Page 130-136

Semi $S\alpha$ – compactness on bitopological spaces

المؤتمر العلمي الثاني لكلية علوم الحاسوب والرياضيات 16. 18/اذار/2010

Rasha Naser Majeed Mathematics Department College of Education – Ibn Al- Haitham,

Abstract

In this paper we define a new kind of open sets in bitopological space which we called semi $S\alpha$ -open sets, which we lead to define a new type of compactness on bitopological spaces called "*semi Sa* -compactness" and we study the properties of this spaces, also we define the continuous functions between these spaces.

1.Introduction

The concept of " bitopological space " was introduced by Kelly [1] in 1963. A set equipped with two topologies is called a" bitopological space " and denote by (X, τ_1, τ_2) , where $(X, \tau_1), (X, \tau_2)$ are two topological spaces. Since then many authors have contributed to the development of various bitopological properties. A subset A in bitopological space (X, τ_1, τ_2) is "Sopen " if it is τ_1 -open or τ_2 - open . in 1996 Mrsevic and Reilly [2] defined a space (X, τ_1, τ_2) to be S-compact if and only if every S-open cover of X has a finite sub cover. And also they defined a space (X, τ_1, τ_2) to be pair-wise compact [2]. In this paper we introduced a new type of compactness on bitopological spaces namely "*semi Sa* –compact" and we review some remarks , propositions, theorems and examples about it .

2. Preliminaries

In this section we introduce some definition, which is necessary for the paper.

Definition 2.1[1]

Let X be a non-empty set, let τ_1 , τ_2 be any two topologies on X, then (X, τ_1, τ_2) is called "*bitopological space*".

Definition 2.2[3]

A subset A of a topological space X is called "*a*-open set " if and only if $A \subseteq \overline{A}^{\circ}$. The family of all α -open sets is denoted by τ_{α} .

Definition 2.3[3]

The complement of α -open set is called *"a-closed set*". The family of all α -closed sets is denoted by $\alpha C(X)$.

Definition 2.4[4]

A subset A of a topological space X is called "*semi- a-open set*" if and only if there exists an α -open set U in X, such that $U \subseteq A \subseteq \overline{U}$. The family of all semi- α -open sets of X is denoted by S α O(X).

Definition 2.5[4]

The complement of semi- α -open set is called "*semi- \alpha-closed set*". The family of all semi- α -closed sets of X is denoted by $S\alpha C(X)$.

Proposition 2.6[5]

(i) Every open set is semi- α -open set .

(ii) Every closed set is semi- α -closed set .

Definition 2.7[6]

Let (X, τ) be a topological space, $A \subseteq X$ a family W of subsets of X is said to be a "*semi -a-open cover of A*" if and only if W covers A and W is a subfamily of SaO(X).

Definition 2.8

Let W be any semi- α -open cover of X, a subfamily V of W is said to be an "semi - α -open subcover of W " if and only if it's cover X.

Definition 2.9[6]

A topological space (X, τ) is said to be "*semi-a-compact*" if and only if every semi-*a*-open cover of X has a finite subcover.

Proposition 2.10[6]

Every semi- α -compact space is compact.

3. Semi Sα – compactness

In this section, we will define a new type of covers in bitopological spaces, in order to define a new kind of compactness on bitopological spaces called "semi $S\alpha$ -compactness".

First we begin to the definition of *semi Sa* – open set in bitopological space .

Definition 3.1

Let (X, τ_1, τ_2) be a bitopological space, then any collection of subsets of X which is contained $S_{1\alpha}O(X)$ and $S_{2\alpha}O(X)$ and it is forms a topology on X called

"the supermom topology on X" and is denoted by $S_{1\alpha}O(X) \vee S_{2\alpha}O(X)$. Where $S_{1\alpha}O(X)$ is the family of all semi- α -open sets in the space (X, τ_1) and $S_{2\alpha}O(X)$ is the family of all semi- α -open sets in the space (X, τ_2) .

Definition 3.2

A subset A of a bitopological space (X, τ_1, τ_2) is said to be an " semi $S\alpha$ -open set " if and only if it is open in the space $(X, S_{1\alpha}O(X) \lor S_{2\alpha}O(X))$, where $S_{1\alpha}O(X) \lor S_{2\alpha}O(X)$ is the supermom topology on X contains $S_{1\alpha}O(X)$ and $S_{2\alpha}O(X)$.

Definition 3.3

The complement of semi $S\alpha$ –open set in a bitopological space (X, τ_1 , τ_2) is called " *semi Sa*–*closed set* ".

Remark 3.4

Let (X , τ_1 , τ_2) be a bitopological space , then :

- (1) Every semi- α -open set in (X, τ_1) or (X, τ_2) is semi $S\alpha$ -open set in (X, τ_1, τ_2).
- (2) Every semi- α -closed set in (X, τ_1) or (X, τ_2) is semi $\Im \alpha$ -closed set in (X, τ_1 , τ_2).

Note 3.5

The opposite direction of Remark (3.4) is not true as the following example shows:

Example 1

Let X={1,2,3}, $\tau_1 = \{\emptyset, \{1\}, X\}$, and $\tau_2 = \{\emptyset, \{2,3\}, X\}$ then $S_{1\alpha}O(X) = \tau_{1\alpha} = \tau_1 \cup \{\{1,2\}, \{1,3\}\}$, and $S_{2\alpha}O(X) = \tau_{2\alpha} = \tau_2$. thus $S_{1\alpha}O(X) \lor S_{2\alpha}O(X) = \{\emptyset, \{1\}, \{1,2\}, \{1,3\}, \{2,3\}, \{2\}, \{3\}, X\}$ is the family of all semi $\delta \alpha$ -open sets in (X, τ_1, τ_2).

```
4
```

{2} is semi $\delta \alpha$ – open set in (X, τ_1 , τ_2) but it is not semi- α -open set of both (X, τ_1) and (X, τ_2). So {1,3} is semi $\delta \alpha$ –closed set in (X, τ_1 , τ_2) which is not semi- α -closed in both (X, τ_1) and (X, τ_2).

Now we introduce the definition of *semi Sa* –opencover in bitopological space (X, τ_1 , τ_2).

Definition 3.6

Let (X, τ_1, τ_2) be a bitopological space, let A be a subset of X. a sub collection of the family $S_{1\alpha}O(X) \vee S_{2\alpha}O(X)$ is called an "semi $S\alpha$ –opencover of A" if the union of members of this collection contains A.

Definition 3.7

A bitopological space (X, τ_1 , τ_2) is said to be "semi $\delta \alpha$ -compact space" if and only if every *semi* $\delta \alpha$ -opencover of X has a finite sub cover.

Theorem 3.8

If (X, τ_1, τ_2) is semi $\delta \alpha$ -compact space, then both (X, τ_1) and (X, τ_2) are *semi* - α -compact.

Proof

To prove (X, τ_1) is *semi* – α –compact space, we must prove for any semi- α -open cover of X, has a finite sub cover.

Let $\{U_i\}i \in \Lambda$ be any semi- α -open cover of X, implies $\{U_i\}i \in \Lambda$ is a semi $\mathcal{S}\alpha$ -opencover of X (by Remark (3.4)) and since (X, τ_1, τ_2) is semi $\mathcal{S}\alpha$ -compact space, implies there exists a finite sub cover of X, so (X, τ_1) is semi- α -compact.

And by the same way we prove (X, τ_2) is semi α –compact.

Corollary 3.9

If (X, τ_1, τ_2) is semi $\delta \alpha$ -compact space, then both (X, τ_1) and (X, τ_2) are compact.

Proof

The proof is follows from theorem (3.8) and proposition (2.10).

Remark 3.10

The converse of theorem (3.8) and it's corollary is not true, as the following example shows:

Example 2

Let X={0,2}, $\tau_1 == \{\emptyset, \{0\}, X\}$, and $\tau_2 = \{\emptyset, \{2\}, X\}$ then $S_{1\alpha}O(X) = \tau_{1\alpha} = \tau_1$ and $S_{2\alpha}O(X) = \tau_{2\alpha} = \tau_2$.

Now, both (X, τ_1) and (X, τ_2) are *semi* – α –compact (compact) space, but (X, τ_1, τ_2) is not semi $\Im \alpha$ –compact space since there is {{0},{2}} is semi $\Im \alpha$ –opencover of X which has no finite sub cover.

The converse of theorem (3.8) becomes valid in a special case , when $S_{1\alpha}O(X) \subset S_{2\alpha}O(X)$, as the following proposition shows:

Proposition 3.11

If $S_{1\alpha}O(X)$ is a subfamily of $S_{2\alpha}O(X)$, then (X, τ_1, τ_2) is semi $S\alpha$ -compact space if and only if (X, τ_2) is semi- α -compact.

Proof

The first direction follows from theorem (3.8).

Now, if (X, τ_2) is $semi - \alpha$ -compact, we must prove (X, τ_1, τ_2) is $semi \, S\alpha$ -compact. since $S_{1\alpha}O(X) \subset S_{2\alpha}O(X)$, then $S_{1\alpha}O(X) \vee S_{2\alpha}O(X) = S_{2\alpha}O(X)$. So (X, τ_1, τ_2) is $semi \, S\alpha$ -compact space.

Corollary 3.12

let (X, τ) be a topological space, then the bitopological space $(X, \tau, \tau \lor S\alpha O(X))$ is semi $S\alpha$ -compact space if and only if $(X, \tau \lor S_{\alpha} O(X))$ is semi $-\alpha$ -compact.

Proof:

 (\Rightarrow) *it is* clear from theorem (3.8).

(\Leftarrow) since $\tau \lor SaO(X)$ is a finer than τ , then by proposition (3.11) we have (X, $\tau, \tau \lor SaO(X)$) is semi Sa -compact.

Proposition 3.13

If A and B are two semi $\Im \alpha$ -compact subsets of a bitopological space (X, τ_1 , τ_2) then $A \cup B$ is semi $\Im \alpha$ -compact subset of X.

Proof

To prove $A \cup B$ is semi $S\alpha$ –compact subset of X, we must prove for any *semi Sa* –opencover of $A \cup B$, it has a finite sub cover.

Let $\{U_i\} i \in \Lambda$ be any *semi Sa* –opencover of $A \cup B$, then $A \cup B \subseteq \{\bigcup U_i, i \in \Lambda\}$ and therefore $A \subseteq \bigcup U_i$ and $B \subseteq \bigcup U_i$, implies $\{U_i\} i \in \Lambda$ is an *semi Sa* –opencover of A and B.

But A and B are semi $\mathcal{S}\alpha$ -compact subsets, therefore there exists $i_1, i_2, \dots, i_n \in \Lambda$ and $i_1, i_2, \dots, i_m \in \Lambda$ such that $\{U_{i_1}, U_{i_2}, \dots, U_{i_n}\}$ and $\{U_{i_1}, U_{i_2}, \dots, U_{i_m}\}$ is a finite sub cover of A and B respectively, then $\{U_{i_1}, U_{i_2}, \dots, U_{i_m}\} \cup \{U_{i_1}, U_{i_2}, \dots, U_{i_m}\}$ is a finite sub cover of A \cup B, therefore $A \cup B$ is an semi $\mathcal{S}\alpha$ -compact subset of X.

Theorem 3.15

The semi $\Im \alpha$ -closed subset of an semi $\Im \alpha$ -compact space is semi $\Im \alpha$ -compact.

Proof

Let (X, τ_1, τ_2) be semi $\Im \alpha$ -compact space and let A be a semi $\Im \alpha$ -closed subset of X. to show that A is semi $\Im \alpha$ -compact set.

Let $\{U_i\} i \in \Lambda$ be any semi $\Im \alpha$ -opencover of A. Since A is semi $\Im \alpha$ -closed subset of X, then X-A is a semi $\Im \alpha$ -open subset of X, so $\{X-A\} \cup \{U_i; i \in \Lambda\}$ is a semi $\Im \alpha$ -opencover of X, which is semi $\Im \alpha$ -compact space.

Therefore, there exists $i_1, i_2, ..., i_n \in \Lambda$ such that {X-A, $U_{i_1}, U_{i_2}, ..., U_{i_n}$ } is a finite sub cover of X .as $A \subseteq X$ and X-A covers no part of A, then $\{U_{i_1}, U_{i_2}, ..., U_{i_n}\}$ is a finite sub cover of A. so A is semi $S\alpha$ –compact set.

Definition 3.16

A function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \tau'_1, \tau'_2)$ is said to be " semi $\Im \alpha$ -continuous function " if and only if the inverse image of each semi $\Im \alpha$ -open subset of Y is a semi $\Im \alpha$ -open subset of X.

Theorem 3.17

The semi $S\alpha$ -continuous image of a semi $S\alpha$ -compact space is a semi $S\alpha$ -compact space.

Proof

Let (X, τ_1, τ_2) be a semi $\delta \alpha$ -compact space, and let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \tau_1', \tau_2')$ be a semi $\delta \alpha$ -continuous, onto function. To show that (Y, τ_1', τ_2') is a semi $\delta \alpha$ -compact space. Let $\{U_i; i \in \Lambda\}$ be a semi $\delta \alpha$ -opencover of Y, then $\{f^{-1}(U_i); i \in \Lambda\}$ is a semi $\delta \alpha$ -opencover of X, which is semi $\delta \alpha$ -compact space.

So there exists $i_1, i_2, ..., i_n \in \Lambda$, such that the family $\{f^{-1}(U_{i_j}); j = 1, 2, ..., n\}$ covers X and since f is onto, then $\{U_{i_j}; j = 1, 2, ..., n\}$ is s finite sub cover of Y.

Hence Y is a semi $\Im \alpha$ –compact space.

References

[1]. J.C.Kelly, "Bitopological Spaces ", Prok .London Math. Soc., Vol. 13(1963), 71-89.

[2]. Mrsevic and I.L.Reilly, "Covering and connectedness properties of a topological space and it is Associated topology of α -subsets", Indian J. pure apple. Math., 27(10):995-1004, Oct.(1996).

[3]. Olav Najasted," On some classes of nearly open sets ", pacific journal of math., vol.15, No.3, 961-970,(1965).

[4]. G.B.Navalagi, "Definition Bank in General Topology ", Department of math., G.H.college, Haveri-581110, Karanataka, India.

[5]. Nadia M.Ali, "On New Types of weakly open sets", M.Sc. Thesis, University of Baghdad, college of education, Ibn Al-Haitham,(2004).

[6]. Ahmed I.Nasir, "Some kinds of strongly compact and pair-wise compact spaces", M.Sc. Thesis, University of Baghdad, college of education, Ibn Al-Haitham, (2005).

التراص شبه – Sa على الفضاءات التبولوجية الثنائية

رشا ناصر مجيد

قسم الرياضيات / كلية التربية - أبن الهيثم / جامعة بغداد

الخلاصة

قمنا في هذا البحث بتعريف نوع جديد من المجموعات المفتوحة على الفضاءات التبولوجية الثنائية والتي اسميناها المجموعات شبه المفتوحة – $S\alpha$. وبالتالي عرفنا نوع جديد من التراص على الفضاءات الثنائية والذي اسميناه التراص شبه – $S\alpha$ ، وقمنا بدراسة خواص هذا الفضاء وكذلك عرفنا الدوال المستمرة بين هذه الفضاءات .