compactness on bitopological spaces **المؤتمر العممي الثاني لكمية** 130-136 Page

عموم الحاسوب والرياضيات 16ـ 18/اذار/2010

Rasha Naser Majeed Mathematics Department College of Education – Ibn Al- Haitham,

Abstract

 In this paper we define a new kind of open sets in bitopological space which we called semi $s\alpha$ -open sets, which we lead to define a new type of compactness on bitopological spaces called " $semi \, \delta \alpha$ -compactness" and we study the properties of this spaces, also we define the continuous functions between these spaces.

1.Introduction

The concept of " bitopological space " was introduced by Kelly [1] in 1963 . A set equipped with two topologies is called a" bitopological space " and denote by (X, τ_1, τ_2) , where (X, τ_1) , (X, τ_2) are two topological spaces. Since then many authors have contributed to the development of various bitopological properties. A subset A in bitopological space (X , τ_1 , τ_2) is "Sopen " if it is τ_1 -open or τ_2 - open . in 1996 Mrsevic and Reilly [2] defined a space (X, τ_1 , τ_2) to be S-compact if and only if every S-open cover of X has a finite sub cover. And also they defined a space (X, τ_1 , τ_2) to be pair-wise compact [2]. In this paper we introduced a new type of compactness on bitopological spaces namely " semi $\delta \alpha$ -compact" and we review some remarks , propositions, theorems and examples about it .

2. Preliminaries

 In this section we introduce some definition, which is necessary for the paper.

Definition 2.1[1]

Let X be a non-empty set, let τ_1 , τ_2 be any two topologies on X, then (X, τ_1, τ_2) is called " *bitopological space*".

Definition 2.2[3]

 A subset A of a topological space X is called *"α-open set* " if and only if $A \subseteq \overline{A}^*$. The family of all α -open sets is denoted by τ_{α} .

Definition 2.3[3]

The complement of α-open set is called *"α-closed set* " . The family of all α -closed sets is denoted by $\alpha C(X)$.

Definition 2.4[4]

A subset A of a topological space X is called "*semi- α-open set*" if and only if there exists an α -open set U in X, such that $U \subseteq A \subseteq \overline{U}$. The family of all semi- α -open sets of X is denoted by S α O(X).

Definition 2.5[4]

The complement of semi- α-open set is called " *semi- α-closed set*" . The family of all semi- α -closed sets of X is denoted by S α C(X).

Proposition 2.6[5]

(i) Every open set is semi- α -open set.

(ii) Every closed set is semi- α -closed set.

Definition 2.7[6]

Let (X, τ) be a topological space, $A \subseteq X$ a family W of subsets of X is said to be a " *semi -α-open cover of A"* if and only if W covers A and W is a subfamily of $S\alpha O(X)$.

Definition 2.8

Let W be any semi- α -open cover of X, a subfamily V of W is said to be an " *semi - α-open subcover of W "* if and only if it's cover X.

Definition 2.9[6]

A topological space (X, τ) is said to be " semi-a-compact" if and only if every semi- α -open cover of X has a finite subcover.

Proposition 2.10[6]

Every semi- α -compact space is compact.

3. Semi $\delta \alpha$ -compactness

 In this section, we will define a new type of covers in bitopological spaces, in order to define a new kind of compactness on bitopological spaces called " semi $\delta \alpha$ -compactness".

First we begin to the definition of semi sa -open set in bitopological space.

Definition 3.1

Let (X, τ_1, τ_2) be a bitopological space, then any collection of subsets of X which is contained $S_{1\alpha}O(X)$ and $S_{2\alpha}O(X)$ and it is forms a topology on X called

"*the supermom topology on X* " and is denoted by $S_{1\alpha}O(X) \vee S_{2\alpha}O(X)$. Where $S_{1\alpha}O(X)$ is the family of all semi- α-open sets in the space (X, τ_1) and $S_{2\alpha}O(X)$ is the family of all semi-α-open sets in the space (X, τ_2) .

Definition 3.2

A subset A of a bitopological space (X, τ_1, τ_2) is said to be an " **semi Sa**-open set " if and only if it is open in the space $(X,$ $S_{1\alpha}O(X) \vee S_{2\alpha}O(X)$, where $S_{1\alpha}O(X) \vee S_{2\alpha}O(X)$ is the supermom topology on X contains $S_{1\alpha}O(X)$ and $S_{2\alpha}O(X)$.

Definition 3.3

The complement of semi $s\alpha$ -open set in a bitopological space (X, τ_1 , τ_2) is called $''$ *semi* $s\alpha$ -closed set $''$.

Remark 3.4

Let (X, τ_1, τ_2) be a bitopological space, then :

- (1) Every semi-α-open set in (X, τ_1) or (X, τ_2) is semi $s\alpha$ -open set in (X, τ_1) τ_1, τ_2).
- (2) Every semi-α-closed set in (X, τ_1) or (X, τ_2) is semi $\delta \alpha$ -closed set in (X, τ_1, τ_2).

Note 3.5

 The opposite direction of Remark (3.4) is not true as the following example shows:

Example 1

Let $X = \{1,2,3\}$, $\tau_1 = \{\emptyset, \{1\}, X\}$, and $\tau_2 = \{\emptyset, \{2,3\}, X\}$ then $S_{1\alpha}O(X) = \tau_{1\alpha} =$ ${\tau_1} \cup \{ \{1,2\}, \{1,3\} \},$ and $S_{2\alpha}O(X) = {\tau_{2\alpha}} = {\tau_2}.$ thus $S_{1\alpha}O(X) \vee S_{2\alpha}O(X) = \{ \emptyset, \{1\}, \{1,2\}, \{1,3\}, \{2,3\}, \{2\}, \{3\}, X \}$ is the family of all semi $\delta \alpha$ -open sets in (X, τ_1 , τ_2).

4

{2} is semi $s\alpha$ - open set in (X, τ_1 , τ_2) but it is not semi- α-open set of both (X, τ_1) and (X, τ_2) . So $\{1,3\}$ is semi $\delta \alpha$ -closed set in (X, τ_1, τ_2) which is not semi- α-closed in both $(X, τ₁)$ and $(X, τ₂)$.

Now we introduce the definition of semi $\delta \alpha$ -opencover in bitopological space (X, τ_1, τ_2) .

Definition 3.6

Let (X, τ_1, τ_2) be a bitopological space, let A be a subset of X. a sub collection of the family $S_{1\alpha}O(X) \vee S_{2\alpha}O(X)$ is called an **"semi** $\delta \alpha$ **-opencover of A"** if the union of members of this collection contains A.

Definition 3.7

A bitopological space (X, τ_1, τ_2) is said to be **"semi** $s\alpha$ **-compact space"** if and only if every semi $\delta \alpha$ -opencover of X has a finite sub cover.

Theorem 3.8

If (X, τ_1 , τ_2) is semi $s\alpha$ -compact space, then both (X, τ_1) and (X, τ_2) are semi – α –compact.

Proof

To prove (X, τ_1) is semi – α –compact space, we must prove for any semiα-open cover of X, has a finite sub cover .

Let $\{U_i\}$ i \in A be any semi-α-open cover of X, implies $\{U_i\}$ i \in A is a semi $\delta \alpha$ -opencover of X (by Remark (3.4)) and since (X, τ_1 , τ_2) is semi s_{α} -compact space, implies there exists a finite sub cover of X, so (X, τ_1) is semi- α -compact.

And by the same way we prove $(X, \tau₂)$ is semi α -compact.

Corollary 3.9

If (X, τ_1 , τ_2) is semi $S\alpha$ -compact space, then both (X, τ_1) and (X, τ_2) are compact.

Proof

The proof is follows from theorem(3.8) and proposition (2.10).

Remark 3.10

 The converse of theorem (3.8) and it's corollary is not true, as the following example shows:

Example 2

Let X={0,2}, τ_1 =={ \emptyset , {0}, x}, and τ_2 ={ \emptyset , {2}, x} then $S_{1\alpha}O(X) = \tau_{1\alpha} =$ τ_1 and $S_{2\alpha}O(X) = \tau_{2\alpha} = \tau_2$.

Now, both (X, τ_1) and (X, τ_2) are *semi* – α –compact (compact) space, but (X, τ_1 , τ_2) is not semi $\delta\alpha$ -compact space since there is {{0},{2}} is semi $\delta \alpha$ -opencover of X which has no finite sub cover.

 The converse of theorem (3.8) becomes valid in a special case , when $S_{1\alpha}O(X) \subset S_{2\alpha}O(X)$, as the following proposition shows:

Proposition 3.11

If $S_{1\alpha}O(X)$ is a subfamily of $S_{2\alpha}O(X)$, then (X, τ_1 , τ_2) is semi $\delta \alpha$ –compact space if and only if (X, τ_2) is semi- α –compact.

Proof

The first direction follows from theorem (3.8).

Now, if (X, τ_2) is semi – α –compact, we must prove (X, τ_1, τ_2) is semi $\delta \alpha$ –compact. since $S_{1\alpha}O(X) \subset S_{2\alpha}O(X)$, then $S_{1\alpha}O(X) \vee S_{2\alpha}O(X) = S_{2\alpha}O(X)$. So (X, τ_1, τ_2) is semi $\delta\alpha$ -compact space.

Corollary 3.12

let (X, τ) be a topological space, then the bitopological space (X, τ) $\tau, \tau \vee S \alpha O(X)$ is semi $S \alpha$ -compact space if and only if $(X, \tau \vee S_{\alpha} O(X))$ is semi $-\alpha$ -compact.

Proof:

 (\Rightarrow) it is clear from theorem (3.8).

(=) since $\tau \vee S \alpha O(X)$ is a finer than τ , then by proposition (3.11) we have (X, τ , $\tau \vee$ SaO(X)) is semi Sa -compact.

Proposition 3.13

If A and B are two semi $\delta \alpha$ -compact subsets of a bitopological space (X , τ_1 , τ_2) then A \cup B is semi $S\alpha$ -compact subset of X.

Proof

To prove $A \cup B$ is semi S_{α} –compact subset of X, we must prove for any semi $\delta \alpha$ -opencover of $A \cup B$, it has a finite sub cover.

Let $\{U_i\}$ $i \in \Lambda$ be any semi $\delta \alpha$ -opencover of $A \cup B$, then $A \cup B \subseteq \{UU_i, i \in \Lambda\}$ and therefore $A \subseteq \cup U_i$ and $B \subseteq \cup U_i$, implies $\{U_i\}$ i $\in \Lambda$ is an semi $\delta \alpha$ -opencover of A and B.

But A and B are semi s_{α} -compact subsets, therefore there exists $i_1, i_2, \ldots, i_n \in \Lambda \text{ and } i_1, i_2, \ldots, i_m \in \Lambda \text{ such that } \{U_{i_1}, U_{i_2}, \ldots, U_{i_n}\} \text{ and } \{U_{i_s}, U_{i_s}, \ldots, U_{i_m}\}$ is a finite sub cover of A and B respectively, then $\{U_{i_1}, U_{i_2},..., U_{i_n}\}\cup \{U_{i_1}, U_{i_2},..., U_{i_m}\}\$ is a finite sub cover of A \cup B, therefore A \cup B is an semi S_{α} -compact subset of X.

Theorem 3.15

The semi $\delta \alpha$ -closed subset of an semi $\delta \alpha$ -compact space is semi $\delta\alpha$ -compact.

Proof

Let (X, τ_1, τ_2) be semi $s\alpha$ -compact space and let A be a semi $s\alpha$ -closed subset of X. to show that A is semi S_{α} –compact set.

Let $\{U_i\}$ i $\in \Lambda$ be any semi $\delta \alpha$ -opencover of A. Since A is semi $\delta \alpha$ -closed subset of X, then X-A is a semi $s\alpha$ -open subset of X, so $\{X-A\} \cup \{U_i; i \in \Lambda\}$ is a semi $\delta \alpha$ -opencover of X, which is semi $\delta \alpha$ -compact space.

Therefore, there exists $i_1, i_2, ..., i_n \in \Lambda$ such that $\{X-A, U_{i_1}, U_{i_2}, ..., U_{i_n}\}$ is a finite sub cover of X .as $A \subseteq X$ and X-A covers no part of A, then $\{U_{i_1}, U_{i_2}, \dots, U_{i_n}\}$ is a finite sub cover of A . so A is semi $\delta \alpha$ -compact set.

Definition 3.16

A function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \tau'_1, \tau'_2)$ is said to be " *semi* s_{α} – *continuous function* " if and only if the inverse image of each semi sa -open subset of Y is a semi sa -open subset of X.

Theorem 3.17

The *semi Sa -continuous* image of a semi S_{α} -compact space is a semi $\delta \alpha$ -compact space.

Proof

Let (X, τ_1, τ_2) be a semi $s\alpha$ -compact space, and let f: (X, τ_1) τ_1 , τ_2) \rightarrow (Y, τ'_1 , τ'_2) be a semi $s\alpha$ -continuous, onto function. To show that (Y, τ_1', τ_2') is a semi $\delta \alpha$ -compact space. Let $\{U_i; i \in \Lambda\}$ be a semi $\delta \alpha$ -opencover of Y, then $\{ f^{-1}(U_i) : i \in \Lambda \}$ is a semi $\delta \alpha$ -opencover of X, which is semi $\delta \alpha$ -compact space.

So there exists $i_1, i_2, ..., i_n \in \Lambda$, such that the family $\{f^{-1}(U_{i_j}) : j = 1, 2, ..., n\}$ covers X and since f is onto, then $\{U_{i,j}: j = 1, 2, ..., n\}$ is s finite sub cover of Y.

Hence Y is a semi s_{α} -compact space.

References

[1]. J.C.Kelly, " Bitopological Spaces ", Prok .London Math. Soc., Vol. 13(1963), 71-89.

[2]. Mrsevic and I.L.Reilly, "Covering and connectedness properties of a topological space and it is Associated topology of α -subsets", Indian J. pure apple. Math.,27(10):995-1004, Oct.(1996).

[3]. Olav Najasted," On some classes of nearly open sets ", pacific journal of math., vol.15, No.3, 961-970,(1965).

[4]. G.B.Navalagi, "Definition Bank in General Topology ", Department of math., G.H.college, Haveri-581110, Karanataka, India.

[5]. Nadia M.Ali, "On New Types of weakly open sets", M.Sc. Thesis , University of Baghdad , college of education, Ibn Al- Haitham,(2004) .

[6]. Ahmed I.Nasir, " Some kinds of strongly compact and pair-wise compact spaces", M.Sc. Thesis , University of Baghdad , college of education, Ibn Al-Haitham,(2005).

التراص شبه عمى الفضاءات التبولوجية الثنائية

رشا ناصر مجيد

قسم الرياضيات / كمية التربية ــ أبن الهيثم / جامعة بغداد

الخالصة

 قمنا في ىذا البحث بتعريف نوع جديد من المجموعات المفتوحة عمى الفضاءات التبولوجية الثنائية والتي اسميناها المجموعات شبه المفتوحة $\alpha - s$. وبالتالي عرفنا نوع جديد من التراص على الفضاءات الثنائية والذي اسميناه التراص شبه $\alpha-s$ ، وقمنا بدراسة خواص هذا الفضاء وكذلك عرفنا الدوال المستمرة بين ىذه الفضاءات .