in [29,30], the expected of the densities of effector cells is:

E[z(t,w)] < —— (i — Z(O)) e~®1t then lim,_., E[z(t, w)] < —.
dq dq dy

and the variance is
Var [z(t, w)] <= (1 e~2d1t),

Mean and variance that are asymptotically conditional. The mean and variance of the process z, conditioned on

the starting value z(0), exist since z(0) has a finite second moment.

E[z(t)/z(0)] = z(0)e~%* + di (1—e %t and

e=125 [£20) = 2(0) — -] + 2(0)2 = e ((0) S)2+<S)2 % _q
stz Z Z z z Z %) 4"
e ] - et (z(0) ) 25— 3 (2 © + 202, 2
4e %1t — [——ZO]—E 1<ZO——> +2—t—3<—> +2—ZO +z(0 —=2
dl 1 dl dl dl dl
AN
Var[z(6)/2(0)] = G5, 005 . et (50 - 2)’
Z T4 o7 a
1--= 1
4 4 ) otherwise
22(0) < z(i)
+elod-2a1)t [ 7(0)2 — L 4
93

_ 9 _ 931 _%
., @-D0-7

Since dil > 0, from (E[z(t)/z(0)]). Thus, the asymptotic mean of z must exist. It is provided by

E[zeo (1)) = lim,_ E[2(t)/2(0)] = -
From (Var[z(t)/z(0)]), it implies that the asymptotic variance of z exists under the constraintz—f < 2.Itis provided
by

2

2 2
&7 @

Var|ze(t)] = lim,_,, Var[z(t)/z(0)] =

Similarly, E[x(t)] < so lim,_,., E[x(t)] < 1

Elx(t+s)/x(t)]=1+e5(x(t)— 1)

and
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Var[x(t+s)/x@)] = %gx(t)@ — e s

Also, E[z(t)] < e~%2t (z(O) — diz) + diz and so lim,_,, E[z(t)] < aiz'

6. Numerical Similation of The Stochastic Model

Here, we do a numerical simulation to validate the findings, assess their realism, and strengthen the validity of our
conclusions. The analogous estimation equations are:

g1 = X + [ (1 — x5 ) —rx (yp + 23) — ax JAt
+oxe (=2 ) — x (i + 7)] [0—1\/A_t§k,1 + 67%(51%1 - 1)At]
Virr = Vi + [y U = i) = syi(x + ) — (byi + cyrzi)]At
o (1 = yi0) = 5y + 2] [0:VBEE + 2 (6, — 1A]

2
Ziss = 2z + (Y — 8)zbt + 7, |03VBEE s + 2 (875 — DA

The values of the parameters shown Table 1 are used as considered in the study [4] in conducting all numerical
simulations. Parameter units were selected arbitrarily.

sigma1=0.10; sigma2=0.70; sigma3=0.20; delta=0.20

- v T T T T v T T y -
\_'|

18 =14

161 -

0 -
20 30 100

e
R f;v\’\r
. \ w\\t;( \
0 10 a0 50 60 70 80 a0

Figure 1: Dynamics of the model with initial values x, = 0.6,y, = 0.6,and z, = 0.6.
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sigma1=0.10; sigma2=0.70; sigma3=0.20; delta=0.80
T T T T

Time

Figure 2: Dynamics of the model with initial values x ; = 0.5,y, = 0.5,and z, = 0.6.

sigma1=0,10; sigma2=0,70; sigma3=0.20; delta=0.20
T T T T T

0 T 1 L 1 1 L L I

Figure 3: Dynamics of the model with initial values x, = 0.6,y, = 0.4,and z, = 0.09.

7. Discussion

In this paper, we discussed the persistence and extinction of cancer cells in the human body under the influence of
targeted chemotherapy, which is considered one of the best methods of treating tumors, because it targets cancer
cells without affecting other healthy cells. Where we used the mathematical model represented by the system of
coincidental differential equations (14) as in [15].

8. Conclusion

There are a number of conclusions that were reached during the research. We have shown that the stochastic model
provides more accurate results than the corresponding deterministic model. Through the stochastic model, we were
able to calculate the expected value of the stochastic system solution, which allows us to predict tumor behavior
with high accuracy. In addition to calculating the variance of the system's solution, we can also determine the
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probability distribution that describes the solution to the stochastic system. Finally, some conditions on the
parameters that ensure the extinction of cancerous tumors are given below:

2
(i) if s — 02—1 < 0, then the densities of tumor cells y(t) will lean towards to extinct a.s..

2
(ii) if s — 02—1 > 0, then the densities of tumor cells y(t) is weakly persistent in the mean a.s..

2 2
(iii) If (s — 02—2) < c3 ((72—1 — 1), then the density of normal cells x(t) will lean towards extinct a.s..
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