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A B S T R A C T 

Fuzzy linear systems play an important and efficient role across various domains such as 
mathematics, engineering, physics, chemistry, economics, statistics, and so on. Dealing with 
these kinds of systems in the real world is still very hard. This paper suggests a new way to 
solve fully fuzzy linear systems quickly using the Bi-conjugate gradient method         . The 
method builds a one-block rate matrix and lets it skip fuzzy arithmetic operations. The focus 
is on systems in which both the coefficients and the variables are fuzzy, aiming to produce 
positive results even under highly uncertain conditions. The          algorithm is efficient in 
solving FFLS, requiring only a few iterations and converting the system into a crisp linear 
system first. To test the validity of the proposed method, we ran three numerical experiments, 
which confirmed its effectiveness and robustness. Unlike Jacobi or Gauss-Seidel, this 
proposed method has more efficient and quicker convergence. It is most applicable for FFLS 
when there are stringent demands on precision and system parameters are uncertain.  
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1. Introduction 

Fuzzy linear systems have been getting considerable attention as an appropriate mathematical platform to describe 
the uncertainty concerning real-world problems where imprecision and vagueness are present, for example, in 
engineering, economics, and decision-making processes. Friedman et al. were among the earliest scholars to explore 
the theoretical framework of FLS and pave the way for later computational methods [1]. With time, the attention 
moved from partially fuzzy to fully fuzzy linear systems (FFLS), which pose all components, including coefficients 
and right-side constants, as fuzzy numbers. This shift opened several new theoretical and algorithmic frontiers. 
Abbasbandy et al. improved fuzzy symmetric positive definite systems with the conjugate gradient method, thus 
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increasing the numerical precision of the computation [2]. Later on, Dehghan et al. put forth direct and iterative 
methods for fully fuzzy linear systems (FFLS), which broadened the methods available for finding solutions to the 
systems [3, 4]. Allahviranloo et al. [5] investigated maximal and minimal symmetric solutions, and Kumar et al. 
presented novel methods for systems based on triangular fuzzy numbers [6-8]. The work done by Otadi et al. [9] on 
fuzzy neural networks and their application to numerical solutions illustrates the application of modern 
computational methods in the field. More recently, Dookhitram et al. [10] developed preconditioning algorithms, 
and Ezzati et al. modified the formulation to general fuzzy systems, thus extending the scope of the work [11]. To 
enhance method accuracy and solution refinement, algorithms focusing on specific forms of fuzzy numbers like 
triangular and trapezoidal fuzzy numbers have been devised [7, 12, 13]. Malkawi and other authors have outlined 
solution positivity and consistency and provided necessary and sufficient condition frameworks for system 
solvability [12, 14-16]. With computational performance becoming increasingly critical, faster methods such as the 
fast iterative method (FIM) were introduced by Abdolmaleki and Edalatpanah [17]. Also, positive triangular FFLS 
have been targeted by refined iterative techniques in earlier works [18], while fully fuzzy mixed integer linear 
programming has been tackled with new interactive methods [19]. Hybrid methods combining analytical and 
heuristic features, including ranking functions and modified fuzzy numbers, have also been developed [20, 21]. In 
terms of theoretical innovation, Mikaeilvand et al. introduced novel algebraic frameworks for solving fuzzy systems 
[22], while Ghanbari et al. addressed dual fuzzy systems, extending the FFLS structure further [23]. Allahviranloo 
and Abbasi contributed a new solution concept aiming to resolve existing limitations in conventional fuzzy 
arithmetic [24], and Babakordi proposed a fuzzy analog to Cramer's rule for efficient solutions [25]. Recent 
contributions have pushed the boundary of FFLS research by addressing complex system types and solution 
uniqueness, including non-negative systems [26], and numerical solutions have also been explored for coupled 
trapezoidal fully fuzzy Sylvester matrix equations [13]. These studies reflect a mature and still-expanding body of 
work that aims to bridge the gap between fuzzy theory and practical linear algebra. 
This paper introduces the Bi-conjugate gradient method (BGM)   , which offers a constructive solution for arbitrary 
coefficients in FFLS utilizing a one-block matrix framework. This methodology is capable of accommodating systems 
of any dimension. The structure of this paper is delineated into six sections. Section 2 provides a comprehensive 
review of the fundamental definitions of fuzzy set theory. In section 3, it introduces the proposed model. In section 
4, two numerical experiments are intended to show the efficiency of the proposed iterative method. Section 5 
compares the proposed approach with other results to demonstrate its efficiency. The conclusion of the results we 
obtained is in section 6. 

2. Preliminaries 

This segment provides a comprehensive review of fundamental definitions within fuzzy set theory 

Definition 2.1:[18]  Let   be a universal set. A fuzzy subset  ̂ of   is defined by its membership function 

               ̂      [   ],  

which allocates to each element     a real number   ̂    in the closed interval [   ]. Here, the value of   ̂    at   
represents the degree of membership of   in the fuzzy subset  ̂.  

Formally, a fuzzy set  ̂ is represented as  ̂   {(    ̂   )       ̂    [   ]}, where   ̂    represents the degree 

of membership of   in  ̂. 

Definition 2.2:[19]  A fuzzy set  ̂ in       is considered convex if, for all        , and for all   [   ]  the 
condition   ̂                  {  ̂       ̂    } holds true. 

Definition 2.3:[18]  A fuzzy set  ̂ defined on a universal set      is called normal fuzzy set if there exists at least 
one element     such that   ̂       

Definition 2.4:[8] A fuzzy set  ̂, defined over the universal set of real numbers.   is designated as a fuzzy number if 
its membership function   ̂      [   ] satisfies the following properties:  

a) Convexity: The membership function is convex, meaning for all         and for any   [   ], the following 
inequality holds:   ̂                 {  ̂       ̂    } holds   

b) Normality: There exist at least one point      such that   ̂      .  
c) Piecewise Continuity: The membership function   ̂    is continuous in pieces over the set of real numbers  . 
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Definition2.5:[20] A fuzzy triangular number  ̂         ), illustrated in Figure 1, represents a fuzzy quantity 
characterized by the   lower boundary, the   peak value, and the   upper boundary, along with its membership 
function   ̂    defined as follows: 

  ̂    

{
 
 

 
 
      
   

   
       

   

   
      

      

                                                                                   (1) 

 
Fig. 1 - Described a triangular fuzzy number 

Definition 2.6:[18]  Two triangular fuzzy numbers  ̂          and  ̂    ̃  ̃  ̃  are considered equal if and only 
if the conditions  ̃         ̃         ̃    are satisfied. 

Definition 2.7:[19] For two triangular fuzzy numbers  ̂          and  ̂    ̃  ̃  ̃ , we define the following 
arithmetic operations: 

1. Addition:       ̂   ̂  (   ̃    ̃    ̃)  

2. Symmetry:           ̂                     

3. Subtraction:  ̂   ̂  (   ̃    ̃    ̃)  

4. Multiplication:  Suppose  ̂ be any triangular fuzzy number and  ̂ be non-negative triangular fuzzy number, 
then we define: 

 ̂   ̂  {

(  ̃   ̃   ̃)    

(  ̃   ̃   ̃)        

(  ̃   ̃   ̃)    

 

Definition 2.8:[12]  A crisp matrix   is called inverse-nonnegative if     and      . 

Definition 2.9:[7] A matrix  ̂  ( ̂  ) is referred to as a fuzzy matrix if every element in  ̂ is a fuzzy number. The 

matrix  ̂ is said to be positive (negative) and denoted by  ̂     ̂     if all of its components are positive 
(negative) fuzzy numbers.  ̂ is said to be non-negative (non-positive) and denoted by  ̂     ̂     if each of its 
entries is non-negative (non-positive) fuzzy number. A fuzzy matrix of order    ,  ̂  ( ̂  )     

, where each  ̂   

is a fuzzy number in from (           ), using a new notation   ̂         , where   (   )   (   ) and 

  (   ) are all     real-valued matrices representing the center, left spread and right spread, respectively. 

Definition 2.10:[12]  Let  ̂  ( ̂  ) and   ̂  ( ̂  ) be two     and      fuzzy matrices respectively. We 

define  ̂   ̂   ̂  ( ̂  ) which is the     matrix, where 

    ̂   ∑  ̂    ̂  
 
         .     

Definition 2.11:[7]  Consider the fully fuzzy linear system of equations of size    : 

{
 
 

 
 ( ̂    ̂ )  ( ̂    ̂ )   ( ̂    ̂ )   ̂ 

( ̂    ̂ ) ( ̂    ̂ )    ( ̂    ̂ )   ̂ 

 
( ̂    ̂ )  ( ̂    ̂ )    ( ̂    ̂ )   ̂ 

                                                        (2) 
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The above system's matrix form is 

 ̂   ̂   ̂,                                                                                                                (3)                                                                                                          

or simply  ̂ ̂   ̂  where the coefficient matrix  ̂  ( ̂  ) and the vector  ̂    ̂  ,          is an     fuzzy 

matrix and  ̂   ̂      ,        are fuzzy vectors. We call the system (3) a fully fuzzy linear system (FFLS). 

Up to rest of this paper we want to find the positive solution of FFLS   ̂ ̂   ̂,  

where  ̂           ,  ̂            and  ̂           . 

So we have 

                                                                                                      (4) 

3.  The Proposed Bi-Conjugate Gradient Method (BGM)    
 
In this part, a new approach to obtaining a positive solution for FFLS with unknown coefficients will be presented. 
Examine the positive FFLS that follows. 

 ̂   ̂   ̂, where,  ̂  ( ̂  )   
              ̂    ̂               And, 

  ̂  ( ̂ )   
          ,                             

Let   ̂   (           )  ̂  (        ) and  ̂              

Define a block matrix,    (
   
   
   

+  

where  ,   and   square matrices are in common size n. 

   (

          

   

 
   

 

 
 

   

 
          

,        (

          
   

 
   

 

 
 

   

 
          

)         (

          
   

 
   

 

 
 

   

 
          

)  

Also let 
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) and                 (

 
 
 
)  Where           and   are vectors of   components. 
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+        (

  

 
  

+        (

  
 
  

+     (

  

 
  

+    (
  

 
  

+    (
  

 
  

+  

 We will appoint a new       linear system,       in matrix form, 

(
   
   
   

+                       as a result, the new linear system is writable.  

(
   
   
   

+(
 
 
 
)  (

 
 
 
)                                                                                        (5) 

Now applying the following Bi-conjugate gradient method (BGM)   . 

Given a linear system of equations represented as:     , where        is a (potentially non-symmetric) large 
sparse matrix,      is the vector of unknowns, and      is the right-hand side vector, the goal is to find the 
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vector  . The (BGM)    iteration, in its standard form without preconditioning, begins by choosing an initial guess    
and computing the corresponding residual         . We then set the shadow residual  ̂    , which is often 
taken to be the same as    to simplify implementation. The first set of direction vectors is chosen as       and 
 ̂   ̂ .  

3.1  The Algorithm for the Bi-Conjugate Gradient Method (BGM)    

The basic steps for computation of the Bi-conjugate gradient method (BGM)    are given as follows: 
Step 1: Define FFLS  ̂   ̂   ̂ and construct a block matrix   and vectors   and   to represent FFLS in block matrix 

form, where     (
   
   
   

+         (       )                 . Rewrite FFLS as       . 

Step 2: Initialize variables for the Bi-conjugate gradient method (BGM)    set initial guess   , compute initial 

residual            ∗     and set shadow residual   ̂     , initialize search directions         and  ̂    ̂ . 

Step 3: For each iteration           until convergence. 

Step 4: Compute step size     ,        
  ̂ 

 
∗    

  ̂ 
 
∗  ∗   

, update solution vector        where                 ∗   . update 

residual                 ∗    and shadow residual where    ̂       ̂         ∗    

Step 5: Check for convergence, if          is sufficiently small, go to step 7.  

Step 6: If not converged, compute the scalar      
  ̂   

 
∗      

  ̂ 
 
∗    

, update search directions                  ∗    

and  ̂       ̂        ∗  ̂   

Step 7: Output the solution      as the approximate solution. 

Step 8: End. 

The computational complexity of the new (BGM)    arises in step 3 of the iterative process, where each iteration 
requires two matrix-vector multiplications        and       . These operations are expensive for large and sparse 
matrices because they involve processing all non-zero entries in the matrix. For this reason, the complexity of each 
iteration is approximate. The efficiency of the method therefore depends on the size of the matrix, its sparsity 
pattern and the number of iteration required for convergence. 

 

3.2  Convergence of Bi-Conjugate Gradient Method (BGM)    in Fuzzy Context. 

The Bi-conjugate Gradient Method (BGM)    is one of the iterative methods used to solve large, sparse linear systems 
of equations, particularly in cases where there is no symmetry in the coefficient matrix. In contrast to the 
conventional conjugate gradient method, which is limited to symmetric positive definite matrices, the (BGM)    can 
effectively tackle issues related to general non-symmetric matrices. Its computational benefit resides in executing 
matrix-vector multiplication instead of direct factorization or complete matrix storage, rendering it highly 
applicable in extensive and intricate systems. The rate at which (BGM)    converges is contingent upon the spectral 
characteristics of the matrix; when the eigenvalues are evenly distributed, or effective preconditioning is utilized, 
the method demonstrates swift convergence. (BGM)    generates two sets of search directions linked to the matrix 
and its transpose, thereby satisfying the conjugacy condition required for the iterative procedure. It is the flexibility, 
low memory requirements, and broad adaptability to diverse scientific and engineering challenges that make the 
method outstanding. The Bi-conjugate Gradient Method (BGM)    is exceptional in efficiency and accuracy for 
solving fully fuzzy linear systems (FFLS) within fuzzy contexts. When fuzzy numbers and systems are concerned, 
how quickly and reliably a method converges is essential. The primary cause of such convergence with the (BGM)    
is its ability to reduce the solution of FFLS to a one-block matrix system      , which is solvable by (BGM)    
iteratively. The numerical illustrations in the paper show how the (BGM)    is guaranteed convergence, and in 
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addition, the number of iterations is surprisingly small. In Problem (1), for a     FFLS posed as a problem, the 
algorithm computed every variable exactly and achieved residual norms of the order 10⁻¹² in 4 iterations. Problem 
(3) contained a     FFLS, which was more complicated. Despite this, it was able to converge with a residual norm 
of 10⁻¹⁰ within 6 iterations. The rate of convergence remains a key distinguishing feature of this algorithm among 
other iterative methods, such as the Gauss-Jacobi and Gaussian Saddle methods, which invariably take a large 
number of iterations to converge for a multitude of variable sets within the same class of fuzzy linear systems. The 
(BGM)    algorithm’s iterative characteristics make it particularly useful for large systems with uncertainty 
represented by triangular fuzzy numbers. It is efficient and scalable because it can handle large, sparse, and non-
symmetric systems without requiring matrix inversion. Moreover, the (BGM)    method posits that systems must be 
solved by ensuring positivity and insensitivity to uncertainties, which is crucial in fuzzy contexts where the 
solutions have to retain their fuzzy nature and account for unavoidable vagueness. The results prove that the 
algorithm is very robust to data fuzzification because it reliably converges to a complete, exact solution. The paper 
notes that convergence was achieved with minimal effort at most, four iterations for all variables in the first 
problem. This is advantageous compared to more traditional methods that need severe simplifications or 
transformations, which tend to damage the integrity of the fuzzy solution. 
 

4. Numerical Illustration  

In this section, to evaluate the efficacy and precision of the proposed iterative technique outlined in section 3, we 
will employ Python code software to resolve the following fully fuzzy linear system with a known exact solution. 

Problem (1):  Consider the following fully fuzzy linear system of equations: 

                                                     

                                                  

Using this problem in matrix form, thus we have 
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The exact solutions for the fuzzy linear system from the equations        are 
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where   is non-symmetric for Bi-conjugate gradient method, first set the starting point with an initial point 
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Iterations continue until the approximately optimal solution is obtained, which occurs for problem (1) in the fourth 
step, demonstrating rapid convergence, as explained in Table 1. 

Table 1 - Numerical results for the optimal approximate solution of Problem (1) using algorithm (BGM)    
step-by-step. 

No. of 
iterations(n) 

Residual Norm  ̂              ̂             

    1.5159E+01 (4.2889, 0.8578, 1.4583) (4.1174, 0.4289, 0.6005) 

    1.1276E+01 (4.3888, 0.7189, 1.2890) (4.1557, 0.2444, 0.3444) 

    4.5629E-01 (4.0817, -0.0301, 0.0814) (4.9060, 0.2238, 0.4178) 

    3.9151E-12 (4, 0.0909, 0) (5, 0.0909, 0.5) 

It is clear that the sequence of iterations converges to a complete and exact solution. 

                                                         

 
Fig. 2 - Shows the graphical representation of the fuzzy solution ( ̂ ,  ̂ ) for problem (1), using the Bi-

conjugate gradient method (BGM)   . 

Problem (2):  Application of FFLS in manufacturing machines: The Omega Manufacturing Company has resolved to 
launch three products: the first product, the second product, and the third product. The availability of devices that 
might restrict production is summarized below. 

 

 

 

The number of machine hours needed for each specific product unit is provided below. 

Rate of product (in hours of Machine per unit) 

 

 

Type of Machine Available time (hours of Machine in a month) 
Throwing Machine  (124,178,320) 
Lathe (495,741,1222) 
Grinder (890,1349,2164) 

Type of Machine Product 1 Product 2 Product 3 
Throwing Machine (4,2,6) (12,12,14) (18,16,20) 
Lathe (12,10,14) (45,45,50) (78,74,80) 
Grinder (18,16,18) (78,75,80) (146,146,150) 



Sirwan Sherko Rasheed, Ivan Subhi Latif, Journal of Al-Qadisiyah  for Computer Science and Mathematics  VOL.17.(3) 2025,pp.Math 168–179                   9 

 

 

Now, we need to figure out how much of each product should be produced to fully utilize all the available time. 

To illustrate the above problem as a fully fuzzy linear system, we designate     as the quantity of product 1 
manufactured throughout the month.    and    denote the totals of products 2 and 3, respectively. 

The fully fuzzy linear system related to the problem mentioned above is 

(

                            
                                
                                  

)(
 ̂ 
 ̂ 
 ̂ 

+  (

             
              
               

) 

Or   

                                                                                 

                                                                                     

                                                                                          

The exact solutions for the fuzzy linear system from the equations        are 

                                           and                    

Similarly to Problem (1), to solve Problem (2), iterations continue until the approximately optimal solution is 
obtained, which occurs in the eighth step, demonstrating rapid convergence, as explained in Table 2. 

Table 2 - Numerical results for the optimal approximate solution of Problem (2) using algorithm (BGM)    
step-by-step. 

No. of 
iterations(n) 

Residual 
Norm 

 ̂              ̂              ̂             

    3.91529E+02 (0.4533, 0.6507, 1.1698) (1.8095, 2.7087, 4.4670) (3.2534, 4.9313, 7.9105) 

    3.88076E+01 (0.6826, 0.3751, 1.1474) (2.6279, 1.4527, 3.8780) (4.6361, 2.4216, 6.4216) 

    4.95695E+00 (1.6642, 1.7104, 4.2498) (3.6894, 3.7243, 7.2110) (3.9307, 1.0257, 4.1761) 

    2.55683E+00 (2.2218, 0.3932, 3.7029) (4.2568, 2.7973, 5.6737) (3.5480, 1.7183, 5.0781) 

    2.00976E-01 (3.1815,-1.5485, 26.6075) (3.5959, 5.0308,-11.1737) (3.7825, 0.7647, 11.2626) 

    4.80962E-03 (4.0000, 1.0000, 3.0000) (3.0000, 4.0000, 5.9999) (3.9999, 0.9999, 4.9999) 

    3.66167E-04 (4.0000, 1.0000, 3.0000) (3.0000, 4.0000, 6.0000) (4.0000, 1.0000, 5.0000) 

    2.81369E-10 (4, 1, 3) (3, 4, 6) (4, 1, 5) 

It is clear that the sequence of iterations converges to a complete and exact solution. 

                                           and                    
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Fig. 3 - Shows the graphical representation of the fuzzy solution ( ̂ ,  ̂ ,  ̂ ) for problem (2), using the bi-

conjugate gradient method (BGM)   . 

Problem (3):   Examine the totally fuzzy linear system of equations that follows: 

                                                                          

                                                                            

                                                                            

The exact solutions for the fuzzy linear system from the equations        are 

                                           and                    

Similarly to Problem (1), to solve Problem (3), iterations continue until the approximately optimal solution is 
obtained, which occurs in the sixth step, demonstrating rapid convergence, as explained in Table 3. 

Table 3 - Numerical results for the optimal approximate solution of Problem (3) using algorithm (BGM)    
step-by-step. 

No. of 
iterations(n) 

Residual 
Norm 

 ̂              ̂              ̂             

    7.46015E+01 (2.7852, 2.1183, 2.9813) (4.6289, 4.5112, 5.0604) (6.0803, 3.4913, 5.9234) 

    1.95086E+01 (3.8240, 1.5576, 2.1755) (7.0143, 4.3023, 5.1532) (6.5406, -0.2394, 3.2277) 

    1.05129E+01 (3.9747, 1.6659, 1.9037) (7.8941, 4.0687, 5.4115) (5.1436, 0.1006, 3.6099) 

    1.86166E+01 (3.9537, 1.7644, 1.9821) (7.7927, 4.6520, 5.6234) (5.2807, -0.6298, 3.2903) 

    1.54351E-03 (3.9999, 1.9977, 2.0037) (8.0000, 3.0016, 4.9974) (5.0000, 1.0001, 3.9997) 

    4.45989E-10 (4, 2, 2) (8, 3, 5) (5, 1, 4) 

It is clear that the sequence of iterations converges to a complete and exact solution. 

(     
   )                     

             and                    
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Fig. 4 - Shows the graphical representation of the fuzzy solution ( ̂ ,  ̂ ,  ̂ ) for problem (3), using the bi-

conjugate gradient method (BGM)   . 

5. Result And Discussion  

In the first experiment model, the problem is solved using the new algorithm of the Bi-conjugate gradient method 
(BGM)   , which converges to a solution for all variables within four iterations. As in Table 1, all the iterations and 
results are shown, and Figure 2 shows the solution to the problem. In contrast, when employing alternative iterative 
methods such as the Gauss-Jacobi method, the convergence rates vary significantly depending on the variable set. In 
particular, 20 iterations are required to reach convergence for the variables    and   , 10 iterations are required for 
   and    to converge to a solution; and 12 iterations are required for    and   . Likewise, the Gaussian Saddle 
method's convergence behavior varies depending on the set. Ten iterations are needed for    and   , while only 
four are needed for    and   . For    and    in [18], the Gaussian Saddle method converges in 7 iterations. It takes 
eight iterations to solve the new algorithm of the (BGM)    for the second problem, and six iterations for all variables 
to solve the third problem. Other approaches, on the other hand, need to solve this issue through more iterations. As 
in Tables 2 and 3, all the iterations and results are shown, and Figures 3 and 4 show the solution to the problem. The 
numerical experiments show that the proposed approach for solving positive fully fuzzy linear systems (FFLS) with 
the Bi-conjugate gradient method (BGM)    shows considerable efficiency and accuracy. The method converts the 
FFLS into a linear system      and builds a block matrix   from the fuzzy coefficient matrices using the iterative 
(BGM)    algorithm to achieve fast convergence. In the first experiment model, a        FFLS was solved in 4 
iterations with a residual norm of the order of       to the solution                         and            
              . In the second experiment model, a       FFLS in 8 iterations with a residual norm of       8 
iterations produced the solution                   ,                    and                   . In the third 
experiment model, a       FFLS in 6 iterations with a residual norm of       6 iterations produced the solution 
                  ,                   , and                   . It is clear from the previously mentioned 
results that the Bi-conjugate gradient method (BGM) outperforms the Gauss-Jacobi and Gaussian Saddle methods in 
terms of efficiency and convergence time. In relation to other methods studied, the Bi-conjugate gradient method 
(BGM)    is preferable because the convergence was reached with less effort (at most four iterations for all 
variables). Its capability of solving large, sparse, non-symmetric systems without having to perform a matrix 
inversion speaks for itself. This method, when compared to conventional approaches that necessitate some forms of 
drastic simplifications or transformations, is able to provide strong and scalable solutions for FFLS problems that 
are very highly non-linear. Additionally, the (BGM)    algorithm's scope of iteration allows for the solution of larger 
problems, which is advantageous in operations research, engineering, and economics. In general, this method can be 
useful for both academic research and solving fuzzy system problems in the real world. 
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6. Conclusion 

One of the newest and most effective approaches to solving fully fuzzy linear systems (FFLS) with fuzzy undefined 
constants is the one being presented here. Using the Bi-conjugate gradient method (BGM)   . The (BGM)    method 
approaches solving the system by ensuring positivity and insensitivity to uncertainties by transforming the system 
into a block matrix system. Some of the respondents expressed that is most useful in practical life, particularly in 
engineering fields that require the application of fuzzy systems. The algorithm's iterative nature makes it suitable 
for larger systems where uncertainty can be modeled with triangular fuzzy numbers. Preconditioning is one 
direction of potential future work to increase computational efficiency. 
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